Search results

Search for "ion" in Full Text gives 834 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

A non-enzymatic electrochemical hydrogen peroxide sensor based on copper oxide nanostructures

  • Irena Mihailova,
  • Vjaceslavs Gerbreders,
  • Marina Krasovska,
  • Eriks Sledevskis,
  • Valdis Mizers,
  • Andrejs Bulanovs and
  • Andrejs Ogurcovs

Beilstein J. Nanotechnol. 2022, 13, 424–436, doi:10.3762/bjnano.13.35

Graphical Abstract
  • explains why it is impossible to obtain the developed nanostructured CuO surface at room temperature. However, after increasing the concentration of NaOH to 10–15 M, the dissolution–secondary precipitation mechanism takes effect: Cu(OH)2 reacts with OH− ions to form the complex ion [Cu(OH)4]2− (Equation 2
PDF
Album
Full Research Paper
Published 03 May 2022

Selected properties of AlxZnyO thin films prepared by reactive pulsed magnetron sputtering using a two-element Zn/Al target

  • Witold Posadowski,
  • Artur Wiatrowski,
  • Jarosław Domaradzki and
  • Michał Mazur

Beilstein J. Nanotechnol. 2022, 13, 344–354, doi:10.3762/bjnano.13.29

Graphical Abstract
  •  3). The placement and number of Al rings were estimated taking into account the sputtering yield of Zn and Al (at 500 eV of the Ar ion energy YZn = 5 and YAl = 0.9 [22]) and the width of the race track (25 mm) of our magnetron source. Finally, three Al rings with diameters of 55, 60 and 65 mm were
PDF
Album
Full Research Paper
Published 31 Mar 2022

A broadband detector based on series YBCO grain boundary Josephson junctions

  • Egor I. Glushkov,
  • Alexander V. Chiginev,
  • Leonid S. Kuzmin and
  • Leonid S. Revin

Beilstein J. Nanotechnol. 2022, 13, 325–333, doi:10.3762/bjnano.13.27

Graphical Abstract
  • deposition of YBaCuO films on a bicrystal substrate [25]. This problem can be mitigated by using ion irradiation [4][18][26] or step-edge junction technology [19], which will significantly increase the receiving properties and efficiency of the JJ series at high frequencies. While the integral received power
PDF
Album
Full Research Paper
Published 28 Mar 2022

Interfacial nanoarchitectonics for ZIF-8 membranes with enhanced gas separation

  • Season S. Chen,
  • Zhen-Jie Yang,
  • Chia-Hao Chang,
  • Hoong-Uei Koh,
  • Sameerah I. Al-Saeedi,
  • Kuo-Lun Tung and
  • Kevin C.-W. Wu

Beilstein J. Nanotechnol. 2022, 13, 313–324, doi:10.3762/bjnano.13.26

Graphical Abstract
  • usually separates the metal ion and ligand solutions by a porous substrate, and crystallization occurs within the substrate. Since the diffusion rates of metal ions and ligands are usually different due to different interactions with the substrate, the resultant membranes are likely to contain defects. In
PDF
Album
Supp Info
Full Research Paper
Published 22 Mar 2022

Relationship between corrosion and nanoscale friction on a metallic glass

  • Haoran Ma and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2022, 13, 236–244, doi:10.3762/bjnano.13.18

Graphical Abstract
  • buffer, the ion transfer is limited by the dissolution rate. Anodic polarization in phosphate buffer with its stronger metal ion dissolution leads to an accumulation of cations on the surface and, thus, to a higher surface charge. In NaCl solution, adhesion increases with immersion time, indicating an
  • increased surface charge. We conclude that dissolution of metal ions occurs faster than their diffusion into solution in NaCl solution, that is, the ion transfer is limited by diffusion. The lack of passivation is in agreement with reports about a decrease in corrosion resistance in NaCl solution with
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • of hydroxy groups elicits hydrophobicity [24]. The primary physical properties of titanium dioxide that contribute to its biocompatibility are high corrosion resistance, the thermodynamic state at low physiological pH values, the isoelectric point of 5–6, the low ion formation tendency in aqueous
PDF
Album
Review
Published 14 Feb 2022

Low-energy electron interaction and focused electron beam-induced deposition of molybdenum hexacarbonyl (Mo(CO)6)

  • Po-Yuan Shih,
  • Maicol Cipriani,
  • Christian Felix Hermanns,
  • Jens Oster,
  • Klaus Edinger,
  • Armin Gölzhäuser and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2022, 13, 182–191, doi:10.3762/bjnano.13.13

Graphical Abstract
  • -electron [32][33][34][35] and two photo-ion studies [36][37]. In the present work, we revisit low-energy electron interactions with Mo(CO)6. We present DEA ion yield curves in the energy range from about 0 to 12 eV and compare these to the earlier studies and discuss the DEA contributions in relation to
  • determined for each fragment. Experimental Gas phase Both negative and positive ion yield curves and mass spectra were recorded with an electron–molecule crossed beam setup. The apparatus has been previously described in detail [50] and thus only a brief description is given here. It consists of a trochoidal
  • 1 × 10−6 mbar during measurements. Positive ion mass spectra were recorded by scanning through the relevant m/z range at fixed electron energy while negative ion yield curves were recorded at fixed m/z by scanning through the relevant electron energy. The electron energy scale was calibrated based
PDF
Album
Full Research Paper
Published 04 Feb 2022

Theoretical understanding of electronic and mechanical properties of 1T′ transition metal dichalcogenide crystals

  • Seyedeh Alieh Kazemi,
  • Sadegh Imani Yengejeh,
  • Vei Wang,
  • William Wen and
  • Yun Wang

Beilstein J. Nanotechnol. 2022, 13, 160–171, doi:10.3762/bjnano.13.11

Graphical Abstract
  • generalized gradient approximation (GGA) level was used [37]. Electron-ion interactions were described using PAW potentials [38], with valence configurations of 4s24p65s14d5 for Mo (Mo_sv), 4s25p66s15d5 for W (W_sv), 3s23p4 for S (S), and 4s24p4 for Se (Se). A plane-wave basis set with a cutoff kinetic energy
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
  • predominant PEMs [13]. Zhang et al. developed nanohybrid PVDF membranes by incorporating zeolite with enhanced thermal and electrochemical performance for lithium-ion batteries [14]. ENHs have also been used as a heterogeneous catalyst in indole synthesis by Savva et al. by incorporating gold nanoparticles
  • metals and other cations, electrospun membranes have been recognized as a promising solution. Most metal ion removing membranes interact with the targeted ions through ionic interactions via functional groups, such as hydroxy groups, carboxyl groups, amino groups, and ester groups, on the membrane
  • surface. Hence, a high surface area and the ability to generate abundant functional group at the surface of the membrane makes electrospun membranes the perfect candidate for metal ion removal. CS is one of the most commonly used electrospun natural polymers in heavy metal ion removal. Amine functional
PDF
Album
Review
Published 31 Jan 2022

Tin dioxide nanomaterial-based photocatalysts for nitrogen oxide oxidation: a review

  • Viet Van Pham,
  • Hong-Huy Tran,
  • Thao Kim Truong and
  • Thi Minh Cao

Beilstein J. Nanotechnol. 2022, 13, 96–113, doi:10.3762/bjnano.13.7

Graphical Abstract
  • cell of rutile SnO2, a Sn4+ ion is bonded to six oxygen ions, and every oxygen atom is coordinated by three Sn4+ ions, forming a (6, 3) coordination structure [44]. When SnO2 materials are prepared as thin films with two to eight layers the bandgap is larger than that of bulk SnO2 and decreases with
  • predominantly point defects, that is, defects associated with one lattice point, such as cation or oxygen ion vacancies. OVs determine the physical and chemical properties of metal oxides. Figure 4a shows the natural crystal structure of SnO2 synthesized by vapor transport [48]. The (110) plane of rutile SnO2
PDF
Album
Review
Published 21 Jan 2022

Effect of lubricants on the rotational transmission between solid-state gears

  • Huang-Hsiang Lin,
  • Jonathan Heinze,
  • Alexander Croy,
  • Rafael Gutiérrez and
  • Gianaurelio Cuniberti

Beilstein J. Nanotechnol. 2022, 13, 54–62, doi:10.3762/bjnano.13.3

Graphical Abstract
  • either solid-state gears or molecular gears, which are created by top-down approaches (e.g., using focused ion beams [23] or electron beams [24][25] to etch the substrate) or bottom-up approaches such as chemical synthesis [26][27]. The ultimate goal for those miniaturized gears is to implement nanoscale
PDF
Album
Supp Info
Full Research Paper
Published 05 Jan 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
  • electric fields, the latter being generated by the negative voltage applied to the cathode, allow for trapping the plasma electrons near the target surface to enhance gas ionization in that region. Consequently, the ion flux towards the target and the corresponding cathode current is significantly
  • unit time (e.g., nanometers per minute) in sputtering-related publications, in the case of SoL, it might be better to present the deposition rate as a flux of particles or a mass deposited onto the liquid surface per unit time. The sputtering process itself is characterized by the so-called ion-induced
  • sputtering yield, which represents the probability of sputtering a given number of target atoms for one incident plasma ion. The plasma ion (e.g., Ar+), accelerated towards the surface of the sputter target by the negative potential applied to the cathode, transfers its momentum to the surface atoms, which
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Topographic signatures and manipulations of Fe atoms, CO molecules and NaCl islands on superconducting Pb(111)

  • Carl Drechsel,
  • Philipp D’Astolfo,
  • Jung-Ching Liu,
  • Thilo Glatzel,
  • Rémy Pawlak and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2022, 13, 1–9, doi:10.3762/bjnano.13.1

Graphical Abstract
  • [47] operated in the frequency-modulation mode (resonance frequency f0 ≈ 25 kHz, spring constant k ≈ 1800 N/m, quality factor Q ≈ 14000, and oscillation amplitude A ≈ 0.5 Å). The tip mounted to the qPlus sensor consists of a 25 μm-thick PtIr wire, shortened and sharpened with a focused ion beam. A
PDF
Album
Letter
Published 03 Jan 2022

Design aspects of Bi2Sr2CaCu2O8+δ THz sources: optimization of thermal and radiative properties

  • Mikhail M. Krasnov,
  • Natalia D. Novikova,
  • Roger Cattaneo,
  • Alexey A. Kalenyuk and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2021, 12, 1392–1403, doi:10.3762/bjnano.12.103

Graphical Abstract
  • on a flat portion of Bi-2212 surface, followed by argon-ion etching of the unprotected parts of Au and Bi-2212, the deposition of insulating SiO2 or CaF2 layers and a lift-off of the photoresist at the line. The depth of Bi-2212 etching at this stage (dm ≈ 200–400 nm) defines the height of mesas and
  • photolithography and argon-ion etching. Mesa structures are formed at the overlap between the line and the electrodes, as indicated in Figure 1a. Figure 2a,b shows current–voltage (I–V) characteristics of mesas of whisker- and crystal-based devices, respectively. The I–V curves are fairly similar. They contain
PDF
Album
Full Research Paper
Published 21 Dec 2021

Measurement of polarization effects in dual-phase ceria-based oxygen permeation membranes using Kelvin probe force microscopy

  • Kerstin Neuhaus,
  • Christina Schmidt,
  • Liudmila Fischer,
  • Wilhelm Albert Meulenberg,
  • Ke Ran,
  • Joachim Mayer and
  • Stefan Baumann

Beilstein J. Nanotechnol. 2021, 12, 1380–1391, doi:10.3762/bjnano.12.102

Graphical Abstract
  • microscopy; oxygen permeation; Introduction Acceptor-doped cerium dioxide, where cerium is partially substituted by cations of lower valence (most prominently Gd3+), is a fluorite material with a very high oxide ion conductivity at comparably moderate temperatures (around 600 °C). It has already been in
  • focus of research for roughly 50 years [1]. The ion conductivity is combined with a moderate electron conductivity, which strongly depends on the oxygen partial pressure [2][3][4]. These features make ceria an interesting material for high-temperature industrial applications, for example, as oxygen
  • spinel or perovskite phase applicable in membrane reactors for partial oxidation reactions. Dual-phase membranes with FeCo2O4, or its iron-rich pendant Fe2CoO4, and Gd-doped ceria as an ion conductor have already been successfully applied as oxygen permeation membranes with high permeability in the
PDF
Album
Full Research Paper
Published 15 Dec 2021

Chemical vapor deposition of germanium-rich CrGex nanowires

  • Vladislav Dřínek,
  • Stanislav Tiagulskyi,
  • Roman Yatskiv,
  • Jan Grym,
  • Radek Fajgar,
  • Věra Jandová,
  • Martin Koštejn and
  • Jaroslav Kupčík

Beilstein J. Nanotechnol. 2021, 12, 1365–1371, doi:10.3762/bjnano.12.100

Graphical Abstract
  • species, Ar+ ion sputtering was used. The initial atomic elemental ratio was [Cr]/[Ge]/[O] = 1:7.33:11.61; after 90 s of Ar+ ion sputtering the ratio was [Cr]/[Ge]/[O] = 1:4.41:2.43. The presence of oxygen indicated oxidation after the experiment. The [Cr]/[Ge] atomic elemental ratio of 1:4.41 was
  • transfer single NWs onto contact lithographic pads (Supporting Information File 1, Figure S9) to measure their conductivity. The NWs, however, turned out to be fragile and were destroyed when an attempt was made to cut them from the tungsten tip using a focused ion beam (FIB). Therefore, a method to
  • with the Ga+ focused ion beam (FIB), gas injection system (GIS), and nanomanipulator OmniProbe 400 (Oxford Instruments) with a tungsten tip. The nanomanipulator enabled a direct contact of single as-grown NWs. The current–voltage (I–V) characteristics were measured using a Keithley 237 source
PDF
Album
Supp Info
Letter
Published 07 Dec 2021

Cantilever signature of tip detachment during contact resonance AFM

  • Devin Kalafut,
  • Ryan Wagner,
  • Maria Jose Cadena,
  • Anil Bajaj and
  • Arvind Raman

Beilstein J. Nanotechnol. 2021, 12, 1286–1296, doi:10.3762/bjnano.12.96

Graphical Abstract
  • of a sample [6] and observe subsurface features in some biological and electronics samples [7][8][9][10][11][12]. PFM can measure piezoelectric and ferroelectric properties of a sample [13][14][15][16]. ESM can measure the ion diffusion in battery materials [4][17][18][19]. These different AFM
PDF
Album
Supp Info
Full Research Paper
Published 24 Nov 2021

Plasmon-enhanced photoluminescence from TiO2 and TeO2 thin films doped by Eu3+ for optoelectronic applications

  • Marcin Łapiński,
  • Jakub Czubek,
  • Katarzyna Drozdowska,
  • Anna Synak,
  • Wojciech Sadowski and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2021, 12, 1271–1278, doi:10.3762/bjnano.12.94

Graphical Abstract
  • background subtraction and the least-square Gaussian–Lorentzian – GL(30) curve fitting algorithm. Calibration of obtained spectra to the binding energy of 285 eV for C 1s was conducted. Additionally, a built-in Ar ion gun was used to etch the surface of the films. To obtain depth profiles of the chemical
PDF
Album
Full Research Paper
Published 22 Nov 2021

Electrical, electrochemical and structural studies of a chlorine-derived ionic liquid-based polymer gel electrolyte

  • Ashish Gupta,
  • Amrita Jain,
  • Manju Kumari and
  • Santosh K. Tripathi

Beilstein J. Nanotechnol. 2021, 12, 1252–1261, doi:10.3762/bjnano.12.92

Graphical Abstract
  • , researchers have been developing polymer electrolytes (solid/gel) as an alternative to commercial liquid-based electrolytes which are suitable for electrochemical devices, such as Li-ion batteries, solar cells, fuel cells, and supercapacitors [1][2][3][4][5]. The main aim is to increase the amorphous content
  • in the polymer which assists in the rapid ion motion while keeping its mechanical stability. The second aim is to increase the ionic conductivity of the electrolytes, which is generally insufficient for practical applications in electrochemical energy storage devices. Hence, different kinds of
  • predominantly crystalline PVdF phase and an amorphous HFP phase, which provides necessary mechanical strength and good ion transport matrix. Magnesium-based electrochemical devices are emerging as an alternative to lithium-based devices [26][27][28][29][30]. Magnesium can be an alternative due to its
PDF
Album
Full Research Paper
Published 18 Nov 2021

A review on slip boundary conditions at the nanoscale: recent development and applications

  • Ruifei Wang,
  • Jin Chai,
  • Bobo Luo,
  • Xiong Liu,
  • Jianting Zhang,
  • Min Wu,
  • Mingdan Wei and
  • Zhuanyue Ma

Beilstein J. Nanotechnol. 2021, 12, 1237–1251, doi:10.3762/bjnano.12.91

Graphical Abstract
  • related to nanotechnology, such as ion separation and drug discovery, should be investigated and developed. Schematic representation of the definition of slip lengths: (a) no-slip, (b) true slip length, (c) apparent slip length, and (d) effective slip length. Figures 1a–c were redrawn from [49] and Figure
PDF
Album
Review
Published 17 Nov 2021

Two dynamic modes to streamline challenging atomic force microscopy measurements

  • Alexei G. Temiryazev,
  • Andrey V. Krayev and
  • Marina P. Temiryazeva

Beilstein J. Nanotechnol. 2021, 12, 1226–1236, doi:10.3762/bjnano.12.90

Graphical Abstract
  • parachuting and sticking (Figure 2a). Figure 2a and Figure 2b show the top of a micropipette, which is a probe in scanning ion conductance microscopy [25]. From Figure 2b, we can estimate that the diameter of the intact micropipette at its most protruding part is about 100 nm. To do this, we need to make a
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2021

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • by applying it to the random movement of a metallic ion in a low concentration of electrolyte near a negatively charged electrode [52]. The process resulted in a tree-like scale-invariant structure [52][53]. Figure 2b demonstrates the growth mechanism of a fractal proposed by DLA. Theories of non
PDF
Album
Supp Info
Review
Published 09 Nov 2021

Irradiation-driven molecular dynamics simulation of the FEBID process for Pt(PF3)4

  • Alexey Prosvetov,
  • Alexey V. Verkhovtsev,
  • Gennady Sushko and
  • Andrey V. Solov’yov

Beilstein J. Nanotechnol. 2021, 12, 1151–1172, doi:10.3762/bjnano.12.86

Graphical Abstract
  • , novel techniques exploiting the irradiation of nanosystems with collimated electron and ion beams have been developed [2][3]. One of these techniques is electron beam lithography (EBL), which is similar to conventional optical lithography but relies on the change of solubility after electron exposure of
  • . Electron impact-induced fragmentation experiments performed for a number of precursor molecules revealed [43][44][45] that the sum of partial cross sections of ionization resulting in the emission of positive ion fragments exceeds significantly (by an order of magnitude) the cross section of ionization
PDF
Album
Full Research Paper
Published 13 Oct 2021

Self-assembly of amino acids toward functional biomaterials

  • Huan Ren,
  • Lifang Wu,
  • Lina Tan,
  • Yanni Bao,
  • Yuchen Ma,
  • Yong Jin and
  • Qianli Zou

Beilstein J. Nanotechnol. 2021, 12, 1140–1150, doi:10.3762/bjnano.12.85

Graphical Abstract
  • advances in the field of amino acid self-assembly. In this review, we highlight the latest advances in amino acid self-assembly. These self-assembly methods mainly focus on single amino acid self-assembly, modified amino acid self-assembly, amino acid and metal ion coordination self-assembly, and amino
  • assemblies at the nanoscale. This component exhibits regular aggregate properties through hydrogen bonding and ion interaction, which are highly similar to those of amyloid components, suggesting that it may be associated with the etiology of amyloid-related diseases. Besides, the resulting structure is as
  • characteristics compared to the common noncovalent interactions in self-assembly, such as hydrophobic interactions, van der Waals force, hydrogen bonds, ion attraction, and π–π stacking [57]. Cystine (Cys) can provide carboxyl and amino groups with which it can coordinate with equimolar amounts of cadmium ions
PDF
Album
Review
Published 12 Oct 2021

First-principles study of the structural, optoelectronic and thermophysical properties of the π-SnSe for thermoelectric applications

  • Muhammad Atif Sattar,
  • Najwa Al Bouzieh,
  • Maamar Benkraouda and
  • Noureddine Amrane

Beilstein J. Nanotechnol. 2021, 12, 1101–1114, doi:10.3762/bjnano.12.82

Graphical Abstract
  • prepared the initial structure of the π-SnSe by using experimentally determined atomic coordinates of the π-SnS system by replacing the S ion with Se ions due to the equivalent cubic analog of the π-SnS system [46]. Regarding the crystal structure of π-SnSe, Golan and his team, in 2016, first designated
PDF
Album
Full Research Paper
Published 05 Oct 2021
Other Beilstein-Institut Open Science Activities