Search results

Search for "microstructure" in Full Text gives 234 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • apolipoprotein A-I and facilitates atherosclerosis [190]. Si nanoparticles were reported for their ability to invade the cytoplasm, modify the intracellular microstructure, and promote inflammatory reactions through activating NLRP3 inflammasomes [191]. Also, in an animal experiment, SiO2 nanoparticles induce
PDF
Album
Review
Published 12 Apr 2024

On the mechanism of piezoresistance in nanocrystalline graphite

  • Sandeep Kumar,
  • Simone Dehm and
  • Ralph Krupke

Beilstein J. Nanotechnol. 2024, 15, 376–384, doi:10.3762/bjnano.15.34

Graphical Abstract
  • can be considered as a matrix of grains and grain boundaries (GBs), where the grains are separated by the GBs and have different resistivities [31]. Hence, the tunneling + destruction model might indeed be an appropriate physical representation of the nano/microstructure of NCG. The model explains
  • microstructure of the film [37]. After the plateau (strain > 1.6%), the resistance once again increases, and a new set of nanocracks start to form at different GBs. The second cycle of the resistance vs strain measurement (Figure 2a, red curve) starts from a resistance value that is equivalent to the resistance
  • grains start to move apart, which is visible as an increase in resistance values between 0% and 0.3% strain [24], also confirmed by Raman measurements under strain (Figure 3b–d). At 0.3% to 0.7% strain, grain rotation and irreversible changes in the microstructure occur. This is seen by a sharper
PDF
Album
Full Research Paper
Published 08 Apr 2024

Controllable physicochemical properties of WOx thin films grown under glancing angle

  • Rupam Mandal,
  • Aparajita Mandal,
  • Alapan Dutta,
  • Rengasamy Sivakumar,
  • Sanjeev Kumar Srivastava and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2024, 15, 350–359, doi:10.3762/bjnano.15.31

Graphical Abstract
  • , bandgap, and electrical conductivity, to a large extent by controlling the cationic oxidation state and the film stoichiometry [2]. As a matter of fact, adjustments in the film stoichiometry and microstructure are experimentally viable by the choice of a suitable growth technique [9][10][11]. As a result
  • identified using X-ray photoelectron spectroscopy (XPS) measurements (PHI 5000 VersaProbeII, ULVAC – PHI, INC) with a monochromatic Al Kα source (hν = 1486.6 eV), and a microfocus (100 µm, 15 kV, 25 W) arrangement along with a multichannel detector and a hemispherical analyser. The microstructure of the WOx
  • range of tunability in structural, optical, and electrical properties of NS-WOx thin films through controlling microstructure and film thickness. This will be useful for optoelectronic applications in photovoltaics where such films are used as a carrier-selective contact. AFM height images of (a–d) as
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2024

Ultrasensitive and ultrastretchable metal crack strain sensor based on helical polydimethylsiloxane

  • Shangbi Chen,
  • Dewen Liu,
  • Weiwei Chen,
  • Huajiang Chen,
  • Jiawei Li and
  • Jinfang Wang

Beilstein J. Nanotechnol. 2024, 15, 270–278, doi:10.3762/bjnano.15.25

Graphical Abstract
  • microstructure grants the strain sensor exceptional stretchability, a wide sensing range (reaching up to 82% strain), and remarkable sensitivity (with a gauge factor (GF) ranging from 16.2 to 150). In a similar vein, Cai et al. developed strain sensors utilizing a weaving architecture that integrated two
  • the elastomer during stretching and play a vital role in the functionality of the strain sensor. Based on its helical microstructure, the sensor demonstrates an ultrahigh gauge factor of 107, along with a wide strain range of 300%, a rapid response time of 158 ms, minimal hysteresis, and remarkable
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2024

Graphene removal by water-assisted focused electron-beam-induced etching – unveiling the dose and dwell time impact on the etch profile and topographical changes in SiO2 substrates

  • Aleksandra Szkudlarek,
  • Jan M. Michalik,
  • Inés Serrano-Esparza,
  • Zdeněk Nováček,
  • Veronika Novotná,
  • Piotr Ozga,
  • Czesław Kapusta and
  • José María De Teresa

Beilstein J. Nanotechnol. 2024, 15, 190–198, doi:10.3762/bjnano.15.18

Graphical Abstract
  • , whereas at higher electron doses the resolution deteriorates and the number of defects significantly increases. Additionally, the etching process is accompanied by morphological changes in the microstructure of the substrate – likely occurring during exposure to the the ambient air and pressure
PDF
Album
Full Research Paper
Published 07 Feb 2024

In situ optical sub-wavelength thickness control of porous anodic aluminum oxide

  • Aleksandrs Dutovs,
  • Raimonds Popļausks,
  • Oskars Putāns,
  • Vladislavs Perkanuks,
  • Aušrinė Jurkevičiūtė,
  • Tomas Tamulevičius,
  • Uldis Malinovskis,
  • Iryna Olyshevets,
  • Donats Erts and
  • Juris Prikulis

Beilstein J. Nanotechnol. 2024, 15, 126–133, doi:10.3762/bjnano.15.12

Graphical Abstract
  • hPAAO is an integrated (effective) value obtained by collecting spectra from a surface area significantly larger than the microstructure of PAAO, including pores, pore walls, skeleton, and the interstitial rods [32], which have tens of nanometers difference in length. Figure 2 shows typical recorded
PDF
Album
Full Research Paper
Published 31 Jan 2024

Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion

  • Sylwia Pawłowska,
  • Karolina Cysewska,
  • Yasamin Ziai,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2024, 15, 57–70, doi:10.3762/bjnano.15.6

Graphical Abstract
  • . The phenomenon in which hydrogels swell in water while not dissolving in it is due to hydrophilic functional groups attached to the polymer backbone and cross-links between the network chains. High water content makes hydrogel materials similar in terms of microstructure and flexibility to living
  • large as possible. The porous microstructure of the hydrogel matrix is capable of swelling and thus accommodating significant amounts of ionic liquids. Such a structure provides constant access of the electrolyte molecules/ions to the catalyst particles surrounding it, increasing the speed and
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2024

Determination of the radii of coated and uncoated silicon AFM sharp tips using a height calibration standard grating and a nonlinear regression function

  • Perawat Boonpuek and
  • Jonathan R. Felts

Beilstein J. Nanotechnol. 2023, 14, 1200–1207, doi:10.3762/bjnano.14.99

Graphical Abstract
  • tips (silicon nitride, silicon, and high-aspect-ratio tips) were scanned over the calibration pattern. Simultaneously, the AFM measurement signal showed the tip path profile as the real geometry of a fabricated microstructure. The tip radius was obtained from the curvature radius of the curve profile
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2023

Exploring internal structures and properties of terpolymer fibers via real-space characterizations

  • Michael R. Roenbeck and
  • Kenneth E. Strawhecker

Beilstein J. Nanotechnol. 2023, 14, 1004–1017, doi:10.3762/bjnano.14.83

Graphical Abstract
  • ®, both the topography and stiffness maps (Figure 2) revealed a consistent microstructure across the fiber diameter at this length scale. Complementing topography and stiffness maps, lateral line profiles (e.g., dashed line, Figure 2a) quantified both topography and stiffness variations across the
  • were not observed elsewhere in the fiber. Topography and stiffness maps also reveal constituents throughout the microstructure that preferentially align with the main fiber axis, as parallel longitudinal lines on topography and stiffness maps can be traced from the top to the bottom of each map. No
  • apparent skin–core differentiation in the microstructure (e.g., as in Kevlar®) is observed [11][13][14][15][16]. The lack of evidence for a skin–core structure in Technora® was referenced in an earlier study by Derombise et al. [17], but to our knowledge, this is the first time this has been directly shown
PDF
Album
Full Research Paper
Published 05 Oct 2023

A wearable nanoscale heart sound sensor based on P(VDF-TrFE)/ZnO/GR and its application in cardiac disease detection

  • Yi Luo,
  • Jian Liu,
  • Jiachang Zhang,
  • Yu Xiao,
  • Ying Wu and
  • Zhidong Zhao

Beilstein J. Nanotechnol. 2023, 14, 819–833, doi:10.3762/bjnano.14.67

Graphical Abstract
  • is in agreement with the XRD findings. The thickness of the piezoelectric film was determined to be approximately 120 μm using a Vernier caliper with a precision of 0.02 mm. The SEM images in Figure 8 reveal that the microstructure of the nanofilms consists of fibrous filaments at the micro/nanoscale
PDF
Album
Full Research Paper
Published 31 Jul 2023

ZnO-decorated SiC@C hybrids with strong electromagnetic absorption

  • Liqun Duan,
  • Zhiqian Yang,
  • Yilu Xia,
  • Xiaoqing Dai,
  • Jian’an Wu and
  • Minqian Sun

Beilstein J. Nanotechnol. 2023, 14, 565–573, doi:10.3762/bjnano.14.47

Graphical Abstract
  • of SiC nanomaterials through surface carbonization of SiC nanowires and hydrolysis. SiC@C-ZnO composites were synthesized with different dosages of ZnNO3·6H2O. Composition, microstructure, and electromagnetic properties of the composites were characterized and analyzed. Results from TEM and XRD show
  • , which has been rarely investigated before. Herein, we describe a new strategy for preparing ternary hybrids (SiC@C-ZnO, SCZ) by growing ZnO particles on carbon surfaces derived from SiC nanowires. The influence of ZnO precursor (ZnNO3·6H2O) dosage on composition, microstructure and electromagnetic
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2023

Hydroxyapatite–bioglass nanocomposites: Structural, mechanical, and biological aspects

  • Olga Shikimaka,
  • Mihaela Bivol,
  • Bogdan A. Sava,
  • Marius Dumitru,
  • Christu Tardei,
  • Beatrice G. Sbarcea,
  • Daria Grabco,
  • Constantin Pyrtsac,
  • Daria Topal,
  • Andrian Prisacaru,
  • Vitalie Cobzac and
  • Viorel Nacu

Beilstein J. Nanotechnol. 2022, 13, 1490–1504, doi:10.3762/bjnano.13.123

Graphical Abstract
  • (HA), obtained by precipitate (HAP) and sol–gel (HAG) methods, and a boro-silico-phosphate bioglass. The microstructure and chemical, mechanical, and biological properties as functions of three factors, namely (i) the type of hydroxyapatite, (ii) glass content, and (iii) sintering temperature, were
  • investigated. It was found that all of these factors affect the final composition and microstructure, especially, porosity, which shows significantly lower values for HAP-based composites than for HAG-based ones and higher values for higher glass content. This, in turn, has an impact on the microhardness
  • , which exhibits a strong correlation with porosity, as well as on the mineralization capability and cell viability due to the different dissolution rate. Keywords: bioactivity; hardness; microstructure; nanocomposites; porosity; Introduction Within the last decades increasing emphasis is placed on the
PDF
Full Research Paper
Published 12 Dec 2022

Structural studies and selected physical investigations of LiCoO2 obtained by combustion synthesis

  • Monika Michalska,
  • Paweł Ławniczak,
  • Tomasz Strachowski,
  • Adam Ostrowski and
  • Waldemar Bednarski

Beilstein J. Nanotechnol. 2022, 13, 1473–1482, doi:10.3762/bjnano.13.121

Graphical Abstract
  • constants is related to the microstructure of the studied material as the sample is constructed from pressed powder material of different sizes. A response consisting of two semicircles is often observed in polycrystalline samples of ion conductors and ceramics [66][67]. It is related to two different
PDF
Album
Full Research Paper
Published 07 Dec 2022

LED-light-activated photocatalytic performance of metal-free carbon-modified hexagonal boron nitride towards degradation of methylene blue and phenol

  • Nirmalendu S. Mishra and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2022, 13, 1380–1392, doi:10.3762/bjnano.13.114

Graphical Abstract
  • samples have been depicted in Figure 1b–f. Furthermore, the atomic microstructure of MBN-80 demonstrates a sheet-like porous structure with a homogeneous distribution of mesopores and can be visualized through the HRTEM images in Figure 1g–m. The formation of mesopores could be attributed to the bubbling
PDF
Album
Full Research Paper
Published 22 Nov 2022

Dry under water: air retaining properties of large-scale elastomer foils covered with mushroom-shaped surface microstructures

  • Matthias Mail,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Wilhelm Barthlott,
  • Stanislav N. Gorb and
  • Lars Heepe

Beilstein J. Nanotechnol. 2022, 13, 1370–1379, doi:10.3762/bjnano.13.113

Graphical Abstract
  • , the corresponding air volumes were estimated as follows: with A the measured areas of air layers, h the height of a surface microstructure, r the effective radius of a surface microstructure, and ρ the number of surface microstructures per unit area which was assumed to 30,000 per cm2. Upon
PDF
Album
Full Research Paper
Published 21 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • from bismuth oxyiodides at different temperatures (Figure 3a). The photoabsorption wavelength of these bismuth oxyiodides has been tuned between 400 and 700 nm. Also, these compounds have a distinctive microstructure and a controllable band structure. (Figure 3b). The breakdown of antibiotics and
PDF
Album
Review
Published 11 Nov 2022

Roll-to-roll fabrication of superhydrophobic pads covered with nanofur for the efficient clean-up of oil spills

  • Patrick Weiser,
  • Robin Kietz,
  • Marc Schneider,
  • Matthias Worgull and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2022, 13, 1228–1239, doi:10.3762/bjnano.13.102

Graphical Abstract
  • Patrick Weiser Robin Kietz Marc Schneider Matthias Worgull Hendrik Holscher Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), P.O. box 36 40, 76021 Karlsruhe, Germany Karlsruhe Nano Micro Facility for information-driven Material Structuring and Characterization
PDF
Album
Supp Info
Full Research Paper
Published 31 Oct 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • matrix structure (cancellous interior) [30]. Also, the mechanical properties of cancellous bones are controlled by the structural organization of the matrix [31]. The bone microstructure mainly comprises collagen threads of lamellae coiled around layers to form a 200–250 µm diameter osteon which can vary
PDF
Review
Published 29 Sep 2022

Spindle-like MIL101(Fe) decorated with Bi2O3 nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation

  • Chen-chen Hao,
  • Fang-yan Chen,
  • Kun Bian,
  • Yu-bin Tang and
  • Wei-long Shi

Beilstein J. Nanotechnol. 2022, 13, 1038–1050, doi:10.3762/bjnano.13.91

Graphical Abstract
  • morphology and microstructure of Bi2O3, MIL101(Fe), and BOM-20 were observed by SEM, TEM, and HRTEM. Figure 2 shows SEM images of Bi2O3, MIL101(Fe), and BOM-20. Figure 2a reveals that MIL101(Fe) appears as an octahedron with a smooth surface and size of approx. 1–2 μm, which is consistent with a previous
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2022

Electrocatalytic oxygen reduction activity of AgCoCu oxides on reduced graphene oxide in alkaline media

  • Iyyappan Madakannu,
  • Indrajit Patil,
  • Bhalchandra Kakade and
  • Kasibhatta Kumara Ramanatha Datta

Beilstein J. Nanotechnol. 2022, 13, 1020–1029, doi:10.3762/bjnano.13.89

Graphical Abstract
  • activity and considerable mass transport activity. Thus, it is very important to understand the microstructure and bonding information of the resultant hybrid. We further examined the morphology of ACC-2 and its distribution over rGO nanosheets via transmission electron microscopy (TEM). We notice a wide
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2022

Design of a biomimetic, small-scale artificial leaf surface for the study of environmental interactions

  • Miriam Anna Huth,
  • Axel Huth,
  • Lukas Schreiber and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2022, 13, 944–957, doi:10.3762/bjnano.13.83

Graphical Abstract
  • and adjustment of the evaporated wax amounts, the wettability and chemical character of the microstructure of the surface of wheat leaves were transferred onto a technical surface. For the use of these artificial leaves as a test system for biotic (e.g., germination of fungal pathogens) and non-biotic
PDF
Supp Info
Full Research Paper
Published 13 Sep 2022

Hierachical epicuticular wax coverage on leaves of Deschampsia antarctica as a possible adaptation to severe environmental conditions

  • Elena V. Gorb,
  • Iryna A. Kozeretska and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2022, 13, 807–816, doi:10.3762/bjnano.13.71

Graphical Abstract
  • surfaces showed a similar microstructure of the wax coverage, they differed in the thickness ratio between lower and upper wax layer. The ligule bore a very loose wax coverage composed of separate scale-like projections or clusters of them. We suppose that the two-layered wax densely covering both leaf
  • hierarchical structure of the wax coverage on both leaf surfaces is described in D. antarctica for the first time. Keywords: cryo-SEM; microstructure; plant; surface; wax projection; Introduction The Antarctic hair grass Deschampsia antarctica É. Desv. (Poaceae) is one of the only two flowering plants native
  • growing in cold regions [13] and to those in other grass leaves. However, the surfaces of D. antarctica that are exposed to the environment in the first place have not been especially examined in this respect. In this study, we examined the microstructure of epidermal surfaces in different organs of the D
PDF
Album
Full Research Paper
Published 22 Aug 2022

Efficient liquid exfoliation of KP15 nanowires aided by Hansen's empirical theory

  • Zhaoxuan Huang,
  • Zhikang Jiang,
  • Nan Tian,
  • Disheng Yao,
  • Fei Long,
  • Yanhan Yang and
  • Danmin Liu

Beilstein J. Nanotechnol. 2022, 13, 788–795, doi:10.3762/bjnano.13.69

Graphical Abstract
  • Utilization of Resources, Guilin University of Technology, Guilin 541004, China School of Science, Xi’an University of Posts and Telecommunications, Xi’an 710121, China Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, China 10.3762/bjnano.13.69
PDF
Album
Supp Info
Full Research Paper
Published 17 Aug 2022

Nanoarchitectonics of the cathode to improve the reversibility of Li–O2 batteries

  • Hien Thi Thu Pham,
  • Jonghyeok Yun,
  • So Yeun Kim,
  • Sang A Han,
  • Jung Ho Kim,
  • Jong-Won Lee and
  • Min-Sik Park

Beilstein J. Nanotechnol. 2022, 13, 689–698, doi:10.3762/bjnano.13.61

Graphical Abstract
  • sufficient diffusion pathways for oxygen and electrolyte in the cathode. The ratio of Zn/Co in the starting materials greatly affects the microstructure and porosity of the resulting bimetallic ZIF–carbon/CNT composites. The correlation between the microstructure and the electrochemical performance of the
  • obviously sharper in the composites with a decreasing Zn/Co ratio during synthesis. This is because Co facilitates the graphitization of ZnxCoy particles during the carbonization process. From the results, we confirm the critical role of Co for tailoring the microstructure of ZnxCoy–C particles in the
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2022

Fabrication and testing of polymer microneedles for transdermal drug delivery

  • Vahid Ebrahiminejad,
  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2022, 13, 629–640, doi:10.3762/bjnano.13.55

Graphical Abstract
  • (Figure 1h). After embossing, the chamber temperature was set to 10 °C for 15 minutes to cool down the PDMS and thermoplastic sample and solidify the replicated microstructure. The polymeric replica of the MN array was then carefully peeled off from the PDMS mold (Figure 1f). The entire replication
PDF
Album
Full Research Paper
Published 08 Jul 2022
Other Beilstein-Institut Open Science Activities