Search results

Search for "magnetic" in Full Text gives 770 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Two dynamic modes to streamline challenging atomic force microscopy measurements

  • Alexei G. Temiryazev,
  • Andrey V. Krayev and
  • Marina P. Temiryazeva

Beilstein J. Nanotechnol. 2021, 12, 1226–1236, doi:10.3762/bjnano.12.90

Graphical Abstract
  • science The relative ease of use of AFM and a large number of operating modes allowed for the study of mechanical, magnetic, and electrical properties of various objects. At the same time, surface profile measurements remain both the main application of the method and the basis of two-pass technics of
  • magnetic and electrical measurements. In some cases, obtaining a good topographic image without artifacts and distortion is not an easy task. The operator must take into account a large number of often conflicting requirements, which leads to the need for very fine tuning of the scanning parameters, which
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2021

Irradiation-driven molecular dynamics simulation of the FEBID process for Pt(PF3)4

  • Alexey Prosvetov,
  • Alexey V. Verkhovtsev,
  • Gennady Sushko and
  • Andrey V. Solov’yov

Beilstein J. Nanotechnol. 2021, 12, 1151–1172, doi:10.3762/bjnano.12.86

Graphical Abstract
  • atomistic level although it governs many physical properties such as electrical and thermal conductivity, and magnetic properties [27][28]. Atomistic simulations provide insights into the internal structure of the deposits and its evolution depending on the regimes of the FEBID process. In this study
PDF
Album
Full Research Paper
Published 13 Oct 2021

Self-assembly of amino acids toward functional biomaterials

  • Huan Ren,
  • Lifang Wu,
  • Lina Tan,
  • Yanni Bao,
  • Yuchen Ma,
  • Yong Jin and
  • Qianli Zou

Beilstein J. Nanotechnol. 2021, 12, 1140–1150, doi:10.3762/bjnano.12.85

Graphical Abstract
  • coordination of Mn2+, Fmoc-ʟ-L, and Ce6, a yield of 36 wt % can be obtained. After the uptake of FMC NPs by cancer cells, Mn2+ and Ce6 can be released in response to intracellular high levels of glutathione (GSH). Magnetic resonance imaging (MRI) results showed an almost complete elimination of the tumor three
PDF
Album
Review
Published 12 Oct 2021

pH-driven enhancement of anti-tubercular drug loading on iron oxide nanoparticles for drug delivery in macrophages

  • Karishma Berta Cotta,
  • Sarika Mehra and
  • Rajdip Bandyopadhyaya

Beilstein J. Nanotechnol. 2021, 12, 1127–1139, doi:10.3762/bjnano.12.84

Graphical Abstract
  • biocompatibility and magnetic properties, have found applications in drug delivery, magnetic resonance imaging and treatment of iron deficiencies [3][4][5][6]. The property of hyperthermia has been found to be beneficial in localized drug release, particularly in cancer therapy [7]. In anti-cancer therapy, IONPs
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2021

Use of nanosystems to improve the anticancer effects of curcumin

  • Andrea M. Araya-Sibaja,
  • Norma J. Salazar-López,
  • Krissia Wilhelm Romero,
  • José R. Vega-Baudrit,
  • J. Abraham Domínguez-Avila,
  • Carlos A. Velázquez Contreras,
  • Ramón E. Robles-Zepeda,
  • Mirtha Navarro-Hoyos and
  • Gustavo A. González-Aguilar

Beilstein J. Nanotechnol. 2021, 12, 1047–1062, doi:10.3762/bjnano.12.78

Graphical Abstract
  • that respond to external stimuli (i.e., magnetic nanoparticles and photodynamic therapy). Previous studies showed that the effects of CUR were improved when loaded into nanosystems as compared to the free compound, as well as synergist effects when it is co-administrated alongside with other molecules
  • anticancer activity, including liposomes, nanoemulsions, nanocrystals, nanosuspensions, and polymeric nanoparticles, as well as dual effect nanosystems which respond to external stimuli (mainly magnetic nanoparticles and photodynamic therapy), in addition to internal ones. Furthermore, key design factors
  • respond to various external stimuli such as light [125], magnetic fields [126], ultrasound [127] and electric fields [128], or magnetic nanocarriers that respond to changes in pH by increasing the selectivity of the release site [129]. Magnetic nanoparticles (MNP). Magnetic nanoparticles contain molecules
PDF
Album
Review
Published 15 Sep 2021

Revealing the formation mechanism and band gap tuning of Sb2S3 nanoparticles

  • Maximilian Joschko,
  • Franck Yvan Fotue Wafo,
  • Christina Malsi,
  • Danilo Kisić,
  • Ivana Validžić and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 1021–1033, doi:10.3762/bjnano.12.76

Graphical Abstract
  • precursor, an S-OlAm solution, was produced by dissolving 1.5 mmol elemental sulfur in 6 mL OlAm via sonification in an ultrasonic bath for 10 min. Afterward, 25 mL paraffin oil was added. The solution was heated to 150 °C with a heating rate of 3.3 K/min under magnetic stirring (800 rpm). Second, an Sb(III
  • mixture was kept under magnetic stirring (800 rpm) at 150 °C for 60 s to 30 h. To stop the reaction, the heating mantle under the reaction vessel was replaced by an ice bath, and 15 mL hexane was injected into the reaction. The received product was precipitated by adding 30 mL IPA and separated by
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2021

A Au/CuNiCoS4/p-Si photodiode: electrical and morphological characterization

  • Adem Koçyiğit,
  • Adem Sarılmaz,
  • Teoman Öztürk,
  • Faruk Ozel and
  • Murat Yıldırım

Beilstein J. Nanotechnol. 2021, 12, 984–994, doi:10.3762/bjnano.12.74

Graphical Abstract
  • great attention due their unique electronic, magnetic, optical, and gas sensing properties. Spinel compounds can be employed in data storage applications, lithium-ion batteries, gas sensors, and medical diagnostics [1][2]. Spinels have a cubic crystal structure with the general chemical formula AB2X4
  • to their remarkable crystal, electric, thermoelectric, magnetic, and optical properties [6][7]. There are many studies on the usage of thiospinels in batteries, super-capacitors, and electrochemical reactions [8][9][10][11][12]. However, there are only two studies on the synthesis and application of
  • confirms the purity of the synthesized nanocrystals. TEM images of the CuNiCoS4 nanocrystals are shown in Figure 2b. Agglomerated spherical nanocrystals were formed due to magnetic effects and electrostatic and steric forces [19]. The average particle size of the CuNiCoS4 nanocrystals was calculated as 6.5
PDF
Album
Full Research Paper
Published 02 Sep 2021

Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules

  • Sabine Maier and
  • Meike Stöhr

Beilstein J. Nanotechnol. 2021, 12, 950–956, doi:10.3762/bjnano.12.71

Graphical Abstract
  • tip of a scanning probe microscope and mechanically lifted from the metallic surface such that they hang freely between metal contacts. This manipulation technique allows for measuring, amongst others, the electronic conductance, magnetic properties, reversible switching, and electroluminescence of
  • assemblies [23][28][60][61]. Similarly, the lack of electronic states around the Fermi level in a superconductor was used to preserve electronic properties in adsorbed molecules. For example, the spin relaxation in magnetic molecules was suppressed on a superconducting surface, which then resulted in a
PDF
Editorial
Published 23 Aug 2021

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • emerged as a promising candidate for industrial applications. Silver nanoparticles synthesized using carrageenan as a reducing and stabilizing agent showed promising results in removing organic dyes such as methylene blue and rhodamine B [111]. Magnetic iron nanoparticles were synthesized using κ-, ι-, or
PDF
Album
Review
Published 18 Aug 2021

In situ transport characterization of magnetic states in Nb/Co superconductor/ferromagnet heterostructures

  • Olena M. Kapran,
  • Roman Morari,
  • Taras Golod,
  • Evgenii A. Borodianskyi,
  • Vladimir Boian,
  • Andrei Prepelita,
  • Nikolay Klenov,
  • Anatoli S. Sidorenko and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2021, 12, 913–923, doi:10.3762/bjnano.12.68

Graphical Abstract
  • Functional Nanostructures, Orel State University named after I.S. Turgenev, 302026, Russia 10.3762/bjnano.12.68 Abstract Employment of the non-trivial proximity effect in superconductor/ferromagnet (S/F) heterostructures for the creation of novel superconducting devices requires accurate control of magnetic
  • demonstrate how FORC can be used for detailed in situ characterization of magnetic states. It reveals that upon reduction of the external field, the magnetization in ferromagnetic layers first rotates in a coherent scissor-like manner, then switches abruptly into the antiparallel state and after that splits
  • into the polydomain state, which gradually turns into the opposite parallel state. The polydomain state is manifested by a profound enhancement of resistance caused by a flux-flow phenomenon, triggered by domain stray fields. The scissor state represents the noncollinear magnetic state in which the
PDF
Album
Full Research Paper
Published 17 Aug 2021

The role of convolutional neural networks in scanning probe microscopy: a review

  • Ido Azuri,
  • Irit Rosenhek-Goldian,
  • Neta Regev-Rudzki,
  • Georg Fantner and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2021, 12, 878–901, doi:10.3762/bjnano.12.66

Graphical Abstract
  • analysis gave the best result. The authors suggest that using data obtained before from neural network analysis as input to model fitting could be extended to other modalities of SPM, such as magnetic force microscopy and Kelvin probe force microscopy. Another recent example of application to a non
PDF
Album
Review
Published 13 Aug 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
  • , pH changes, temperature changes) or external (light, heat, magnetic fields, ultrasound). Theranostic nanomaterials can respond by producing an imaging signal and/or a therapeutic effect, which frequently involves cell death. Since ultrasound (US) is already well established as a clinical imaging
  • temperature, pH, enzyme, redox potential, ionic strength, or solvent composition of the media. Other stimuli are external, such as heat, light, electric field, magnetic field, or ultrasound (US) [5][6][7]. Designing such single, dual, or multi-stimulus-responsive smart delivery vehicles provides an
  • after US triggering under magnetic resonance imaging (MRI) guidance. According to these studies, US irradiation caused distinct NO release. There was a positive association between increasing the power of the US with the rate of NO generation and the cytotoxic effects of NPs on the cancer cells [148
PDF
Album
Review
Published 11 Aug 2021

Recent progress in actuation technologies of micro/nanorobots

  • Ke Xu and
  • Bing Liu

Beilstein J. Nanotechnol. 2021, 12, 756–765, doi:10.3762/bjnano.12.59

Graphical Abstract
  • research in the field of micro/nanorobots [16]. One way to actuate micro/nanorobots to achieve motion is to transform energy. Micro/nanorobots can convert magnetic energy, light energy, acoustic energy, or other forms of energy into kinetic energy or actuation force, so as to perform work tasks flexibly
  • and efficiently at the micro/nanoscale. According to the different actuation mechanisms, actuation technologies that have already been applied to micro/nanorobots can be summarized into two categories. One is external field actuation, including external magnetic fields, electric fields, light fields
  • /nanorobots are explored. Review External field actuation Magnetic field actuation In recent years, the development of magnetic field-actuated micro/nanorobots has become increasingly mature. Back in 2005, Dreyfus et al. [17] created a micro/nanorobot actuated by a variant magnetic field. By applying a
PDF
Album
Review
Published 20 Jul 2021

Recent progress in magnetic applications for micro- and nanorobots

  • Ke Xu,
  • Shuang Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2021, 12, 744–755, doi:10.3762/bjnano.12.58

Graphical Abstract
  • Ke Xu Shuang Xu Fanan Wei School of Information & Control Engineering, Shenyang Jianzhu University, Shenyang, China School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China 10.3762/bjnano.12.58 Abstract In recent years, magnetic micro- and nanorobots have been developed
  • and extensively used in many fields. Actuated by magnetic fields, micro- and nanorobots can achieve controllable motion, targeted transportation of cargo, and energy transmission. The proper use of magnetic fields is essential for the further research and development of micro- and nanorobotics. In
  • this article, recent progress in magnetic applications in the field of micro- and nanorobots is reviewed. First, the achievements of manufacturing micro- and nanorobots by incorporating different magnetic nanoparticles, such as diamagnetic, paramagnetic, and ferromagnetic materials, are discussed in
PDF
Album
Review
Published 19 Jul 2021

Fate and transformation of silver nanoparticles in different biological conditions

  • Barbara Pem,
  • Marija Ćurlin,
  • Darija Domazet Jurašin,
  • Valerije Vrček,
  • Rinea Barbir,
  • Vedran Micek,
  • Raluca M. Fratila,
  • Jesus M. de la Fuente and
  • Ivana Vinković Vrček

Beilstein J. Nanotechnol. 2021, 12, 665–679, doi:10.3762/bjnano.12.53

Graphical Abstract
  • implementing light scattering (dynamic and electrophoretic) techniques, spectroscopy (UV–vis, atomic absorption, nuclear magnetic resonance) and transmission electron microscopy. The obtained results demonstrated that AgNPs may transform very quickly during their journey through different biological conditions
  • absorption spectroscopy (GF-AAS), nuclear magnetic resonance (NMR) spectroscopy, and transmission electron microscopy (TEM) experiments. Physicochemical characteristics of freshly prepared AgNPs Freshly prepared AgNPs coated with PVP, sodium bis(2-ethylhexyl)sulfosuccinate (AOT), and poly(ʟ-lysine) (PLL
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • material are all dials to turn. The properties engineered span electronic, magnetic, optical, chemical, and thermal properties. In the case of 2D and thin-film materials supported on a substrate, defects induced by backscattered ions and sputtered atoms also need to be considered. A recent computational
  • junctions by the HIM method has again been demonstrated [48]. Ferromagnetic properties The first demonstration of defect engineering using the HIM was actually for a magnetic device by Franken and co-authors [49]. In this work, ferromagnetic microstrips comprising Pt(4 nm)/Co(0.6 nm)/Pt(2 nm) layers on an
  • SiO2/Si substrate were irradiated on one half with 25 keV helium ions. It was found that at a dose of 2 × 1015 ions/cm2 a domain wall could be injected into the structure due to the introduction of lattice defects that locally reduced the perpendicular magnetic anisotropy. By raising the dose slightly
PDF
Album
Review
Published 02 Jul 2021

Stability and activity of platinum nanoparticles in the oxygen electroreduction reaction: is size or uniformity of primary importance?

  • Kirill O. Paperzh,
  • Anastasia A. Alekseenko,
  • Vadim A. Volochaev,
  • Ilya V. Pankov,
  • Olga A. Safronenko and
  • Vladimir E. Guterman

Beilstein J. Nanotechnol. 2021, 12, 593–606, doi:10.3762/bjnano.12.49

Graphical Abstract
  • of ethylene glycol, homogenized by ultrasound for 10 min, and then stirred on a magnetic stirrer for 15 min. Then, without stopping stirring, a water solution of H2PtCl6 (TU 2612-034-00205067-2003, Pt mass fraction of 37.6%, Aurat, Russia) was introduced into the suspension and the pH was adjusted to
PDF
Album
Supp Info
Full Research Paper
Published 29 Jun 2021

Influence of electrospray deposition on C60 molecular assemblies

  • Antoine Hinaut,
  • Sebastian Scherb,
  • Sara Freund,
  • Zhao Liu,
  • Thilo Glatzel and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2021, 12, 552–558, doi:10.3762/bjnano.12.45

Graphical Abstract
  • fragile molecules that are impossible to safely deposit onto surfaces with traditional deposition techniques. So far, using HV-ESD, numerous molecular species with potential applications in biology and photovoltaics, or with magnetic or thermal expansion properties have been deposited on a variety of
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2021

A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization

  • Gabriel M. Misirli,
  • Kishore Sridharan and
  • Shirley M. P. Abrantes

Beilstein J. Nanotechnol. 2021, 12, 440–461, doi:10.3762/bjnano.12.36

Graphical Abstract
  • AgNPs, adding new features to the nanoparticles. For example, with the addition of nickel or iron in the production of bimetallic silver nanoparticles, Ag@Ni or Ag@Fe, respectively [42], the nanoparticles acquire magnetic properties. These magnetic nanoparticles have the potential to be used in
  • biomedical applications, such as in therapies that involve magnetic manipulation with photothermal effect promoting a localized bactericidal activity [42][47][48][49]. Properties and oxidative dissolution The oxidative dissolution of AgNPs occurs by the oxidation of silver to silver oxide (Ag2O), with
  • blood tests, urinalysis, sputum induction, and magnetic resonance imaging of the chest and abdomen. After oral exposure, the silver content in the serum and urine was analyzed and no clinically abnormal changes were noted in the lungs, heart, or abdominal organs. Also, no morphological changes were
PDF
Album
Supp Info
Review
Published 14 May 2021

Colloidal particle aggregation: mechanism of assembly studied via constructal theory modeling

  • Scott C. Bukosky,
  • Sukrith Dev,
  • Monica S. Allen and
  • Jeffery W. Allen

Beilstein J. Nanotechnol. 2021, 12, 413–423, doi:10.3762/bjnano.12.33

Graphical Abstract
  • driving forces (i.e., electric or magnetic fields) and, finally, a third dimension. Nonetheless, our model provides a fundamental framework for understanding and tuning the assembly behavior of colloidal particles and can have broad implications on fabrication techniques. (a) Schematic of the pairwise
PDF
Album
Full Research Paper
Published 06 May 2021

The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors

  • Nikola Geskovski,
  • Nadica Matevska-Geshkovska,
  • Simona Dimchevska Sazdovska,
  • Marija Glavas Dodov,
  • Kristina Mladenovska and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2021, 12, 375–401, doi:10.3762/bjnano.12.31

Graphical Abstract
PDF
Album
Review
Published 29 Apr 2021

Spontaneous shape transition of MnxGe1−x islands to long nanowires

  • S. Javad Rezvani,
  • Luc Favre,
  • Gabriele Giuli,
  • Yiming Wubulikasimu,
  • Isabelle Berbezier,
  • Augusto Marcelli,
  • Luca Boarino and
  • Nicola Pinto

Beilstein J. Nanotechnol. 2021, 12, 366–374, doi:10.3762/bjnano.12.30

Graphical Abstract
  • ], electrical [2], and magnetic [3] properties. Low-dimensional materials have unique electronic properties that can be tuned via geometrical or structural modifications [4][5][6][7][8]. Also, the tunability of the spin degrees of freedom in semiconducting materials offers a great potential for future
  • spintronic applications. However, to achieve a reliable injection and detection of spin-polarized electrons in spintronic devices, appropriate heterostructures between semiconductors and magnetic alloys [9][10] need to be formed. Hence, a tailored growth process that preserves the injection efficiency and
PDF
Album
Full Research Paper
Published 28 Apr 2021

Nickel nanoparticle-decorated reduced graphene oxide/WO3 nanocomposite – a promising candidate for gas sensing

  • Ilka Simon,
  • Alexandr Savitsky,
  • Rolf Mülhaupt,
  • Vladimir Pankov and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2021, 12, 343–353, doi:10.3762/bjnano.12.28

Graphical Abstract
  • /WO3 composite and CO gas, a response time (Tres) of 7 min and a recovery time (Trec) of 2 min was determined. Keywords: gas sensing; magnetic measurements; nickel nanoparticles; reduced graphene oxide; tungsten oxide; Introduction Toxic gases as well as volatile organic compounds (VOC) are known air
  • possibility of electron transfer from nickel particles to rGO and WO3), which leads to a greater decrease in the resistance of the composite. In our case, these processes enhance the diffusion of charges at the WO3/rGO interface, but the role of nickel particles remains to be further clarified. Magnetic
  • magnetic properties, namely the Curie temperature was determined from the temperature dependences of magnetization and magnetic susceptibility. The results of the magnetic analysis (Figure 7a) indicate that the magnetic phase in the Ni@rGO composite is pure nickel. The Curie temperature of the composite
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2021

Intracranial recording in patients with aphasia using nanomaterial-based flexible electronics: promises and challenges

  • Qingchun Wang and
  • Wai Ting Siok

Beilstein J. Nanotechnol. 2021, 12, 330–342, doi:10.3762/bjnano.12.27

Graphical Abstract
  • processing. This review presents findings on aphasia, an impairment in language and communication, and discusses how different brain imaging techniques, including positron emission tomography, magnetic resonance imaging, and iEEG, have advanced our understanding of the neural networks underlying language and
  • neuroimaging methods such as positron emission tomography (PET), magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), electroencephalography (EEG), magnetoencephalography (MEG), and intracranial electroencephalography (iEEG). Each of these methods has
PDF
Album
Review
Published 08 Apr 2021

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication

  • Victor Deinhart,
  • Lisa-Marie Kern,
  • Jan N. Kirchhof,
  • Sabrina Juergensen,
  • Joris Sturm,
  • Enno Krauss,
  • Thorsten Feichtner,
  • Sviatoslav Kovalchuk,
  • Michael Schneider,
  • Dieter Engel,
  • Bastian Pfau,
  • Bert Hecht,
  • Kirill I. Bolotin,
  • Stephanie Reich and
  • Katja Höflich

Beilstein J. Nanotechnol. 2021, 12, 304–318, doi:10.3762/bjnano.12.25

Graphical Abstract
  • -mat are presented. Keywords: automated patterning; focused He ion beam; graphene; magnetic multilayers; mechanical resonator; pattern generation; plasmonic antennas; two-dimensional materials; Introduction Future breakthroughs in nanotechnology will rely on the ability to fabricate materials and
  • asymmetric magnetic interactions as in Co/Pt films, enabling the formation of desired spin textures [4]. As the actual device geometry determines the response to external stimuli, the coupling strengths, and the corresponding figures of merit, ultimate control in nanopatterning down to the single-digit
  • including, but not limited to, the direct writing of defects to act as nuclei for epitaxial growth [25], the fabrication of two-dimensional phononic crystals [26], the magnetic patterning of suspended Co/Pt multilayers, the fabrication of two-dimensional mechanical resonators based on single-layer graphene
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2021
Other Beilstein-Institut Open Science Activities