Search results

Search for "hydrogen" in Full Text gives 718 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Electromigration-induced directional steps towards the formation of single atomic Ag contacts

  • Atasi Chatterjee,
  • Christoph Tegenkamp and
  • Herbert Pfnür

Beilstein J. Nanotechnol. 2020, 11, 680–687, doi:10.3762/bjnano.11.55

Graphical Abstract
  • detail previously. Contrary to most EM experiments with thin metallic films on insulating substrates, the Ag/Si(100) system is unique in the sense that the first Ag layer wets the hydrogen-terminated Si(100) surface [25]. This improves the thermal contact so that thermally assisted processes during EM
  • was employed in order to obtain nanostructures of bow-tie shape that were 100 to 200 nm wide at the smallest constriction. After HF dip, in order to get a hydrogen-terminated surface, 1 nm of Ti served as wetting layer before we evaporated 5 nm of Ag onto the substrate at room temperature. Thirdly
PDF
Album
Full Research Paper
Published 22 Apr 2020

A novel dry-blending method to reduce the coefficient of thermal expansion of polymer templates for OTFT electrodes

  • Xiangdong Ye,
  • Bo Tian,
  • Yuxuan Guo,
  • Fan Fan and
  • Anjiang Cai

Beilstein J. Nanotechnol. 2020, 11, 671–677, doi:10.3762/bjnano.11.53

Graphical Abstract
  • to 96 ppm/°C. This decrease is mainly attributed to two factors. First, the CTE of SiO2 is only 0.54 ppm/°C [12]. The higher content of SiO2 nanoparticles with a low CTE, the greater the influence on the CTE of PDMS. Second, covalent bonds are formed between SiO2 nanoparticles and PDMS and hydrogen
PDF
Album
Full Research Paper
Published 20 Apr 2020

Exfoliation in a low boiling point solvent and electrochemical applications of MoO3

  • Matangi Sricharan,
  • Bikesh Gupta,
  • Sreejesh Moolayadukkam and
  • H. S. S. Ramakrishna Matte

Beilstein J. Nanotechnol. 2020, 11, 662–670, doi:10.3762/bjnano.11.52

Graphical Abstract
  • change in slope, which could be due to the electrochemically reversible hydrogen intercalation, which was also seen in the voltammetry curves. The charge and discharge times were found to be 15 and 13 s at a current density of 1 A·g−1. Cycling stability is a key factor for the commercialization of
PDF
Album
Supp Info
Letter
Published 17 Apr 2020

Adsorptive removal of bulky dye molecules from water with mesoporous polyaniline-derived carbon

  • Hyung Jun An,
  • Jong Min Park,
  • Nazmul Abedin Khan and
  • Sung Hwa Jhung

Beilstein J. Nanotechnol. 2020, 11, 597–605, doi:10.3762/bjnano.11.47

Graphical Abstract
  • . Adsorption mechanism Understanding the adsorption mechanism is helpful to develop a competitive adsorption technology and to further improve the performance of an adsorbent. So far, several mechanisms [48], such as electrostatic [49][50], π–π [51][52][53][54], acid–base interactions [55][56], and hydrogen
PDF
Album
Supp Info
Full Research Paper
Published 08 Apr 2020

Identification of physicochemical properties that modulate nanoparticle aggregation in blood

  • Ludovica Soddu,
  • Duong N. Trinh,
  • Eimear Dunne,
  • Dermot Kenny,
  • Giorgia Bernardini,
  • Ida Kokalari,
  • Arianna Marucco,
  • Marco P. Monopoli and
  • Ivana Fenoglio

Beilstein J. Nanotechnol. 2020, 11, 550–567, doi:10.3762/bjnano.11.44

Graphical Abstract
  • interact with the proteins [22]. The affinity of a protein for a certain surface and the mode of interaction rise from the interplay of electrostatic interactions, hydrogen bondings, and hydrophobic forces [32]. Both nanomaterials are negatively charged at physiological pH. However, SNPs exhibit a less
  • groups/nm2 [31][32]. Both surfaces exhibit surface sites able to form hydrogen bonds or hydrophobic interaction with proteins. However, such tendency may be different since hydrogen bond formation obeys geometrical constraints due to the directional character of this bond. On the other hand, both silica
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2020

Luminescent gold nanoclusters for bioimaging applications

  • Nonappa

Beilstein J. Nanotechnol. 2020, 11, 533–546, doi:10.3762/bjnano.11.42

Graphical Abstract
  • peptide capable of penetrating bacterial biofilms with abundant arginine residue. The hydrogen bonding between the MTU ligands on the surface of Au-MTU NCs and the arginine residues in protamine form a supramolecular host–guest complex, i.e., Au-MTU/Prot. The supramolecular host–guest interactions
  • imaging [91]. Recently Duan et al. reported the synthesis of NIR-luminescent AuNCs capped with N-acetyl-ʟ-cysteine (NAC-CS) for long-time imaging [92]. The Au-NAC-CS NCs were insensitive to hydrogen peroxide and trypsin in contrast to Au NCs coated with BSA or other proteins, allowing for extended imaging
  • surrounding media [94]. Nevertheless, hydrogen bonding has been utilized to achieve two-dimensional (2D) and three-dimensional (3D) nanocluster superstructures [95][96]. The NC assemblies have been used to encapsulate poorly water-soluble fluorinated drugs through nanoconfinement [97]. Chandra et al. recently
PDF
Album
Review
Published 30 Mar 2020

Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery

  • Varsha Sharma and
  • Anandhakumar Sundaramurthy

Beilstein J. Nanotechnol. 2020, 11, 508–532, doi:10.3762/bjnano.11.41

Graphical Abstract
  • manipulate the shell permeability [4]. However, most of the work uses strong PEs such as polystyrene sulfonate (PSS) as one of the polymers, and thus, in order to release the payload, a disturbance in the intermolecular forces (e.g., covalent binding, hydrogen bonding and electrostatic interactions) guarding
  • various forces, mostly electrostatic interactions, hydrogen bonding, covalent bonding, host–guest interactions and other interactions (e.g., hydrophobic and biospecific recognition) as shown in Figure 3. Electrostatic interactions The LbL assemblies were originally applied to both charged planar
  • lead to the problem of fouling in biological systems and decreased efficiency. Hydrogen bonding Hydrogen bonding can be used with uncharged polymers for the capsule assembly to make it responsive towards stimuli relevant to physiological conditions. The working pH range of the capsule is based on the
PDF
Album
Review
Published 27 Mar 2020

Preparation and in vivo evaluation of glyco-gold nanoparticles carrying synthetic mycobacterial hexaarabinofuranoside

  • Gennady L. Burygin,
  • Polina I. Abronina,
  • Nikita M. Podvalnyy,
  • Sergey A. Staroverov,
  • Leonid O. Kononov and
  • Lev A. Dykman

Beilstein J. Nanotechnol. 2020, 11, 480–493, doi:10.3762/bjnano.11.39

Graphical Abstract
  • 0.02% Tween 20 and 0.02% powdered milk for 90 min. The membrane was washed four times for 15 min with PBS containing 0.02% Tween 20. After that, the membrane was treated with a substrate mixture of 0.05% 3,3′-diaminobenzidine and 0.02% hydrogen peroxide in 0.15 M PBS until intense brown dots appeared
  • well. After 30 min incubation, the wells were washed twice with 100 μL of PBS containing 0.02% Tween 20, and peroxidase activity was estimated by adding to each well 50 μL of a substrate mixture of 0.03% o-phenylenediamine and 0.02% hydrogen peroxide in 0.1 M sodium citrate buffer (pH 4.5). The enzyme
PDF
Album
Supp Info
Full Research Paper
Published 19 Mar 2020

Electrochemically derived functionalized graphene for bulk production of hydrogen peroxide

  • Munaiah Yeddala,
  • Pallavi Thakur,
  • Anugraha A and
  • Tharangattu N. Narayanan

Beilstein J. Nanotechnol. 2020, 11, 432–442, doi:10.3762/bjnano.11.34

Graphical Abstract
  • ; functionalized graphene; H2O2 production; water treatment; Introduction Hydrogen peroxide (H2O2) is identified as one among the most important 100 chemicals in the world, and its applications extend from the pharmaceutical industry to water purification [1][2][3]. Today, a majority of the required H2O2 is
  • preparation of H2O2 from oxygen and hydrogen, oxidation of alcohols [5], photocatalysis [6], and electrochemical processes such as the electro-Fenton process [7], microbial electrosynthesis [8], and proton exchange membrane (PEM) assisted synthesis [9]. Further, in situ generation of peroxide from dissolved
  • cell reactor-based method can overcome this limitation; however, this method relies on expensive membranes to separate hydrogen and oxygen and to directly yield H2O2 from them [18]. Later, this method was modified by generating protons (H+) through water oxidation which eliminated the direct purging of
PDF
Album
Supp Info
Full Research Paper
Published 09 Mar 2020

Poly(1-vinylimidazole) polyplexes as novel therapeutic gene carriers for lung cancer therapy

  • Gayathri Kandasamy,
  • Elena N. Danilovtseva,
  • Vadim V. Annenkov and
  • Uma Maheswari Krishnan

Beilstein J. Nanotechnol. 2020, 11, 354–369, doi:10.3762/bjnano.11.26

Graphical Abstract
  • peroxidase-conjugated secondary antibodies (dilution 1:5000, Cell Signaling Technology, USA) at room temperature. The protein spots were visualized using tetramethyl benzidine/hydrogen peroxide (TMB/H2O2, Bio-Rad, USA) reagent. Membranes were stripped, reblocked, and re-incubated with the primary antibody
PDF
Album
Full Research Paper
Published 17 Feb 2020

Facile biogenic fabrication of hydroxyapatite nanorods using cuttlefish bone and their bactericidal and biocompatibility study

  • Satheeshkumar Balu,
  • Manisha Vidyavathy Sundaradoss,
  • Swetha Andra and
  • Jaison Jeevanandam

Beilstein J. Nanotechnol. 2020, 11, 285–295, doi:10.3762/bjnano.11.21

Graphical Abstract
  • placed on magnetic stirrer. 1 molar (1.008 g) of cuttlefish bone powder was taken in a round bottom flask and 0.6 molar (0.795 g) of diammonium hydrogen phosphate was added dropwise using a burette. Then, the pH of the reaction was measured with a pH meter (Thermo Scientific, model-eco tester) and was
PDF
Album
Full Research Paper
Published 04 Feb 2020

Phase inversion-based nanoemulsions of medium chain triglyceride as potential drug delivery system for parenteral applications

  • Eike Folker Busmann,
  • Dailén García Martínez,
  • Henrike Lucas and
  • Karsten Mäder

Beilstein J. Nanotechnol. 2020, 11, 213–224, doi:10.3762/bjnano.11.16

Graphical Abstract
  • solutions of such surfactants increases nonlinearly with the solute concentration due to increasing polymer–solvent hydrogen bonding at low temperatures, which prevents the flow of solvent molecules in the solution and thus affects osmosis. This phenomenon is described by a modified polynomial van’t Hoff
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2020

Molecular architectonics of DNA for functional nanoarchitectures

  • Debasis Ghosh,
  • Lakshmi P. Datta and
  • Thimmaiah Govindaraju

Beilstein J. Nanotechnol. 2020, 11, 124–140, doi:10.3762/bjnano.11.11

Graphical Abstract
  • by complementary or conventional Watson–Crick (WC) base pairing interactions (Figure 1). In WC base pairing interactions, adenine (A) and thymine (T) form a doubly hydrogen-bonded base pair (A=T), while guanine (G) and cytosine (C) form a triply hydrogen-bonded base pair (G≡C) [10]. The hydrogen
  • bonding-mediated base pairing geometry is conditional on the conformation of the glycoside bonds and interactive hydrogen bonding sites. Apart from WC hydrogen bonding, unconventional hydrogen bonding, electrostatic, and metal ion interactions play a significant role in the formation of noncanonical DNA
  • architectures (Figure 1) [5]. The noncanonical hydrogen bonding interactions are responsible for the formation of a range of higher-ordered DNA structures. In particular, the double-stranded DNA duplex is a perfect nanoscale molecular architecture with a 2 nm thick rigid structure and a persistence length of ca
PDF
Album
Review
Published 09 Jan 2020

Internalization mechanisms of cell-penetrating peptides

  • Ivana Ruseska and
  • Andreas Zimmer

Beilstein J. Nanotechnol. 2020, 11, 101–123, doi:10.3762/bjnano.11.10

Graphical Abstract
  • partitioned into lipid phases from the aqueous phase in the presence of phosphatidylglycerol, a behavior of arginine often referred to as “arginine magic”. The guanidine group found on arginine has proven to form bidentate hydrogen bonds and electrostatic interaction with sulfate, phosphate and carboxylate
PDF
Album
Review
Published 09 Jan 2020

Simple synthesis of nanosheets of rGO and nitrogenated rGO

  • Pallellappa Chithaiah,
  • Madhan Mohan Raju,
  • Giridhar U. Kulkarni and
  • C. N. R. Rao

Beilstein J. Nanotechnol. 2020, 11, 68–75, doi:10.3762/bjnano.11.7

Graphical Abstract
  • nitrogen content (20–25 atom %). To further improve the properties of the synthesized rGO sheets, hydrogen treatment has been carried out to reduce the oxygen functional groups. Cyclic voltammograms and charge–discharge experiments have been carried out to understand the supercapacitor behavior of rGO and
  • hydrogen treated (H-rGO) samples. Keywords: nanosheets; nitrogenated reduced graphene oxide (N-rGO); reduced graphene oxide (rGO); supercapacitors; thermal decomposition; Introduction Graphene, the one atom thick two-dimensional material of sp2-hybridized carbon atoms has attracted much attention after
  • and 600 °C as well. The corresponding XRD patterns, Raman spectra and SEM images are given in Figure S1 and Figure S2, respectively, in Supporting Information File 1. In order to understand the supercapacitor behavior of rGO and H-rGO (hydrogen-treated rGO) samples, we have carried out cyclic
PDF
Album
Supp Info
Full Research Paper
Published 07 Jan 2020

Recent progress in perovskite solar cells: the perovskite layer

  • Xianfeng Dai,
  • Ke Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2020, 11, 51–60, doi:10.3762/bjnano.11.5

Graphical Abstract
  • counterpart. Here, the van der Waals gap between the organic layer and the inorganic slab is removed. The organic layers are connected with perovskite layers by strong hydrogen bonds in the 2D Dion–Jacobson (2DDJ) perovskite, which has a reasonably enhanced stability compared to the 2DRP perovskite. Guo et al
PDF
Album
Review
Published 06 Jan 2020

Synthesis of amorphous and graphitized porous nitrogen-doped carbon spheres as oxygen reduction reaction catalysts

  • Maximilian Wassner,
  • Markus Eckardt,
  • Andreas Reyer,
  • Thomas Diemant,
  • Michael S. Elsaesser,
  • R. Jürgen Behm and
  • Nicola Hüsing

Beilstein J. Nanotechnol. 2020, 11, 1–15, doi:10.3762/bjnano.11.1

Graphical Abstract
  • . The carbonization process of the carbon spheres involves the decomposition of the functional groups to gases such as CO2, H2O and CH4 [39]. Therefore, the carbon weight fraction of the elemental bulk composition increases constantly with higher reaction temperatures, whereas the hydrogen and oxygen
  • of oxygen, hydrogen and carbon atoms due to gasification and the arrangement to turbostratic-type carbon after heat treatment, as described in more detail in our former publication [36]. The g-NCS samples of lower reaction temperatures (g-NCS-550 and g-NCS-700) are very similar to their NCS
  • ) the ring current densities and (Figure 8c,f) the hydrogen peroxide yield. First of all, the data indicate that the carbon NCS-550 spheres are essentially inactive, while with higher nitriding temperatures the NCS samples are significantly more active. For the NCS-550 sample, this inactivity is at
PDF
Album
Full Research Paper
Published 02 Jan 2020

Fully amino acid-based hydrogel as potential scaffold for cell culturing and drug delivery

  • Dávid Juriga,
  • Evelin Sipos,
  • Orsolya Hegedűs,
  • Gábor Varga,
  • Miklós Zrínyi,
  • Krisztina S. Nagy and
  • Angéla Jedlovszky-Hajdú

Beilstein J. Nanotechnol. 2019, 10, 2579–2593, doi:10.3762/bjnano.10.249

Graphical Abstract
  • %, puriss), sodium chloride (CAS: 7647-14-5, Sigma-Aldrich, puriss), sodium hydroxide (CAS: 1310-73-2, Reanal, puriss), borax (CAS: 1303-96-4, Hungaropharma, ≥99.5%), disodium hydrogen phosphate (CAS: 7558-79-4, Sigma-Aldrich, ≥98%), trisodium phosphate (CAS: 10101-89-0, Sigma-Aldrich, ≥98%), phosphate
PDF
Album
Supp Info
Full Research Paper
Published 27 Dec 2019

Antimony deposition onto Au(111) and insertion of Mg

  • Lingxing Zan,
  • Da Xing,
  • Abdelaziz Ali Abd-El-Latif and
  • Helmut Baltruschat

Beilstein J. Nanotechnol. 2019, 10, 2541–2552, doi:10.3762/bjnano.10.245

Graphical Abstract
  • converted to versus reversible hydrogen electrode (RHE) using E(Pt/PtO) ≈ 0.9 V vs RHE. The anodic monolayer oxidation peak is much smaller than the cathodic one, because of the extension of the sweep into the bulk deposition regions. However, the larger negative current on the negative side of the UPD peak
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2019

Label-free highly sensitive probe detection with novel hierarchical SERS substrates fabricated by nanoindentation and chemical reaction methods

  • Jingran Zhang,
  • Tianqi Jia,
  • Yongda Yan,
  • Li Wang,
  • Peng Miao,
  • Yimin Han,
  • Xinming Zhang,
  • Guangfeng Shi,
  • Yanquan Geng,
  • Zhankun Weng,
  • Daniel Laipple and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2019, 10, 2483–2496, doi:10.3762/bjnano.10.239

Graphical Abstract
  • ) surface, and surface cleaning was carried out further using deionized water to remove any residual AgNO3 reagent and copper nitrate production. A stream of nitrogen was then used to dry the hierarchical substrate as shown in Figure 13. Hydrogen ions play an important role in the surface modification
PDF
Album
Full Research Paper
Published 13 Dec 2019

Self-assembly of a terbium(III) 1D coordination polymer on mica

  • Quentin Evrard,
  • Giuseppe Cucinotta,
  • Felix Houard,
  • Guillaume Calvez,
  • Yan Suffren,
  • Carole Daiguebonne,
  • Olivier Guillou,
  • Andrea Caneschi,
  • Matteo Mannini and
  • Kevin Bernot

Beilstein J. Nanotechnol. 2019, 10, 2440–2448, doi:10.3762/bjnano.10.234

Graphical Abstract
  • )3·2H2O]n@mica (bottom). Crystal structure of [Tb(hfac)3·2H2O]n [22] with H-bond network highlighted as blue dotted bonds (carbon: brown; oxygen: red; hydrogen: blue; fluorine atoms are omitted for clarity). Luminescence lifetimes of [Tb(hfac)3·2H2O] in CHCl3 solution, [Tb(hfac)3·2H2O]n@mica and bulk
PDF
Album
Supp Info
Full Research Paper
Published 10 Dec 2019

Air oxidation of sulfur mustard gas simulants using a pyrene-based metal–organic framework photocatalyst

  • Ghada Ayoub,
  • Mihails Arhangelskis,
  • Xuan Zhang,
  • Florencia Son,
  • Timur Islamoglu,
  • Tomislav Friščić and
  • Omar K. Farha

Beilstein J. Nanotechnol. 2019, 10, 2422–2427, doi:10.3762/bjnano.10.232

Graphical Abstract
  • linker, pyrene-2,7-dicarboxylic acid and b) Zr6 metal node. c) Fragment of the crystal structure of NU-400, established from PXRD data. Hydrogen atoms and disorder of pyrene groups are not shown for clarity. Zr: green, O: red, and C: grey. Conversion of CEES to CEESO under different conditions: (a
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2019

Deterministic placement of ultra-bright near-infrared color centers in arrays of silicon carbide micropillars

  • Stefania Castelletto,
  • Abdul Salam Al Atem,
  • Faraz Ahmed Inam,
  • Hans Jürgen von Bardeleben,
  • Sophie Hameau,
  • Ahmed Fahad Almutairi,
  • Gérard Guillot,
  • Shin-ichiro Sato,
  • Alberto Boretti and
  • Jean Marie Bluet

Beilstein J. Nanotechnol. 2019, 10, 2383–2395, doi:10.3762/bjnano.10.229

Graphical Abstract
  • near-infrared color centers in SiC using hydrogen irradiation and annealing at different temperatures. We have optimized the enhancement of color centers relevant for quantum sensing applications, such as silicon monovacancies and divacancies, and nitrogen vacancies. Due to the high fluence during
PDF
Album
Full Research Paper
Published 05 Dec 2019

Design of a nanostructured mucoadhesive system containing curcumin for buccal application: from physicochemical to biological aspects

  • Sabrina Barbosa de Souza Ferreira,
  • Gustavo Braga,
  • Évelin Lemos Oliveira,
  • Jéssica Bassi da Silva,
  • Hélen Cássia Rosseto,
  • Lidiane Vizioli de Castro Hoshino,
  • Mauro Luciano Baesso,
  • Wilker Caetano,
  • Craig Murdoch,
  • Helen Elizabeth Colley and
  • Marcos Luciano Bruschi

Beilstein J. Nanotechnol. 2019, 10, 2304–2328, doi:10.3762/bjnano.10.222

Graphical Abstract
  • nanometer-sized assembly into three-dimensional micelles with a hydrophobic core of PPO and a hydrophilic shell of PEO that can interact by hydrogen bonds with the hydrophilic acrylic-acid derivative polymer. This results in a binary polymeric system with good viscoelasticity, mucoadhesion, softness and
  • influence (p < 0.05) the elasticity and cohesiveness, which could be explained by the influence by hydrogen bonds and water mobility in the sample. As elucidated in location studies, CUR is a hydrophobic molecule that is located in the core of polymeric micelles and thus it should not influence this
PDF
Album
Supp Info
Full Research Paper
Published 25 Nov 2019

Design and facile synthesis of defect-rich C-MoS2/rGO nanosheets for enhanced lithium–sulfur battery performance

  • Chengxiang Tian,
  • Juwei Wu,
  • Zheng Ma,
  • Bo Li,
  • Pengcheng Li,
  • Xiaotao Zu and
  • Xia Xiang

Beilstein J. Nanotechnol. 2019, 10, 2251–2260, doi:10.3762/bjnano.10.217

Graphical Abstract
  • carbon is reduced by hydrogen to cause further increase of carbon defects; and the crystallinity of the MoS2 nanosheets is further improved. This is consistent with the results of XRD and Raman. The pore size distribution of the composites exhibits a sharp peak at 3 nm and another broad peak at 40 nm
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019
Other Beilstein-Institut Open Science Activities