Search results

Search for "insects" in Full Text gives 59 result(s) in Beilstein Journal of Nanotechnology.

Characterization of the microscopic tribological properties of sandfish (Scincus scincus) scales by atomic force microscopy

  • Weibin Wu,
  • Christian Lutz,
  • Simon Mersch,
  • Richard Thelen,
  • Christian Greiner,
  • Guillaume Gomard and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2018, 9, 2618–2627, doi:10.3762/bjnano.9.243

Graphical Abstract
  • unusually high compared to other reptiles or insects and do not suggest low surface energy or low adhesion. We, therefore, examined the adhesion of sandfish scales in more detail. Adhesion properties Several different types of AFM probes were utilised to measure the adhesion force on dorsal scales. Figure
PDF
Album
Full Research Paper
Published 02 Oct 2018

Friction reduction through biologically inspired scale-like laser surface textures

  • Johannes Schneider,
  • Vergil Djamiykov and
  • Christian Greiner

Beilstein J. Nanotechnol. 2018, 9, 2561–2572, doi:10.3762/bjnano.9.238

Graphical Abstract
  • lizards and insects [39][40][45]. There are four effects that are classically used to argue why laser surface texturing has a beneficial influence on tribological properties – the trapping of wear debris [46], changes in the contact angle [47], the storage of lubricant [48] and an additional micro
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2018

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
  • produced nanomaterials, which can be found in the bodies of organisms, insects, plants, animals and human bodies. However, the distinctions between naturally occurring, incidental, and manufactured NPs are often blurred. In some cases, for example, incidental NMs can be considered as a subcategory of
  • produced nanomaterials Apart from incidental and engineered nanomaterials, nanoparticles and nanostructures are present in living organisms ranging from microorganisms, such as bacteria, algae and viruses, to complex organisms, such as plants, insects, birds, animals and humans. Recent developments in the
  • beneficial biomedical applications. Insects have nanostructures that are formed via an evolutionary process which helps them to survive in harsh living conditions. Plants also utilize the nutrients available in soil and water for their growth which leads to the accumulation of these biominerals in nano-form
PDF
Album
Review
Published 03 Apr 2018

Bioinspired self-healing materials: lessons from nature

  • Joseph C. Cremaldi and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2018, 9, 907–935, doi:10.3762/bjnano.9.85

Graphical Abstract
  • about 95% of all species, vastly outnumbering their vertebrate counterparts [1][5]. Well-known invertebrate species include insects, crustaceans, snails, clams, octopuses, spiders, jellyfish, starfish, worms, and coral. Within the invertebrates, the subset of arthropods is of particular interest and
  • accounts for approximately 85% of species variation [1][2][5]. Arthropods are characterized by segmented bodies, exoskeletons, and appendages occurring in pairs. This includes all insects, arachnids (spiders), myriapods (e.g., millipedes and centipedes), and crustaceans (e.g., crabs and shrimp) [25]. Using
PDF
Album
Review
Published 19 Mar 2018

Effect of microtrichia on the interlocking mechanism in the Asian ladybeetle, Harmonia axyridis (Coleoptera: Coccinellidae)

  • Jiyu Sun,
  • Chao Liu,
  • Bharat Bhushan,
  • Wei Wu and
  • Jin Tong

Beilstein J. Nanotechnol. 2018, 9, 812–823, doi:10.3762/bjnano.9.75

Graphical Abstract
  • preventing the formation of turbulent eddies [27]. The microtrichia also function as anti-wetting structures [28]. Previous studies have shown that the anti-wetting function of microtrichia enables flying insects to easily overcome difficulties caused by getting wet during flight. The results presented here
  • °). Some studies of dragonfly and damselfly wings have demonstrated that CAs are in the range of 120–136° [29]. The results of these studies demonstrate that insect wings have hydrophobic activities. Some insects can perform normal flapping flight in the rain, and their wings are kept dry, allowing them to
  • bionic design, many artificial hydrophobic structures imitating the microtrichia of insects have been successfully manufactured. A model was established based on the folding of the hindwings and the microstructural characteristics of the VS of the elytra, the DS and VS of the hindwings, and the surface
PDF
Album
Full Research Paper
Published 06 Mar 2018

Biological and biomimetic materials and surfaces

  • Stanislav Gorb and
  • Thomas Speck

Beilstein J. Nanotechnol. 2017, 8, 403–407, doi:10.3762/bjnano.8.42

Graphical Abstract
  • with the prey spectra between the taxa studied. This study opens an interesting possibility of combining surface microstructures with adhesive fluids to enhance dynamical performance of the next generation of adhesives. The majority of insects bear adhesive foot pads, which are used in locomotion on
PDF
Editorial
Published 08 Feb 2017

Structural and tribometric characterization of biomimetically inspired synthetic "insect adhesives"

  • Matthias W. Speidel,
  • Malte Kleemeier,
  • Andreas Hartwig,
  • Klaus Rischka,
  • Angelika Ellermann,
  • Rolf Daniels and
  • Oliver Betz

Beilstein J. Nanotechnol. 2017, 8, 45–63, doi:10.3762/bjnano.8.6

Graphical Abstract
  • able to mimic certain rheological and tribological properties of natural tarsal insect adhesives. Keywords: adhesion; bionics; emulsion; friction; insects; Introduction During evolution, insects have developed the ability to move vertically and upside-down on various kinds of surface, a feat that has
  • facilitated their successful exploration of a huge diversity of habitats. In this context, insects have evolved two distinctly different mechanisms to attach themselves to a variety of substrates, i.e., hairy surfaces and smooth flexible pads [1]. Usually, both types of adhesive devices involve supplementary
  • . [21]. Although the analysis of the structure and the function of the emulsion-like adhesives of insects is still in its infancy, these adhesives combine interesting properties relevant for possible commercial applications and the development of biomimetically inspired lipid-based adhesives. We have
PDF
Album
Supp Info
Full Research Paper
Published 06 Jan 2017

When the going gets rough – studying the effect of surface roughness on the adhesive abilities of tree frogs

  • Niall Crawford,
  • Thomas Endlein,
  • Jonathan T. Pham,
  • Mathis Riehle and
  • W. Jon P. Barnes

Beilstein J. Nanotechnol. 2016, 7, 2116–2131, doi:10.3762/bjnano.7.201

Graphical Abstract
  • slipperiness repels all insects except their specific ant partners [12]. Rough surfaces could also be abrasive and therefore potentially damaging to adhesive surfaces. Despite extensive research on the adhesive abilities of tree frogs, most studies have involved testing their climbing capabilities on smooth
  • difficult. The pads of tree frogs are very soft and so should deform to mould around rough surfaces, as is seen in smooth padded insects [17]. The Young’s modulus of the toe pads has been measured in several studies, an elastic modulus of 40–55 kPa based on AFM indentation being the most recent estimate [18
  • possess claws as well as adhesive pads. Additionally, there are studies of plant surfaces that have evolved to be anti-adhesive as far as insects are concerned. The effects of surface roughness on animals with hairy pads (geckos, spiders, insects such as beetles) are reasonably predictable. When the
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2016

Surface roughness rather than surface chemistry essentially affects insect adhesion

  • Matt W. England,
  • Tomoya Sato,
  • Makoto Yagihashi,
  • Atsushi Hozumi,
  • Stanislav N. Gorb and
  • Elena V. Gorb

Beilstein J. Nanotechnol. 2016, 7, 1471–1479, doi:10.3762/bjnano.7.139

Graphical Abstract
  • . Certain of these natural surfaces can effectively prevent wetting by water, while simultaneously protecting against attachment by insects by taking advantage of the same or very similar surface features [16][17][18][19][20][21][22][23]. Unfortunately, these natural anti-attachment properties have received
  • is primarily responsible for natural anti-attachment properties has also not been fully resolved. Therefore, a comparative study of the attachment behavior of insects on artificially designed (low/high surface energy) surfaces of varying surface roughness, has been postulated as an effective strategy
  • to identify the most important parameters influencing insect attachment. Many insects, including beetles, can attach to inverted surfaces using specific hairy adhesive pads, covered with tenent setae, which secrete an adhesive fluid which typically consists of a mixture of alcohols, fatty acids, and
PDF
Album
Full Research Paper
Published 18 Oct 2016

Influence of ambient humidity on the attachment ability of ladybird beetles (Coccinella septempunctata)

  • Lars Heepe,
  • Jonas O. Wolff and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2016, 7, 1322–1329, doi:10.3762/bjnano.7.123

Graphical Abstract
  • , Macquarie University, Sydney, NSW 2109, Australia 10.3762/bjnano.7.123 Abstract Many insects possess adhesive foot pads, which enable them to scale smooth vertical surfaces. The function of these organs may be highly affected by environmental conditions. Ladybird beetles (Coccinellidae) possess dense
  • niche occupation of plant-dwelling insects, since it is substantial for resting and locomotion in a complex environment. Consequently, a high diversity of friction and adhesion enhancing structures has evolved among insects [1][2]. Several studies showed that not only the intrinsic structure of an
  • by ambient humidity [16][17]. Due to its polarity it can work as a bonding agent between two surfaces, and therefore have a substantial effect on adhesion [18][19][20][21]. In insects the terminal contact elements of tenent setae are not dry, but rather wetted by a fluid secretion that is usually a
PDF
Album
Full Research Paper
Published 22 Sep 2016

Functional diversity of resilin in Arthropoda

  • Jan Michels,
  • Esther Appel and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2016, 7, 1241–1259, doi:10.3762/bjnano.7.115

Graphical Abstract
  • (rec1-resilin) was developed and has been shown to be cross-reactive and to label resilin in different insects [12][13][41][42]. Until today, this immunohistochemical method has been tested for only a small number of insects and only within the studies mentioned above. If it proves efficient in tests
  • . For example, resilin plays an important role in flight systems of insects, in particular in insects that use a wing beat with a low frequency (10–50 Hz) (see below). Resilin-containing exoskeleton structures have been described for various mechanical systems including leg joints [40][50], vein joints
  • function [61][62]. For insects, two different types of membranes have previously been reported. The first type is a highly extensible membrane found in the locust abdomen that can extend up to ten times its original length [63][64][65]. This cuticle is highly specialised in its protein composition [66
PDF
Album
Review
Published 01 Sep 2016

The hydraulic mechanism in the hind wing veins of Cybister japonicus Sharp (order: Coleoptera)

  • Jiyu Sun,
  • Wei Wu,
  • Mingze Ling,
  • Bharat Bhushan and
  • Jin Tong

Beilstein J. Nanotechnol. 2016, 7, 904–913, doi:10.3762/bjnano.7.82

Graphical Abstract
  • , flexibility, low cost, and portability. There are three main flight modes: fixed wing, rotor, and flapping. Insects possess a remarkable ability to fly, far superior to what humans achieved in the production of MAVs with a low Reynolds number. In general, the hind wings of a beetle are larger than its
  • pattern [2]. The folding of the hind wings provides the following functionality: (1) flapping wings can change shape, giving them better aerodynamic characteristics [3]; (2) pleated wings are more rigid in flexion than planar ones; (3) when insects are not flying, the folding structure allows the hind
  • the veins was a unidirectional flow. In adult Lepidoptera, Coleoptera and Diptera, and perhaps in some other insects, the blood is shunted backwards and forwards between the thorax and abdomen, rather than circulated [1]. During the deployment of the hind wings, the blood pressure in the veins of the
PDF
Album
Full Research Paper
Published 23 Jun 2016

Functional fusion of living systems with synthetic electrode interfaces

  • Oskar Staufer,
  • Sebastian Weber,
  • C. Peter Bengtson,
  • Hilmar Bading,
  • Joachim P. Spatz and
  • Amin Rustom

Beilstein J. Nanotechnol. 2016, 7, 296–301, doi:10.3762/bjnano.7.27

Graphical Abstract
  • hygroreceptors from various insects [15][16]), our observations demonstrate that even complex cell functions may be technologically implemented by an appropriate interface and interpretation of their characteristic signal patterns. The remarkable delay in the appearance of the monophasic electrical response due
PDF
Album
Supp Info
Letter
Published 26 Feb 2016

NanoE-Tox: New and in-depth database concerning ecotoxicity of nanomaterials

  • Katre Juganson,
  • Angela Ivask,
  • Irina Blinova,
  • Monika Mortimer and
  • Anne Kahru

Beilstein J. Nanotechnol. 2015, 6, 1788–1804, doi:10.3762/bjnano.6.183

Graphical Abstract
  • , fish, plants and bacteria. Those organisms included yeasts, protists, amphibians, bivalves, cnidarians, echinoderms, insects, nematodes, rotifers, snails and worms (Table S5, Supporting Information File 1). Hence, quite a wide range of test organisms has already been included in the evaluation of
PDF
Album
Supp Info
Full Research Paper
Published 25 Aug 2015

Mandibular gnathobases of marine planktonic copepods – feeding tools with complex micro- and nanoscale composite architectures

  • Jan Michels and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2015, 6, 674–685, doi:10.3762/bjnano.6.68

Graphical Abstract
  • systems of sea ice. Copepods are assumed to contribute the largest amount of individuals to the metazoans, even larger than those contributed by insects and nematodes [2][3]. In the marine pelagial the abundance of copepods is particularly pronounced. As a result of this, in all ocean areas worldwide
PDF
Album
Video
Review
Published 06 Mar 2015

Aquatic versus terrestrial attachment: Water makes a difference

  • Petra Ditsche and
  • Adam P. Summers

Beilstein J. Nanotechnol. 2014, 5, 2424–2439, doi:10.3762/bjnano.5.252

Graphical Abstract
  • examples in diverse taxa, including suctorial bats, several variations of lizards, and countless beetles, spiders and ants. In every stream, there are mobile larvae that spend their lives attaching to the substrate. These insects are ruled by the water forces imposed by local flow conditions. There are
  • attachment mechanisms such as hooks, clamps and spacers. Thorns and other protuberances found on the underside of many torrential insects can also increase friction with the substrate as well as an increased surface area of the animal contacting the substrate [56]. Specialized friction pads, which increase
PDF
Album
Review
Published 17 Dec 2014

Anticancer efficacy of a supramolecular complex of a 2-diethylaminoethyl–dextran–MMA graft copolymer and paclitaxel used as an artificial enzyme

  • Yasuhiko Onishi,
  • Yuki Eshita,
  • Rui-Cheng Ji,
  • Masayasu Onishi,
  • Takashi Kobayashi,
  • Masaaki Mizuno,
  • Jun Yoshida and
  • Naoji Kubota

Beilstein J. Nanotechnol. 2014, 5, 2293–2307, doi:10.3762/bjnano.5.238

Graphical Abstract
  • the differentiation of M1 macrophages through the jumonji domain-containing histone demethylase (Jmjd3) pathway does not occur readily following DDMC treatment as it contains α-1,6 glycoside linkages, differing from chitosans or celluloses (β-1,4), which are constituent materials of parasites, insects
PDF
Album
Review
Published 01 Dec 2014

Equilibrium states and stability of pre-tensioned adhesive tapes

  • Carmine Putignano,
  • Luciano Afferrante,
  • Luigi Mangialardi and
  • Giuseppe Carbone

Beilstein J. Nanotechnol. 2014, 5, 1725–1731, doi:10.3762/bjnano.5.182

Graphical Abstract
  • understanding of adhesion of thin films is of prominent importance in a huge number of biological and biomechanical applications. As an example, the extraordinary adhesive abilities characterizing the hairy attachment systems of insects, reptiles and spiders have drawn significant research efforts aimed at
  • reproducing such properties in artificial bio-mimetic adhesives [1][2][3]. In nature, many adhesive systems consist of arrays of hierarchical hairs or setae, enabling large contact areas and hence high adhesion owing to the van der Waals interaction forces [4]. This morphology enables many insects, spiders
  • fact that they are usually constituted mainly of a relatively stiff material, namely β-keratin. The study of the mechanism of detachment of thin films can also help to elucidate some aspect of insects and, in particular, gecko adhesion. To avoid toe detachment, the gecko often employs the use of
PDF
Album
Full Research Paper
Published 07 Oct 2014

Physical principles of fluid-mediated insect attachment - Shouldn’t insects slip?

  • Jan-Henning Dirks

Beilstein J. Nanotechnol. 2014, 5, 1160–1166, doi:10.3762/bjnano.5.127

Graphical Abstract
  • Jan-Henning Dirks Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Stuttgart, Germany 10.3762/bjnano.5.127 Abstract Insects use either hairy or smooth adhesive pads to safely adhere to various kinds of surfaces. Although the two types of adhesive pads are
  • of the insects, which enable them to cling to vertical smooth substrates without sliding. When taking a closer look at the “classic” attachment model, one can see that it is based on several simplifications, such as rigid surfaces or continuous layers of Newtonian fluids. Recent experiments show that
  • : adhesion; friction; insect biomechanics; tribology; Review How do insects adhere to surfaces? More than 80% of the animal species in the world are arthropods [1], and amongst them insects can be considered probably the evolutionarily most successful group. For hundreds of millions of years they are
PDF
Album
Video
Review
Published 28 Jul 2014

Dry friction of microstructured polymer surfaces inspired by snake skin

  • Martina J. Baum,
  • Lars Heepe,
  • Elena Fadeeva and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2014, 5, 1091–1103, doi:10.3762/bjnano.5.122

Graphical Abstract
  • been previously shown that the attachment ability of insects [62][63][64][65] and geckos [66] is strongly dependent on the surface roughness. Yu et al. [67] demonstrated that surface roughness also strongly affects the performance of gecko-inspired adhesives. All these authors have shown that there is
PDF
Album
Full Research Paper
Published 21 Jul 2014

Insect attachment on crystalline bioinspired wax surfaces formed by alkanes of varying chain lengths

  • Elena Gorb,
  • Sandro Böhm,
  • Nadine Jacky,
  • Louis-Philippe Maier,
  • Kirstin Dening,
  • Sasha Pechook,
  • Boaz Pokroy and
  • Stanislav Gorb

Beilstein J. Nanotechnol. 2014, 5, 1031–1041, doi:10.3762/bjnano.5.116

Graphical Abstract
  • Engineering and the Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, 32000 Haifa, Israel 10.3762/bjnano.5.116 Abstract The impeding effect of plant surfaces covered with three-dimensional wax on attachment and locomotion of insects has been shown previously in numerous
  • , insects use different structures for attachment, depending on the texture of the substrate. They usually apply their claws to interlock with surface irregularities on rough surfaces, when the diameter of the claw tip is smaller than the dimensions of typical surface asperities or cavities [1]. On smooth
  • and microrough substrates, many insects use highly specialised adhesive pads, which may be located on different parts of the leg and are of two different types: smooth and setose (hairy) [2][3]. Due to the material flexibility of smooth pads and fine fibrillar surface microstructures (tenent setae
PDF
Album
Full Research Paper
Published 14 Jul 2014

Molecular biology approaches in bioadhesion research

  • Marcelo Rodrigues,
  • Birgit Lengerer,
  • Thomas Ostermann and
  • Peter Ladurner

Beilstein J. Nanotechnol. 2014, 5, 983–993, doi:10.3762/bjnano.5.112

Graphical Abstract
  • containing dsRNA. Another strategy is ingestion, by inducing target organisms to feed on other organisms like bacteria expressing the desirable dsRNA [69][82][83][84], or transgenic plants for feeding insects [85]. Also the combination of methods like the enrichment of natural diets, for example, liver paste
PDF
Album
Review
Published 08 Jul 2014

Controlling mechanical properties of bio-inspired hydrogels by modulating nano-scale, inter-polymeric junctions

  • Seonki Hong,
  • Hyukjin Lee and
  • Haeshin Lee

Beilstein J. Nanotechnol. 2014, 5, 887–894, doi:10.3762/bjnano.5.101

Graphical Abstract
  • properties of bulk hydrogels. Keywords: catechols; hydrogels; poly(ethylene glycol)s; quinone tanning; Introduction Water-resistant adhesives secreted by marine mussels, stiff cuticles synthesized by insects, and sharp beaks found in squids appear to be drastically different biomaterials (Figure 1a–c) [1
  • ][2][3][4][5][6]. Not only their mechanical properties, but also their biological functions are distinct: The adhesives anchor mussels in place for survival and colonization, the cuticles securely protect insects from predators, pathogens, and environmental stresses, and the beaks act as a non
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2014

Fibrillar adhesion with no clusterisation: Functional significance of material gradient along adhesive setae of insects

  • Stanislav N. Gorb and
  • Alexander E. Filippov

Beilstein J. Nanotechnol. 2014, 5, 837–845, doi:10.3762/bjnano.5.95

Graphical Abstract
  • . This has been previously shown for insect cuticle [24][25], snake skin [26], human teeth [27][28], and other biological composites. The gradients have been also recently reported for smooth attachment devices of insects [29]. Interestingly, the gradients in smooth pads of locusts and bushcrickets are
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2014

The optimal shape of elastomer mushroom-like fibers for high and robust adhesion

  • Burak Aksak,
  • Korhan Sahin and
  • Metin Sitti

Beilstein J. Nanotechnol. 2014, 5, 630–638, doi:10.3762/bjnano.5.74

Graphical Abstract
  • that bears them [1]. Some insects, spiders, and anoles have fibers with effective diameters of the order of micrometers. Other animals such as the gecko lizard bear micro-scale stalks, which branch down to nano-scale fibers forming intricate hierarchical structures. The common aspect of fibrillar
PDF
Album
Supp Info
Full Research Paper
Published 14 May 2014
Other Beilstein-Institut Open Science Activities