Search results

Search for "low energy" in Full Text gives 252 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Kondo effects in small-bandgap carbon nanotube quantum dots

  • Patryk Florków,
  • Damian Krychowski and
  • Stanisław Lipiński

Beilstein J. Nanotechnol. 2020, 11, 1873–1890, doi:10.3762/bjnano.11.169

Graphical Abstract
  • analysis we consider the low-energy and low-temperature ranges. Therefore, we restrict most parts of our discussion to only a single shell of carbon nanotube energy states, that is, to four states labeled by spin (s = ±1) and valley pseudospin (l = ±1). The model we use to describe carbon nanotube quantum
  • Fermi-liquid relationships and that the Kondo effect is absent at the particle–hole symmetry point. Simple higher-order truncations remove the latter drawback [72]. There are also attempts to recover Fermi-liquid behavior at low energy in the EOM formalism [73] but, to our knowledge, without full
PDF
Album
Full Research Paper
Published 23 Dec 2020

Absorption and photoconductivity spectra of amorphous multilayer structures

  • Oxana Iaseniuc and
  • Mihail Iovu

Beilstein J. Nanotechnol. 2020, 11, 1757–1763, doi:10.3762/bjnano.11.158

Graphical Abstract
  • photocurrent maximum is shifted in to the low-energy region. For GeTe and GeSe films, an analogous shift was explained by bulk phenomena in the material, not by contact phenomena [19]. In contrast, when the applied voltage has a negative polarity, the maximum of the photocurrent is shifted only to lower photon
PDF
Album
Full Research Paper
Published 20 Nov 2020

Functional nanostructures for electronics, spintronics and sensors

  • Anatolie S. Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1704–1706, doi:10.3762/bjnano.11.152

Graphical Abstract
  • , the Sunway Taihu Light [2], with a peak performance of 93 peta FLOPS (93 × 1015 floating point operations per second) has an energy consumption as high as 15.4 MW. This corresponds to a power plant capacity able to supply energy to a middle-sized city! The low energy efficiency leads to high power
PDF
Editorial
Published 10 Nov 2020

The influence of an interfacial hBN layer on the fluorescence of an organic molecule

  • Christine Brülke,
  • Oliver Bauer and
  • Moritz M. Sokolowski

Beilstein J. Nanotechnol. 2020, 11, 1663–1684, doi:10.3762/bjnano.11.149

Graphical Abstract
  • investigation of the two surfaces, including low-energy electron diffraction (LEED) patterns, are given in Appendix A. Since the interpretation of the optical data requires this knowledge, we summarize some details ahead here. PTCDA forms ordered structures and follows a layer-by-layer growth for at least the
  • the comparison with PTCDA/Cu(111), also stems from an ordered PTCDA layer on hBN/Cu(111). For the discussion of the spectra, we consider three regions (I–III). At first glance, two of these regions appear qualitatively rather equal for both substrates: On the low-energy side below 18,000 cm−1 (region
PDF
Album
Full Research Paper
Published 03 Nov 2020

Walking energy harvesting and self-powered tracking system based on triboelectric nanogenerators

  • Mingliang Yao,
  • Guangzhong Xie,
  • Qichen Gong and
  • Yuanjie Su

Beilstein J. Nanotechnol. 2020, 11, 1590–1595, doi:10.3762/bjnano.11.141

Graphical Abstract
  • of an electromagnetic generator (EMG) is proportional to the square of the frequency, it is not very efficient for an EMG to harvest low-frequency human motions, especially if they are below 5 Hz [15]. With respect to the piezoelectric generator, the relatively low-energy conversion efficiency and
PDF
Album
Full Research Paper
Published 20 Oct 2020

Detecting stable adsorbates of (1S)-camphor on Cu(111) with Bayesian optimization

  • Jari Järvi,
  • Patrick Rinke and
  • Milica Todorović

Beilstein J. Nanotechnol. 2020, 11, 1577–1589, doi:10.3762/bjnano.11.140

Graphical Abstract
  • calculating thousands of energy points on the PES. Traditionally, stable structures have been identified by initializing the minima search with estimated low-energy structures, based on chemical intuition [17][18], thus narrowing down the search space. With hybrid materials, however, this intuition is
  • adsorbates. They also have the highest adsorption energies, which makes them the most probable structures to be observed. Conversely, class Hy structures, which have lower adsorption energies and low energy barriers for molecular mobility, are less likely to be imaged in experiments. A more detailed
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2020

Adsorption and self-assembly of porphyrins on ultrathin CoO films on Ir(100)

  • Feifei Xiang,
  • Tobias Schmitt,
  • Marco Raschmann and
  • M. Alexander Schneider

Beilstein J. Nanotechnol. 2020, 11, 1516–1524, doi:10.3762/bjnano.11.134

Graphical Abstract
  • ) at 320 K substrate temperature followed by annealing in 2 × 10−9 mbar O2 at 520 K. To improve ordering, the films were flash-heated to 670 K in UHV. The cleanliness, quality and thickness of the prepared substrates was verified by comparison to low-energy electron diffraction intensity data of
  • into a state of low-energy at an appropriate bonding distance. This is, for example, observed at low coverage of 2H-DPP on Cu(111) [23]. When, as it appears here, the diffusion and the rotational barrier are of equal magnitude, the intermolecular forces cannot exert their directional influence on the
PDF
Album
Full Research Paper
Published 05 Oct 2020

Controlling the electronic and physical coupling on dielectric thin films

  • Philipp Hurdax,
  • Michael Hollerer,
  • Larissa Egger,
  • Georg Koller,
  • Xiaosheng Yang,
  • Anja Haags,
  • Serguei Soubatch,
  • Frank Stefan Tautz,
  • Mathias Richter,
  • Alexander Gottwald,
  • Peter Puschnig,
  • Martin Sterrer and
  • Michael G. Ramsey

Beilstein J. Nanotechnol. 2020, 11, 1492–1503, doi:10.3762/bjnano.11.132

Graphical Abstract
  • . The azimuthal orientations of the molecules can be derived by comparing the orientations of the molecular emission patterns to the orientation of the emission pattern from the Ag(100) substrate or from the crystal surface unit cell inferred from low energy electron diffraction (LEED) experiments. This
PDF
Album
Full Research Paper
Published 01 Oct 2020

Self-assembly and spectroscopic fingerprints of photoactive pyrenyl tectons on hBN/Cu(111)

  • Domenik M. Zimmermann,
  • Knud Seufert,
  • Luka Ðorđević,
  • Tobias Hoh,
  • Sushobhan Joshi,
  • Tomas Marangoni,
  • Davide Bonifazi and
  • Willi Auwärter

Beilstein J. Nanotechnol. 2020, 11, 1470–1483, doi:10.3762/bjnano.11.130

Graphical Abstract
  • excitation of the low-energy absorption peak lead to a strong emission at 433 and 458 nm (2.86 and 2.71 eV), with a quantum yield of 96% (determined using coumarin 153 in an EtOH solution as a reference). As expected, the tetrasubstituted pyrene 1 showed electronic transitions that were bathochromically
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2020

Superconductor–insulator transition in capacitively coupled superconducting nanowires

  • Alex Latyshev,
  • Andrew G. Semenov and
  • Andrei D. Zaikin

Beilstein J. Nanotechnol. 2020, 11, 1402–1408, doi:10.3762/bjnano.11.124

Graphical Abstract
  • proportional to that of the total charge that has passed through the point x of the ith wire up to the time moment t, i.e., Provided that the wires are thick enough, the low energy Hamiltonian in Equation 1 is sufficient. However, for thinner wires, one should also account for the effect of quantum phase
PDF
Album
Full Research Paper
Published 14 Sep 2020

Analysis of catalyst surface wetting: the early stage of epitaxial germanium nanowire growth

  • Owen C. Ernst,
  • Felix Lange,
  • David Uebel,
  • Thomas Teubner and
  • Torsten Boeck

Beilstein J. Nanotechnol. 2020, 11, 1371–1380, doi:10.3762/bjnano.11.121

Graphical Abstract
  • these clusters or if it just becomes thinner or perforated. However, the TEM data do not show any evidence of a wetting layer at room temperature, since at this temperature only very small gold clusters are seen. This is in agreement with low-energy electron microscopy (LEEM) calculations, which predict
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2020

Impact of fluorination on interface energetics and growth of pentacene on Ag(111)

  • Qi Wang,
  • Meng-Ting Chen,
  • Antoni Franco-Cañellas,
  • Bin Shen,
  • Thomas Geiger,
  • Holger F. Bettinger,
  • Frank Schreiber,
  • Ingo Salzmann,
  • Alexander Gerlach and
  • Steffen Duhm

Beilstein J. Nanotechnol. 2020, 11, 1361–1370, doi:10.3762/bjnano.11.120

Graphical Abstract
  • ) on Ag(111) via X-ray standing waves (XSW), low-energy electron diffraction (LEED) as well as ultraviolet and X-ray photoelectron spectroscopy (UPS and XPS). XSW revealed that the adsorption distances of F4PEN in (sub)monolayers on Ag(111) were 3.00 Å for carbon atoms and 3.05 Å for fluorine atoms
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2020

Hybridization vs decoupling: influence of an h-BN interlayer on the physical properties of a lander-type molecule on Ni(111)

  • Maximilian Schaal,
  • Takumi Aihara,
  • Marco Gruenewald,
  • Felix Otto,
  • Jari Domke,
  • Roman Forker,
  • Hiroyuki Yoshida and
  • Torsten Fritz

Beilstein J. Nanotechnol. 2020, 11, 1168–1177, doi:10.3762/bjnano.11.101

Graphical Abstract
  • the DBP molecules are well decoupled from the Ni(111) surface. Furthermore, a highly ordered DBP monolayer is obtained on h-BN/Ni(111) by depositing the molecules at a substrate temperature of 170 °C. The structural results are obtained by quantitative low-energy electron diffraction and low
  • comprehensive study we utilized differential reflectance spectroscopy (DRS), low-energy electron diffraction (LEED), low-temperature scanning tunneling microscopy (LT-STM), as well as photoelectron spectroscopy (PES). Our results reveal that DBP on h-BN/Ni(111) is well decoupled from the metal substrate Ni(111
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2020

Scanning tunneling microscopy and spectroscopy of rubrene on clean and graphene-covered metal surfaces

  • Karl Rothe,
  • Alexander Mehler,
  • Nicolas Néel and
  • Jörg Kröger

Beilstein J. Nanotechnol. 2020, 11, 1157–1167, doi:10.3762/bjnano.11.100

Graphical Abstract
  • may tentatively be explained by a molecular superstructure that is formed owing to the optimization of the intermolecular coupling. This might be facilitated by very low energy barriers, which are even lower than those observed for C42H28 on Au(111), for translational and rotational degrees of freedom
  • preparation parameters for C42H28 deposition on Au(111) as on Pt(111) leads to island growth with a regular superstructure. The crystalline adsorption phase unravels that low energy barriers for translation and rotation of the molecule exist because the individual C42H28 molecules can optimize the coupling to
PDF
Album
Full Research Paper
Published 03 Aug 2020

Monolayers of MoS2 on Ag(111) as decoupling layers for organic molecules: resolution of electronic and vibronic states of TCNQ

  • Asieh Yousofnejad,
  • Gaël Reecht,
  • Nils Krane,
  • Christian Lotze and
  • Katharina J. Franke

Beilstein J. Nanotechnol. 2020, 11, 1062–1071, doi:10.3762/bjnano.11.91

Graphical Abstract
  • charging. Additionally, a mode at 40 meV has a large Huang–Rhys factor. The excitation of this mode is not energetically well separated from the elastic onset of the LUMO in experiment. However, this mode contributes to an asymmetric line shape, which can be realized by comparing the low-energy flank to
  • the high-energy fall-off of the first resonance. The low-energy side can be fitted by a Voigt profile and suggests a lifetime broadening of 55 ± 15 meV. This is, however, insufficient for a peak separation from the mode at 40 meV. We further note that the experimental spectrum was taken on a cyano
PDF
Album
Full Research Paper
Published 20 Jul 2020

Band tail state related photoluminescence and photoresponse of ZnMgO solid solution nanostructured films

  • Vadim Morari,
  • Aida Pantazi,
  • Nicolai Curmei,
  • Vitalie Postolache,
  • Emil V. Rusu,
  • Marius Enachescu,
  • Ion M. Tiginyanu and
  • Veaceslav V. Ursaki

Beilstein J. Nanotechnol. 2020, 11, 899–910, doi:10.3762/bjnano.11.75

Graphical Abstract
  • embedded into the ZnMgO alloy matrix, which is responsible for the high energy broad PL band. To demonstrate that the low energy PL band is related to ZnO crystallites, it is compared to the spectrum of a high quality ZnO crystal measured at low temperature (curve 4 in Figure 5b). One can see that the
PDF
Album
Full Research Paper
Published 12 Jun 2020

Epitaxial growth and superconducting properties of thin-film PdFe/VN and VN/PdFe bilayers on MgO(001) substrates

  • Wael M. Mohammed,
  • Igor V. Yanilkin,
  • Amir I. Gumarov,
  • Airat G. Kiiamov,
  • Roman V. Yusupov and
  • Lenar R. Tagirov

Beilstein J. Nanotechnol. 2020, 11, 807–813, doi:10.3762/bjnano.11.65

Graphical Abstract
  • composition were controlled by X-ray photoelectron spectroscopy. In situ low-energy electron diffraction and ex situ X-ray diffraction show that the 30 nm thick single-layer VN as well as the double-layer VN(30 nm)/Pd0.92Fe0.08(12 nm) and Pd0.96Fe0.04(20 nm)/VN(30 nm) structures have grown cube-on-cube
  • −xFex were taken at each deposition step using low-energy electron diffraction (LEED) and X-ray photoelectron spectroscopy (XPS). Finally, all structures were capped with 10 nm layer of undoped Si by magnetron sputtering to prevent sample deterioration. Thus, a VN film and stacks of Pd0.96Fe0.04/VN and
PDF
Album
Full Research Paper
Published 15 May 2020

Light–matter interactions in two-dimensional layered WSe2 for gauging evolution of phonon dynamics

  • Avra S. Bandyopadhyay,
  • Chandan Biswas and
  • Anupama B. Kaul

Beilstein J. Nanotechnol. 2020, 11, 782–797, doi:10.3762/bjnano.11.63

Graphical Abstract
  • , calculated from the slope of the low-energy edge of the excitonic mode of the PL spectra. The theory of spectral line shape in the Raman spectrum predicts a Lorentzian distribution of a collected signal in a dispersive medium, where the full-width-half-maximum (FWHM) scales as 1/τ, and not surprisingly, τ is
  • for the so-called Urbach formulism. Ramos and Luzzi [49] used this Urbach formulism to explain the behavior displayed in the radiation emission band of semiconductors at high-excitation levels, and the slope of the low-energy edge of the spectrum was characterized with an empirical parameter E0 on a
  • , from this low-energy edge due to excitons [51] and using Urbach formulism, the slope of the low-energy edge of the excitonic A-peak (Figure 2e) is calculated by the following Equation 5 [49], where I(ω) is the intensity, and E0 is in units of meV and is the so-called characteristic energy parameter [50
PDF
Album
Supp Info
Full Research Paper
Published 12 May 2020

Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface

  • Stefania Castelletto,
  • Faraz A. Inam,
  • Shin-ichiro Sato and
  • Alberto Boretti

Beilstein J. Nanotechnol. 2020, 11, 740–769, doi:10.3762/bjnano.11.61

Graphical Abstract
  • complexes, it is shown they are low-energy formation defects in h-BN. This suggests that the assignment is presently controversial also considering the successive verification of SPEs as discussed in the following. In [45] h-BN exfoliated flakes, monolayer chemical vapor deposition (CVD) and in-house h-BN
PDF
Album
Review
Published 08 May 2020

Atomic-resolution imaging of rutile TiO2(110)-(1 × 2) reconstructed surface by non-contact atomic force microscopy

  • Daiki Katsube,
  • Shoki Ojima,
  • Eiichi Inami and
  • Masayuki Abe

Beilstein J. Nanotechnol. 2020, 11, 443–449, doi:10.3762/bjnano.11.35

Graphical Abstract
  • , because it cannot be clarified whether the (1 × 2) structure is formed over a wide area or only locally using macroscopic analysis methods such as diffraction. We used non-contact atomic force microscopy, scanning tunneling microscopy, and low-energy electron diffraction at room temperature to
  • clean surface is relatively easy. A well-known rutile TiO2(110) surface is the (1 × 1) structure [2]. The (1 × 1) surface has been studied using low-energy electron diffraction (LEED) [3][4], surface X-ray diffraction [5], non-contact atomic force microscopy (NC-AFM) [6][7][8][9], scanning tunneling
PDF
Album
Full Research Paper
Published 10 Mar 2020

Formation of nanoripples on ZnO flat substrates and nanorods by gas cluster ion bombardment

  • Xiaomei Zeng,
  • Vasiliy Pelenovich,
  • Bin Xing,
  • Rakhim Rakhimov,
  • Wenbin Zuo,
  • Alexander Tolstogouzov,
  • Chuansheng Liu,
  • Dejun Fu and
  • Xiangheng Xiao

Beilstein J. Nanotechnol. 2020, 11, 383–390, doi:10.3762/bjnano.11.29

Graphical Abstract
  • and ion fluence are qualitatively the same as those of the flat targets. The obtained result can be compared with a study by Ghoniem et al. on the sputtering of Re and W nanorods with low-energy argon ions in which the authors have found the formation of rather weak ripple structures on the stem side
  • direction of the wave vector k of the ripples is not parallel to the nanorod axis. Hence, it can be concluded that in the case of low energy and fluence the ripple formation is controlled by the orientation of the ion incidence projection on the facet surface under irradiation, analogously to the flat
  • becomes impossible from this point of view. In our experiment we also use binary materials and a defect-free ripple formation is observed, but only for nanorods. However, here, the scenario described in [10] seems unlikely due to a very low energy per atom in the cluster (a few electronvolts) and a
PDF
Album
Full Research Paper
Published 24 Feb 2020

Nonequilibrium Kondo effect in a graphene-coupled quantum dot in the presence of a magnetic field

  • Levente Máthé and
  • Ioan Grosu

Beilstein J. Nanotechnol. 2020, 11, 225–239, doi:10.3762/bjnano.11.17

Graphical Abstract
  • [52]. The points where the conduction and valence bands touch each other in momentum space are the Dirac points. The Dirac points play an important role in the electronic properties of graphene because around these points low-energy excitations can be achieved. Furthermore, the motion of the charge
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2020

Phase inversion-based nanoemulsions of medium chain triglyceride as potential drug delivery system for parenteral applications

  • Eike Folker Busmann,
  • Dailén García Martínez,
  • Henrike Lucas and
  • Karsten Mäder

Beilstein J. Nanotechnol. 2020, 11, 213–224, doi:10.3762/bjnano.11.16

Graphical Abstract
  • as the flexibility of the nanoparticles [6][7][8][9]. Shock dilution with ice-cold water during phase inversion of the emulsion gives the opportunity to produce nanocapsules without the use of any potentially toxic organic solvent at low energy cost [10][11]. The choice and the amount of the
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2020

Nanosecond resistive switching in Ag/AgI/PtIr nanojunctions

  • Botond Sánta,
  • Dániel Molnár,
  • Patrick Haiber,
  • Agnes Gubicza,
  • Edit Szilágyi,
  • Zsolt Zolnai,
  • András Halbritter and
  • Miklós Csontos

Beilstein J. Nanotechnol. 2020, 11, 92–100, doi:10.3762/bjnano.11.9

Graphical Abstract
  • distances granting metallic conductance also in this ultimate scaling limit. (iii) The device conductance is largely determined by the rearrangement of only a few atoms in this narrowest cross section, which can take place at a very large bandwidth and unprecedentedly low energy cost [5][6][7][8][9
PDF
Album
Full Research Paper
Published 08 Jan 2020

Synthesis of amorphous and graphitized porous nitrogen-doped carbon spheres as oxygen reduction reaction catalysts

  • Maximilian Wassner,
  • Markus Eckardt,
  • Andreas Reyer,
  • Thomas Diemant,
  • Michael S. Elsaesser,
  • R. Jürgen Behm and
  • Nicola Hüsing

Beilstein J. Nanotechnol. 2020, 11, 1–15, doi:10.3762/bjnano.11.1

Graphical Abstract
  • support to the C 1s signal of the carbon-containing catalyst film. The spectra showed minor charging effects, which were compensated by a neutralizer (low-energy electron flood gun). The C 1s peak was set to 284.8 eV for binding energy calibration [50]. Evaluation and deconvolution of the measured signals
PDF
Album
Full Research Paper
Published 02 Jan 2020
Other Beilstein-Institut Open Science Activities