Search results

Search for "layers" in Full Text gives 1057 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

The influence of structure and local structural defects on the magnetic properties of cobalt nanofilms

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Olesya Severyukhina and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2023, 14, 23–33, doi:10.3762/bjnano.14.3

Graphical Abstract
  • properties of the nanomaterial were investigated in this work using a promising nanocomposite formed by alternating layers of cobalt and niobium. The proposed composite has potentially promising functional properties and can be used in magnetic systems with controlled effective energy exchange in Josephson
  • of the sample. The results of numerical experiments are described in the literature [37][38][39]. The next stage of sample study involved the optimization of the nanofilm interface. The basic magnetic properties of the nanocomposite depend on the quality of the interface between the layers, so the
  • problem of obtaining clearly separated contact layers is highly relevant. Using simulations, it was demonstrated that optimization of the nanofilm interface can be obtained either by introducing additional intermediate thin layers neutral to the original composition, such as aluminum oxide, or by
PDF
Album
Full Research Paper
Published 04 Jan 2023

Electrical and optical enhancement of ITO/Mo bilayer thin films via laser annealing

  • Abdelbaki Hacini,
  • Ahmad Hadi Ali,
  • Nurul Nadia Adnan and
  • Nafarizal Nayan

Beilstein J. Nanotechnol. 2022, 13, 1589–1595, doi:10.3762/bjnano.13.133

Graphical Abstract
  • significantly improve the electrical properties without affecting the optical transmission [9]. Several metals have been used for such thin layers, including silver [10], aluminium [11], copper [12], and gold [13]. Molybdenum thin films are another choice for the application in solar cells because of good
PDF
Album
Full Research Paper
Published 28 Dec 2022

Induced electric conductivity in organic polymers

  • Konstantin Y. Arutyunov,
  • Anatoli S. Gurski,
  • Vladimir V. Artemov,
  • Alexander L. Vasiliev,
  • Azat R. Yusupov,
  • Danfis D. Karamov and
  • Alexei N. Lachinov

Beilstein J. Nanotechnol. 2022, 13, 1551–1557, doi:10.3762/bjnano.13.128

Graphical Abstract
  • without exposure to room atmosphere between cycles of formation of different layers. Glass or oxidized silicon were used as substrates. The substrates were preliminarily cleaned in ethanol and distilled water in an ultrasonic bath. The surfaces were hydrophilized by treating the substrates with
PDF
Album
Full Research Paper
Published 19 Dec 2022

Photoelectrochemical water oxidation over TiO2 nanotubes modified with MoS2 and g-C3N4

  • Phuong Hoang Nguyen,
  • Thi Minh Cao,
  • Tho Truong Nguyen,
  • Hien Duy Tong and
  • Viet Van Pham

Beilstein J. Nanotechnol. 2022, 13, 1541–1550, doi:10.3762/bjnano.13.127

Graphical Abstract
  • filter cutting at 380 nm. Results and Discussion Characterizations of materials Figure 1a displays the morphology of TNAs, which have a uniform distribution of nanotubes with average diameters ranging from 80–100 nm and a length of 500 nm (Figure 1b). The MoS2 material exhibits the stacked layers of 2D
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2022

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • 42.6° correspond to the d-spacing between graphene sheets and the lateral correlation of graphite layers, which is presentative for MWCNTs [27]. Additionally, the XRD pattern of TiO2 exhibits peaks at 25.4° and 48.2°, ascribed to the anatase phase, while the other peaks at 27.6° and 36.2° are
PDF
Album
Full Research Paper
Published 14 Dec 2022

Frequency-dependent nanomechanical profiling for medical diagnosis

  • Santiago D. Solares and
  • Alexander X. Cartagena-Rivera

Beilstein J. Nanotechnol. 2022, 13, 1483–1489, doi:10.3762/bjnano.13.122

Graphical Abstract
  • deeper layers of the sample. In contrast, as the length scale of the probe decreases, the mechanical information obtained is restricted to thinner and thinner regions near the sample surface. In order to address the measurement ambiguity described in the previous section, we propose that the result of
PDF
Album
Perspective
Published 09 Dec 2022

Density of states in the presence of spin-dependent scattering in SF bilayers: a numerical and analytical approach

  • Tairzhan Karabassov,
  • Valeriia D. Pashkovskaia,
  • Nikita A. Parkhomenko,
  • Anastasia V. Guravova,
  • Elena A. Kazakova,
  • Boris G. Lvov,
  • Alexander A. Golubov and
  • Andrey S. Vasenko

Beilstein J. Nanotechnol. 2022, 13, 1418–1431, doi:10.3762/bjnano.13.117

Graphical Abstract
  • in this model and neglect the nonequilibrium effects in the structure [90][91][92]. Our goal is to find the DOS of a single SF bilayer, which can be done by solving the Usadel equations in the ferromagnetic and superconducting layers. We employ the θ parametrization of the normal and anomalous
  • sum of all the scattering rates. The above solution is true for thin ferromagnetic layers in the low-proximity limit. A more general analytical solution can be obtained for arbitrary thicknesses using the linearized Usadel equations. In order to find the DOS in the proposed limit, we expand the θ
  • influence of the scattering rates on the peak at E = h. Moreover, we provide a relatively simple expression to calculate the DOS analytically in the presence of magnetic scattering αz for thin F layers. In addition, the analytic solution for the anomalous Green’s function has been derived in the limit of
PDF
Album
Full Research Paper
Published 01 Dec 2022

Double-layer symmetric gratings with bound states in the continuum for dual-band high-Q optical sensing

  • Chaoying Shi,
  • Jinhua Hu,
  • Xiuhong Liu,
  • Junfang Liang,
  • Jijun Zhao,
  • Haiyan Han and
  • Qiaofen Zhu

Beilstein J. Nanotechnol. 2022, 13, 1408–1417, doi:10.3762/bjnano.13.116

Graphical Abstract
  • , Hebei 056038, P. R. China 10.3762/bjnano.13.116 Abstract Herein, we theoretically demonstrate that a double-layer symmetric gratings (DLSG) resonator consisting of a low-refractive-index layer sandwiched between two high-contrast gratings (HCG) layers, can host dual-band high-quality (Q) factor
  • symmetric gratings (DLSG) structure supporting artificial BIC and FP-BIC, which is composed of highly reflecting HCG layers surrounding a low refractive index layer. The artificial BIC was excited by tuning the spacing between two adjacent dielectric gratings. More importantly, we found that the modes can
  • symmetrical structure in vacuum which allows the optical field to be uniformly located in the grating and environment layers. This way, the confinement ability of the grating to the optical field is achieved while enhancing the relationship between light and matter. Finally, the performance of the DLSG-based
PDF
Album
Full Research Paper
Published 25 Nov 2022

Orally administered docetaxel-loaded chitosan-decorated cationic PLGA nanoparticles for intestinal tumors: formulation, comprehensive in vitro characterization, and release kinetics

  • Sedat Ünal,
  • Osman Doğan and
  • Yeşim Aktaş

Beilstein J. Nanotechnol. 2022, 13, 1393–1407, doi:10.3762/bjnano.13.115

Graphical Abstract
  • have to cross several barriers in the GIT in order to exhibit an effect. Among them are mucosae, producing layers of complex aqueous mixtures covering epithelial surfaces including that of the GIT. For oral drugs, rapid elimination from the GIT by intestinal motility is among the most important
PDF
Album
Full Research Paper
Published 23 Nov 2022

Dry under water: air retaining properties of large-scale elastomer foils covered with mushroom-shaped surface microstructures

  • Matthias Mail,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Wilhelm Barthlott,
  • Stanislav N. Gorb and
  • Lars Heepe

Beilstein J. Nanotechnol. 2022, 13, 1370–1379, doi:10.3762/bjnano.13.113

Graphical Abstract
  • Effect, the capability to keep a stable air layer when submerged under water. Such air layers are of great importance, e.g., for drag reduction (passive air lubrication), antifouling, sensor applications or oil–water separation. Some biological models, e.g., the floating fern Salvinia or the backswimmer
  • chemistry of the hierarchically structured surfaces water cannot penetrate and air remains trapped in between the structures [1], which is indicated by a silvery shine of the submerged surface (See Figure 1a). For technical applications, the Salvinia effect bears an immense potential, as air layers kept
  • between water and a solid surface might serve as friction reduction agents, fouling protectors, corrosion protectors or for other applications, such as sensors [11][12][13][14]. Biological examples for such air retaining surfaces with most stable and persistent air layers were found on the floating ferns
PDF
Album
Full Research Paper
Published 21 Nov 2022

Straight roads into nowhere – obvious and not-so-obvious biological models for ferrophobic surfaces

  • Wilfried Konrad,
  • Christoph Neinhuis and
  • Anita Roth-Nebelsick

Beilstein J. Nanotechnol. 2022, 13, 1345–1360, doi:10.3762/bjnano.13.111

Graphical Abstract
  • furnace; Collembola; gas/liquid interfaces; interfacial effects; persistant air layers; pits; Salvinia molesta; surfaces; tuyère failure; water transport in plants; xylem; Young–Laplace equation; Introduction and Motivation The basic concept of biomimetics is the derivation of technical applications from
  • persistent air layers for an extended time after immersion in water. Principally, superhydrophobic surfaces are commonly surrounded by air when immersed. However, the air body is not persistent enough for most applications and dissolves after some time, in contrast to surfaces that can be described as
  • tuyère’s water cooling system and to prevent heat damage to the tuyère. Since the heat conductivity of gas layers is about five orders of magnitude lower than that of copper, gas layers trapped in structured tuyère surfaces should substantially reduce the overall heat flow into the tuyère, and its outer
PDF
Album
Perspective
Published 17 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • electric field (IEF) between the layers. This electric field allows photogenerated charge carriers to be separated and moved effectively [17][18][19][20][21]. A range of visible-light-active Bi-based photocatalysts has lately raised curiosity among semiconductor photocatalysts. Bi3+ has a higher stability
  • ]. Consequently, researchers focus their attention mainly on heterojunction photocatalysts. Promising Bi-based nanomaterials The overwhelming number of Bi-based semiconductors utilized in photocatalysis also have a distinctive layered structure and a bandgap of less than 3.0 eV. The connections between the layers
  • generated between layers of Bi-based materials [47]. Many researchers have revealed that Bi-based nanomaterials have an adequate photocatalytic capacity for pollution remediation, water splitting, and the elimination of volatile organic compounds. Bi-based photocatalysts have substantial oxidative
PDF
Album
Review
Published 11 Nov 2022

Role of titanium and organic precursors in molecular layer deposition of “titanicone” hybrid materials

  • Arbresha Muriqi and
  • Michael Nolan

Beilstein J. Nanotechnol. 2022, 13, 1240–1255, doi:10.3762/bjnano.13.103

Graphical Abstract
  • surface model and a = b = 19.228, c = 40.627 and α = β = 90°, γ = 120° for the Al2O3 surface model. The surfaces are 2, 4 and 5 layers thick for anatase (101), rutile (110) and Al2O3 (0001). Reaction energetics were calculated using: Here Ep is the energy of products and Er is the energy of reactants
PDF
Album
Supp Info
Full Research Paper
Published 02 Nov 2022

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • design of the recognition layers. Various strategies have been employed for studying the relationship between the structural features and the specific detection of chiral isomers. This review provides an overview of the construction of chiral sensing layers by various nanostructures and materials in the
  • (e.g., DNA analysis, microorganism assays, nucleic acid detection, pharmaceutical substance detection, and gas monitoring) and also a powerful tool for chiral recognition [23][24][25]. The sensitivity and specificity of QCM-based chiral sensors largely depend on the recognition layers on the surface of
  • complexes by analytes and chiral hosts in the recognition processes. Basically, the host selectors need to have chirality to ensure specific recognition of analytes. The chirality of the host layers may derive from intrinsic chiral molecules/substrates using chiral templates, chiral modifications, and
PDF
Album
Review
Published 27 Oct 2022

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • nanoparticles, nanowires, and nanosheets. In the construction of devices, nanomaterial units are stacked in thin layers or blocks, and gaps are formed between the units, allowing for the formation of nanoscale networks in the stacked regions. When the nanoparticles, nanowires, or nanosheets are stacked in a non
  • the solution and was moved vertically. The electrical output signal was about 60 mV and 4 μA (Figure 2a,b). Yin’s research group also studied the voltage response of graphene layers to moving droplets [34], and the variables in the experiment included the number of graphene layers, droplet size, and
  • electronic devices (LEDs, LCD screens, and electronic watches), power-generating textiles, and self-powered layers for other micro- and nanoscale devices. There are already a lot of references available for these applications. MEGs can greatly reduce the weight and increase the portability compared with
PDF
Album
Review
Published 25 Oct 2022

Microneedle-based ocular drug delivery systems – recent advances and challenges

  • Piotr Gadziński,
  • Anna Froelich,
  • Monika Wojtyłko,
  • Antoni Białek,
  • Julia Krysztofiak and
  • Tomasz Osmałek

Beilstein J. Nanotechnol. 2022, 13, 1167–1184, doi:10.3762/bjnano.13.98

Graphical Abstract
  • covered with a layer of mucin, which prevents exogenous substances from permeating to the deeper tissues. In the anterior segments of the eye, a few static barriers can be distinguished. The cornea (the corneal thickness is about 0.5 mm [39]) is covered with an epithelium layer consisting of 5–6 layers of
  • epidermis layer and to form channels allowing for better drug permeation to deeper skin layers. In this way, the active ingredient may act locally or reach the capillary vessels in the dermis and enter systemic circulation [117]. A study performed by Wei-Ze et al. [140] revealed that microneedle geometry
  • conventional needles, with a channel located inside and a hole at the tip. These systems can be used to deliver liquid drug formulations to deeper skin layers, depending on the length of the needles [141]. They have higher drug incorporation capacity compared to the solid and coated systems. Moreover, as they
PDF
Album
Review
Published 24 Oct 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • complex and their asymmetric matrix is constituted of basic components hierarchically organized into distinct structural layers at macro- and nanoscale levels. Cortical (compact) and cancellous (trabecular) bones are two kinds of bone classification based on their macrostructure. A femur is a long bone
  • with a thick cortical covering which is porous and has a cancellous interior. The calvaria is a flat bone with cortical layers on the outside and a cancellous structure on the inside [28][29]. The physical behaviour of the cortical bone is mainly controlled by porosity, mineralization rate, and solid
  • matrix structure (cancellous interior) [30]. Also, the mechanical properties of cancellous bones are controlled by the structural organization of the matrix [31]. The bone microstructure mainly comprises collagen threads of lamellae coiled around layers to form a 200–250 µm diameter osteon which can vary
PDF
Review
Published 29 Sep 2022

Analytical and numerical design of a hybrid Fabry–Perot plano-concave microcavity for hexagonal boron nitride

  • Felipe Ortiz-Huerta and
  • Karina Garay-Palmett

Beilstein J. Nanotechnol. 2022, 13, 1030–1037, doi:10.3762/bjnano.13.90

Graphical Abstract
  • λ0/4n thickness layer of hBN (n = 1.72) was positioned on top of a 15-pair layer DBR with tantalum oxide (Ta2O5) and silicon oxide (SiO2) as the high- and low-index layers, respectively, on a (HL)15 configuration to ensure an electric field antinode at the surface of the hBN layer, making the hBN
PDF
Album
Full Research Paper
Published 27 Sep 2022

Effects of focused electron beam irradiation parameters on direct nanostructure formation on Ag surfaces

  • Jānis Sniķeris,
  • Vjačeslavs Gerbreders,
  • Andrejs Bulanovs and
  • Ēriks Sļedevskis

Beilstein J. Nanotechnol. 2022, 13, 1004–1010, doi:10.3762/bjnano.13.87

Graphical Abstract
  • emitted from an area much larger than the size of EB. The size of this area and the amount and energy of emitted SE depend on several factors, including the energy, current, and angle of incidence of the EB, as well as the material and thickness of the target [20][21]. The formation of carbon layers is a
  • ][25]. It should be noted that the growth rate of carbon layers under EB irradiation is also affected by the types of hydrocarbon molecules present in the vacuum chamber [26]. Normally, the deposition of carbon via focused EB irradiation is viewed as a simple addition of mass to the irradiated area
  • parameters (beam current, focusing, angle of incidence, and amount of hydrocarbons) affects the growth of nanostructures on Ag surfaces undergoing irradiation by focused EB in point mode. Experimental The samples were prepared by sputtering 500 nm thick Ag layers on Si(111) substrates via direct current (DC
PDF
Album
Full Research Paper
Published 22 Sep 2022

Interaction between honeybee mandibles and propolis

  • Leonie Saccardi,
  • Franz Brümmer,
  • Jonas Schiebl,
  • Oliver Schwarz,
  • Alexander Kovalev and
  • Stanislav Gorb

Beilstein J. Nanotechnol. 2022, 13, 958–974, doi:10.3762/bjnano.13.84

Graphical Abstract
  • structures on propolis bee mandibles”. Additionally, visualization of the mandible cuticle and any additional surface layers was performed using cryo-SEM on fresh fractures of untreated bee mandibles. Mandibles were tightly clamped into a metal holder and frozen in the preparation chamber (−140 °C). The
  • (P < 0.0001) when the contact time of the propolis sample was increased to 60 s. Surface coating on bee mandibles To figure out possible reasons for low propolis adhesion on bee mandibles, freeze fractures of freshly prepared mandibles were studied in the cryo-SEM (Figure 8). The different layers of
PDF
Album
Full Research Paper
Published 14 Sep 2022

Design of a biomimetic, small-scale artificial leaf surface for the study of environmental interactions

  • Miriam Anna Huth,
  • Axel Huth,
  • Lukas Schreiber and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2022, 13, 944–957, doi:10.3762/bjnano.13.83

Graphical Abstract
  • wetting properties of a natural leaf surface. Keywords: recrystallization; surface properties; wax composition; wetting; wheat; Introduction Cuticle One of the largest interfaces on earth is formed by thin layers that are a few nanometers to micrometers thin, namely the wax layers of the plant cuticle
PDF
Supp Info
Full Research Paper
Published 13 Sep 2022

Bioselectivity of silk protein-based materials and their bio-inspired applications

  • Hendrik Bargel,
  • Vanessa T. Trossmann,
  • Christoph Sommer and
  • Thomas Scheibel

Beilstein J. Nanotechnol. 2022, 13, 902–921, doi:10.3762/bjnano.13.81

Graphical Abstract
  • and adhesion mechanisms of various CAM can be found in dedicated reviews [9][10][12][13]. Cadherins are associated with cell–cell adhesive interactions in solid tissues and are involved in processes such as embryonic development, formation of the epithelial layers of the skin and intestine, and axonal
PDF
Album
Review
Published 08 Sep 2022

Self-assembly of C60 on a ZnTPP/Fe(001)–p(1 × 1)O substrate: observation of a quasi-freestanding C60 monolayer

  • Guglielmo Albani,
  • Michele Capra,
  • Alessandro Lodesani,
  • Alberto Calloni,
  • Gianlorenzo Bussetti,
  • Marco Finazzi,
  • Franco Ciccacci,
  • Alberto Brambilla,
  • Lamberto Duò and
  • Andrea Picone

Beilstein J. Nanotechnol. 2022, 13, 857–864, doi:10.3762/bjnano.13.76

Graphical Abstract
  • compact molecular film is crucial to obtain high-performance devices, since an efficient charge carrier transport is hindered by morphological defects, such as grain boundaries or pinholes [10][11]. Moreover, crystalline and well-ordered layers are particularly suitable for spatially averaging
  • [12]. Annealing the substrate during the film deposition could promote the growth of ordered layers even for high Ed values (Ed > kBT, with T = 300 K), but often the high annealing temperature required promotes the modification of the molecules or even their decomposition [13][14]. Another important
  • electronic gap equal to 3.75 eV. Finally, work function measurements have been performed to evaluate the charge transfer between the different layers constituting the heterostructure. Generally, electron transfer from the substrate (overlayer) to the overlayer (substrate) induces an increase (decrease) of
PDF
Album
Full Research Paper
Published 30 Aug 2022

Ultrafast signatures of magnetic inhomogeneity in Pd1−xFex (x ≤ 0.08) epitaxial thin films

  • Andrey V. Petrov,
  • Sergey I. Nikitin,
  • Lenar R. Tagirov,
  • Amir I. Gumarov,
  • Igor V. Yanilkin and
  • Roman V. Yusupov

Beilstein J. Nanotechnol. 2022, 13, 836–844, doi:10.3762/bjnano.13.74

Graphical Abstract
  • ]. Superconducting spintronics is a branch of superconducting electronics, the key components of which are thin-film magnetic Josephson junctions (MJJs), which include layers of superconductors (S), ferromagnets (F) and insulators (I) [1][2][3][14][15]. The use of MJJs considerably reduces the energy consumption
  • beam epitaxy (MBE). The films were 20 nm thick, continuous, and smooth monocrystalline layers. The MBE equipment provided uniformity of the film thickness within 3% on the 1″ lateral size. The film composition x was measured in situ using X-ray photoelectron spectroscopy (all from SPECS, Berlin) with a
PDF
Album
Full Research Paper
Published 25 Aug 2022

Hierachical epicuticular wax coverage on leaves of Deschampsia antarctica as a possible adaptation to severe environmental conditions

  • Elena V. Gorb,
  • Iryna A. Kozeretska and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2022, 13, 807–816, doi:10.3762/bjnano.13.71

Graphical Abstract
  • outer glume were wax-free, both leaf sides had a prominent epicuticular wax coverage consisting of two superimposed layers: polygonal rodlets formed by fused irregular platelets (the lower wax layer) and membraneous platelets (the upper wax layer). Although the adaxial (inner) and abaxial (outer) leaf
  • sample preparation for conventional scanning electron microscopy. This method provided qualitatively new information about the superficial layers on vegetative organs studied in this plant species. Based on the obtained results and literature data, we discuss a possible role of the complex, hierarchical
  • /damaged, another layer of projections called here the lower (inner) wax layer became exposed (Figure 2f). The fractured samples clearly show the hierarchical organization of the wax coverage on both leaf lamina sides, which is composed of the two superimposed layers of wax projections (Figure 3a,b,d
PDF
Album
Full Research Paper
Published 22 Aug 2022
Other Beilstein-Institut Open Science Activities