Search results

Search for "photocatalytic activity" in Full Text gives 114 result(s) in Beilstein Journal of Nanotechnology.

Noble metal-modified titania with visible-light activity for the decomposition of microorganisms

  • Maya Endo,
  • Zhishun Wei,
  • Kunlei Wang,
  • Baris Karabiyik,
  • Kenta Yoshiiri,
  • Paulina Rokicka,
  • Bunsho Ohtani,
  • Agata Markowska-Szczupak and
  • Ewa Kowalska

Beilstein J. Nanotechnol. 2018, 9, 829–841, doi:10.3762/bjnano.9.77

Graphical Abstract
  • antimicrobial properties of noble metals with the high photocatalytic activity of modified titania should result in a high purification efficiency of noble metal-modified titania [6][46][47][48][49][50][51][52]. Indeed, in our recent study, noble metal-modified faceted anatase titania (octahedral anatase
  • particles; OAP) have shown high activity in both the decomposition of organic compounds and of microorganisms (E. coli and C. albicans) [48]. It has been found that both the intrinsic properties of silver and the photocatalytic activity of silver-modified titania are responsible for the high antibacterial
  • increase in activity was observed, especially for the fine anatase sample (ST01, 93.1%). Modification with gold caused a slight increase in activity under UV irradiation reaching 96.2%, 94.2% and 77.5%, respectively. An increase in photocatalytic activity after titania modification with NPs of NMs is not
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2018

Facile synthesis of a ZnO–BiOI p–n nano-heterojunction with excellent visible-light photocatalytic activity

  • Mengyuan Zhang,
  • Jiaqian Qin,
  • Pengfei Yu,
  • Bing Zhang,
  • Mingzhen Ma,
  • Xinyu Zhang and
  • Riping Liu

Beilstein J. Nanotechnol. 2018, 9, 789–800, doi:10.3762/bjnano.9.72

Graphical Abstract
  • Zn/Bi, the morphology varies from nanoplates, flowers to nanoparticles. The heterojunction formed between ZnO and BiOI decreases the recombination rate of photogenerated carriers and enhances the photocatalytic activity of ZnO/BiOI composites. The obtained ZnO/BiOI heterostructured nanocomposites
  • exhibit a significant improvement in the photodegradation of rhodamine B under visible light (λ ≥ 420 nm) irradiation as compared to single-phase ZnO and BiOI. A sample with a Zn/Bi ratio of 3:1 showed the highest photocatalytic activity (≈99.3% after 100 min irradiation). The photodegradation tests
  • indicated that the ZnO/BiOI heterostructured nanocomposites not only exhibit remarkably enhanced and sustainable photocatalytic activity, but also show good recyclability. The excellent photocatalytic activity could be attributed to the high separation efficiency of the photoinduced electron–hole pairs as
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2018

Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices

  • T. Anh Thu Do,
  • Truong Giang Ho,
  • Thu Hoai Bui,
  • Quang Ngan Pham,
  • Hong Thai Giang,
  • Thi Thu Do,
  • Duc Van Nguyen and
  • Dai Lam Tran

Beilstein J. Nanotechnol. 2018, 9, 771–779, doi:10.3762/bjnano.9.70

Graphical Abstract
  • investigated for photocatalytic activity as reported previously [8][20]. The photocatalytic activity of the Pt/ZnO hybrid nanocomposite under photodegradation of rhodamine B (RhB) was higher compared to commercial TiO2 [21]. Here, it is quite reasonable to note that the plasmonic metal NP/metal-oxide
  • semiconductor structures are also promising and interesting materials for photocatalytic utilization, in particular relating to the solar light spectrum. It is also worth mentioning that, in fact, there are numerous works that have investigated the photocatalytic activity of these structures based on
  • quenching measurements shows that the Au-decorated ZnO structures exhibited an enhancement in electron−hole pair separation, which allows for superior photocatalytic activity. Results and Discussion X-ray diffraction (XRD) patterns of all samples are shown in Figure 1a. For both pure and Au-decorated ZnO, a
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2018

Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation

  • Ashish Kumar,
  • Christian Schuerings,
  • Suneel Kumar,
  • Ajay Kumar and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2018, 9, 671–685, doi:10.3762/bjnano.9.62

Graphical Abstract
  • )–CaTiO3 (CTCN) organic–inorganic heterojunction photocatalyst was synthesized by a facile mixing method, resulting in the deposition of CaTiO3 (CT) nanoflakes onto the surface of g-C3N4 nanosheets. The photocatalytic activity of the as-synthesized heterojunction (along with the controls) was evaluated by
  • studying the degradation of an aqueous solution of rhodamine B (RhB) under UV, visible and natural sunlight irradiation. The CTCN heterojunction with 1:1 ratio of g-C3N4/CT showed the highest photocatalytic activity under sunlight irradiation and was also demonstrated to be effective for the degradation of
  • overall photocatalytic activity. Furthermore, the active species trapping experiments validate the major role played by superoxide radicals (O2−•) in the degradation of pollutants. Based on scavenger studies and theoretically calculated band positions, a plausible mechanism for the photocatalytic
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2018

Mechanistic insights into plasmonic photocatalysts in utilizing visible light

  • Kah Hon Leong,
  • Azrina Abd Aziz,
  • Lan Ching Sim,
  • Pichiah Saravanan,
  • Min Jang and
  • Detlef Bahnemann

Beilstein J. Nanotechnol. 2018, 9, 628–648, doi:10.3762/bjnano.9.59

Graphical Abstract
  • improve photocatalytic efficiency [101]. The LSPR of Ag in a Ag/AgCl composite was found to enhance the local inner electromagnetic field and prolong the lifetime of the charge carriers. Wang et al. observed that Ag@AgBr exhibited enhanced photocatalytic activity as compared to Ag/AgCl by a factor of 1.5
PDF
Album
Review
Published 19 Feb 2018

Fabrication and photoactivity of ionic liquid–TiO2 structures for efficient visible-light-induced photocatalytic decomposition of organic pollutants in aqueous phase

  • Anna Gołąbiewska,
  • Marta Paszkiewicz-Gawron,
  • Aleksandra Sadzińska,
  • Wojciech Lisowski,
  • Ewelina Grabowska,
  • Adriana Zaleska-Medynska and
  • Justyna Łuczak

Beilstein J. Nanotechnol. 2018, 9, 580–590, doi:10.3762/bjnano.9.54

Graphical Abstract
  • photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy (DRS), scanning transmission microscopy (STEM) and the Brunauer–Emmett–Teller (BET) surface area method, whereas the photocatalytic activity was evaluated by the degradation of phenol in aqueous solution under visible light irradiation (λ > 420
  • example spectra for IL–TiO2 obtained at IL:TBOT molar ratio of 1:10 and 1:3). Therefore, this enhanced absorbance of the light in the visible spectrum is expected to enhance the photocatalytic activity in the visible region for the target reaction. This observation is well verified by the photocatalytic
  • or during synthesis and preparation. Photocatalytic activity The photocatalytic activity of the IL–TiO2 samples was evaluated by phenol degradation induced by visible-light irradiation (using an optical filter with λ > 420 nm). All photocatalysts exhibited better photocatalytic properties than the
PDF
Album
Full Research Paper
Published 14 Feb 2018

Influence of the preparation method on the photocatalytic activity of Nd-modified TiO2

  • Patrycja Parnicka,
  • Paweł Mazierski,
  • Tomasz Grzyb,
  • Wojciech Lisowski,
  • Ewa Kowalska,
  • Bunsho Ohtani,
  • Adriana Zaleska-Medynska and
  • Joanna Nadolna

Beilstein J. Nanotechnol. 2018, 9, 447–459, doi:10.3762/bjnano.9.43

Graphical Abstract
  • (SHT) methods. The as-prepared samples were characterized by X-ray diffraction (XRD), BET surface area measurements, scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), luminescence spectroscopy and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of the
  • photocatalytic efficiency of phenol and toluene degradation under vis irradiation in the presence of 0.25% Nd-TiO2(HT) reached 0.62 and 3.36 μmol·dm−1·min−1, respectively. Photocatalytic activity tests in the presence of Nd-TiO2 and scavenger confirm that superoxide radicals were responsible for the visible
  • TiO2, which leads to enhanced surface adsorption properties of TiO2 and indirectly increases the photocatalytic activity of the photocatalysts [13][14]. Moreover, it has been reported that the presence of RE ions slowed down the rate of the charge-carrier recombination processes [15]. Besides, RE ions
PDF
Album
Full Research Paper
Published 06 Feb 2018

Facile synthesis of ZnFe2O4 photocatalysts for decolourization of organic dyes under solar irradiation

  • Arjun Behera,
  • Debasmita Kandi,
  • Sanjit Manohar Majhi,
  • Satyabadi Martha and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 436–446, doi:10.3762/bjnano.9.42

Graphical Abstract
  • , FESEM, UV–vis DRS, PL, FTIR and photocurrent measurements. The photocatalytic activity of the prepared material is studied with regard to the degradation of rhodamine B (Rh B) and Congo red under solar irradiation. The kinetic study showed that the material exhibits zeroth and first order reaction
  • the organic dyes (i.e., Congo red, Rh B, malachite green methylene blue) to CO2, H2O and the corresponding mineral acids [19][24]. Movahedi et al. have prepared ZnFe2O4 through precipitation tested the photocatalytic activity of ZnFe2O4 in the degradation of 5 ppm Congo red obtaining 64% degradation
  • in 120 min [19]. The photocatalytic activity of ZnFe2O4 has also been tested in the degradation of Rh B [24]. Zhao et al. have synthesized ZnFe2O4 through chemical etching followed by calcination and reported a degradation rate of 31% in 3 h [24]. Doong and co-workers have prepared ZnFe2O4 through a
PDF
Album
Full Research Paper
Published 05 Feb 2018

Photocatalytic and adsorption properties of TiO2-pillared montmorillonite obtained by hydrothermally activated intercalation of titanium polyhydroxo complexes

  • Mikhail F. Butman,
  • Nikolay L. Ovchinnikov,
  • Nikita S. Karasev,
  • Nataliya E. Kochkina,
  • Alexander V. Agafonov and
  • Alexandr V. Vinogradov

Beilstein J. Nanotechnol. 2018, 9, 364–378, doi:10.3762/bjnano.9.36

Graphical Abstract
  • crystallinity (nanocrystals) representing a mixture of anatase and rutile phases. The structures exhibit improved adsorption and photocatalytic activity as a result of hydrothermally activated intercalation of titanium polyhydroxo complexes (i.e., TiCl4 hydrolysis products) in a solution with a concentration
  • , and liquefied nitrogen adsorption/desorption. The photocatalytic activity of the TiO2-pillared materials was studied using the degradation of anionic (methyl orange, MO) and cationic (rhodamine B, RhB) dyes in water under UV irradiation. The combined effect of adsorption and photocatalysis resulted in
  • removal of 100% MO and 97.5% RhB (with an initial concentration of 40 mg/L and a photocatalyst-sorbent concentration of 1 g/L) in about 100 minutes. The produced TiO2-pillared montmorillonite showed increased photocatalytic activity as compared to the commercially available photocatalyst Degussa P25
PDF
Album
Full Research Paper
Published 31 Jan 2018

Sugarcane juice derived carbon dot–graphitic carbon nitride composites for bisphenol A degradation under sunlight irradiation

  • Lan Ching Sim,
  • Jing Lin Wong,
  • Chen Hong Hak,
  • Jun Yan Tai,
  • Kah Hon Leong and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2018, 9, 353–363, doi:10.3762/bjnano.9.35

Graphical Abstract
  • of g-C3N4. Hence, the charge separation efficiency should not be one of the main factors responsible for the enhancement of the photocatalytic activity of CD/g-C3N4. Instead, the light absorption capability was the dominant factor since the photoreactivity correlated well with the ultraviolet–visible
  • extended absorption spectrum from the visible to the near-infrared (NIR) region. This extended spectral absorption allows for the generation of more electrons for the enhancement of BPA degradation. It was determined that the reactive radical species responsible for the photocatalytic activity were the
  • superior photocatalytic activity was demonstrated [8]. Guo and co-workers used the electrochemical method to produce CDs from graphite rods. The deposition of CDs onto g-C3N4/ZnO heterojunctions enhanced the degradation of tetracycline by absorbing a wider spectrum of visible light and suppressing the
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2018

Bombyx mori silk/titania/gold hybrid materials for photocatalytic water splitting: combining renewable raw materials with clean fuels

  • Stefanie Krüger,
  • Michael Schwarze,
  • Otto Baumann,
  • Christina Günter,
  • Michael Bruns,
  • Christian Kübel,
  • Dorothée Vinga Szabó,
  • Rafael Meinusch,
  • Verónica de Zea Bermudez and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2018, 9, 187–204, doi:10.3762/bjnano.9.21

Graphical Abstract
  • particle size and preparation procedure on the photocatalytic activity of Au/TiO2 catalysts. Lower Au loadings of 0.25% Au on P25 TiO2 produced more efficient water splitting catalysts than materials with Au loadings of 1.5% or 2.2%. Moreover, the authors showed that 532 nm laser light is more efficient
  • diameters of ca. 440 nm and AuNPs with diameters of ca. 60 nm could split water in the visible range, even at low Au fractions of only 1.8% [27]. Finally, Seh et al. showed that TiO2/Au Janus nanoparticles have a higher photocatalytic activity than the corresponding core–shell particles [28]. All materials
  • resulting material was thus a macroscopic and mechanically robust object that could simply be retrieved and washed before reuse [32]. Another viable approach for the synthesis of larger and mechanically stable objects with photocatalytic activity is the immobilization of TiO2/Au nanostructures on a scaffold
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2018

Facile synthesis of silver/silver thiocyanate (Ag@AgSCN) plasmonic nanostructures with enhanced photocatalytic performance

  • Xinfu Zhao,
  • Dairong Chen,
  • Abdul Qayum,
  • Bo Chen and
  • Xiuling Jiao

Beilstein J. Nanotechnol. 2017, 8, 2781–2789, doi:10.3762/bjnano.8.277

Graphical Abstract
  • the product was investigated based on the time-dependent experiments. Further experiments indicated that the prepared Ag@AgSCN nanostructures with an atomic ratio of Ag/AgSCN = 0.0463 exhibited high photocatalytic activity and long-term stability for the degradation of oxytetracycline (84%) under
  • visible-light irradiation. In addition to the microstructure and high specific surface area, the enhanced photocatalytic activity was mainly caused by the surface plasmon resonance of Ag nanoparticles, and the high stability of AgSCN resulted in the long-term stability of the photocatalyst product
  • and environmental friendlessness. For example, as a typical semiconductor, TiO2 exhibits high photocatalytic degradation performance against a large number of organic pollutants [5][6][7]. However, it is difficult to obtain a high photocatalytic activity under visible-light irradiation with TiO2 as a
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2017

CdSe nanorod/TiO2 nanoparticle heterojunctions with enhanced solar- and visible-light photocatalytic activity

  • Fakher Laatar,
  • Hatem Moussa,
  • Halima Alem,
  • Lavinia Balan,
  • Emilien Girot,
  • Ghouti Medjahdi,
  • Hatem Ezzaouia and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2017, 8, 2741–2752, doi:10.3762/bjnano.8.273

Graphical Abstract
  • the narrow bandgap of CdSe NRs serves to increase the photoresponse of CdSe/TiO2 composites until ≈725 nm. The CdSe (2 wt %)/TiO2 composite exhibits the highest photocatalytic activity for the degradation of rhodamine B in aqueous solution under simulated sunlight or visible light irradiation. The
  • enhancement in photocatalytic activity likely originates from CdSe sensitization of TiO2 and the heterojunction between these materials which facilitates electron transfer from CdSe to TiO2. Due to its high stability (up to ten reuses without any significant loss in activity), the CdSe/TiO2 heterostructured
  • separation. The interfacial electron transfer between two semiconductors has gained significant interest because the heterojunction improves both the optical absorption in the visible range and the charge separation yield and thus the charge carrier lifetime [3][4][5][6][7][8]. The photocatalytic activity is
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2017

Hydrothermal synthesis of ZnO quantum dot/KNb3O8 nanosheet photocatalysts for reducing carbon dioxide to methanol

  • Xiao Shao,
  • Weiyue Xin and
  • Xiaohong Yin

Beilstein J. Nanotechnol. 2017, 8, 2264–2270, doi:10.3762/bjnano.8.226

Graphical Abstract
  • . The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and UV–vis absorption spectroscopy (UV–vis). The photocatalytic activity of the
  • excellent nonlinear optical, piezoelectric, ferroelectric, ionic conductivity, selective-ion exchange and photocatalytic properties [6][7][8][9]. Zhang et al. prepared K4Nb6O17 with a sheet-like nanostructure by hydrothermal synthesis and found its photocatalytic activity for degrading acidic red G to be
  • much higher than that of the commercial Degussa P25 [10]. Zhou et al. synthesized porous K4Nb6O17 microspheres with large surface area via a homogeneous precipitation method, which showed not only two times higher photocatalytic activity than that of the commercial Degussa P25 (the titanium dioxide
PDF
Album
Full Research Paper
Published 30 Oct 2017

Synthesis and characterization of noble metal–titania core–shell nanostructures with tunable shell thickness

  • Bartosz Bartosewicz,
  • Marta Michalska-Domańska,
  • Malwina Liszewska,
  • Dariusz Zasada and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2017, 8, 2083–2093, doi:10.3762/bjnano.8.208

Graphical Abstract
  • ][5][6][7][8][9][10][11]. For many applications, however, the use of titanium dioxide in CSNs would be of much greater interest. Useful physicochemical properties of titanium dioxide in its crystalline forms, rutile and anatase, such as high refractive index and photocatalytic activity have led to its
PDF
Album
Supp Info
Full Research Paper
Published 05 Oct 2017

Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

  • Suneel Kumar,
  • Ashish Kumar,
  • Ashish Bahuguna,
  • Vipul Sharma and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2017, 8, 1571–1600, doi:10.3762/bjnano.8.159

Graphical Abstract
  • charge transfer and better catalytic dispersion to enhance the photocatalytic activity. The 2D carbon-based nanomaterials combine several of the above-mentioned advantages of both 2D and carbon-based materials, and have shown great prospects as catalysts for various applications. As this is currently an
  • precursor, exhibited different microstructure and isoelectric points [91]. The g-C3N4 prepared by the thermal condensation method generally exhibit low surface area, which can limit its practical applications, as high specific surface area of catalyst is highly desirable for enhanced photocatalytic activity
  • separation and migration of charge carriers to the surface. Higher crystallinity and smaller size of particles play a significant role in enhancing the photocatalytic activity by decreasing the recombination probability of photogenerated charge carriers [4]. It is well known that higher crystallinity leads
PDF
Album
Review
Published 03 Aug 2017

Enhanced catalytic activity without the use of an external light source using microwave-synthesized CuO nanopetals

  • Govinda Lakhotiya,
  • Sonal Bajaj,
  • Arpan Kumar Nayak,
  • Debabrata Pradhan,
  • Pradip Tekade and
  • Abhimanyu Rana

Beilstein J. Nanotechnol. 2017, 8, 1167–1173, doi:10.3762/bjnano.8.118

Graphical Abstract
  • found to be less effective as compared to other metal oxides [8][9][10][11][12]. Thus, in order to enhance its photocatalytic activity, CuO can be used with hydrogen peroxide (H2O2) [12][13][14][15][16][17][18][19][20][21]. However, the degradation time of dyes is an important problem when using CuO as
  • the degradation through the formation of radicals [6][25]. The wide band gap, high surface area of CuO nanopetals was expected to be suitable for the photocatalytic activity for the degradation of the common cationic dye methylene blue (MB), and hence initially, a study has been carried out in which
  • blue (MB), in the absence and presence of H2O2, respectively. For the photocatalytic activity study, 40 mg of CuO nanopetal powder was dispersed in 40 mL of a 50 µM MB solution and allowed to stir for ≈30 min under dark conditions and was then subjected to irradiation using an incandescent lamp
PDF
Album
Supp Info
Full Research Paper
Published 30 May 2017

ZnO nanoparticles sensitized by CuInZnxS2+x quantum dots as highly efficient solar light driven photocatalysts

  • Florian Donat,
  • Serge Corbel,
  • Halima Alem,
  • Steve Pontvianne,
  • Lavinia Balan,
  • Ghouti Medjahdi and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2017, 8, 1080–1093, doi:10.3762/bjnano.8.110

Graphical Abstract
  • nanoparticles exhibit a high photocatalytic activity under simulated solar light irradiation for the degradation of Orange II dye (>95% degradation after 180 min of irradiation at an intensity of 5 mW/cm2). The heterojunction built between the ZnO nanoparticle and ZCIS QDs not only extends the light adsorption
  • generating UV-A and UV-B radiation. In this paper, we report first the successful preparation of a ZnO/ZCIS heterostructured photocatalyst using commercial ZnO nanoparticles and only 2.5 wt % of ZCIS QDs. The high photocatalytic activity of this material for the degradation of Orange II dye under simulated
  • in all further studies. Before the complete evaluation of the photocatalytic activity, the ZnO/ZCIS material was characterized by XRD, TEM, SEM and XPS. TEM images show that ZCIS nanocrystals were dispersed at the surface of ZnO nanoparticles and that their average diameter slightly increases (≈4.5
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2017

High photocatalytic activity of Fe2O3/TiO2 nanocomposites prepared by photodeposition for degradation of 2,4-dichlorophenoxyacetic acid

  • Shu Chin Lee,
  • Hendrik O. Lintang and
  • Leny Yuliati

Beilstein J. Nanotechnol. 2017, 8, 915–926, doi:10.3762/bjnano.8.93

Graphical Abstract
  • photodeposition showed higher photocatalytic activity than the unmodified TiO2. Three times higher photocatalytic activity was obtained on the best photocatalyst, Fe2O3(0.5)/TiO2. The improved activity of TiO2 after photodeposition of Fe2O3 was contributed to the formation of a heterojunction between the Fe2O3
  • , titanium dioxide (TiO2) has been the foremost established material for degradation of organic pollutants [1][2]. In addition to its nontoxicity, abundance and relatively low cost, TiO2 also shows excellent photocatalytic activity in many degradation reactions. Unfortunately, the photocatalytic performance
  • (III) oxide (Fe2O3), which is nontoxic, stable, cost effective and found abundantly in the earth. It has been reported that Fe2O3 can be used to increase the photocatalytic activity or selectivity of semiconductor photocatalysts for degradation of organic pollutants [5][6][7][8][9][10][11][12][13][14
PDF
Album
Supp Info
Full Research Paper
Published 24 Apr 2017

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • significantly. The introduction of graphene into TiO2 results in increased conductivity of the hybrid material, higher transparency and efficient charge separation of the system which causes enhanced photocatalytic activity and other novel properties [81]. Also, due to its high conductivity, graphene is highly
  • . The photocatalytic activity of the hybrid has been confirmed by the conversion of CO2 to valuable hydrocarbons (CH4 and C2H6) in water vapour (Figure 2). This opens the path for new significant applications of graphene for selectively catalytic C–C coupling reaction [90]. Liu et al. have prepared TiO2
  • –TiO2 make use of its photocatalytic activity, there are also some applications of shape-controlled TiO2–graphene hybrids used in pollutant abatement [100], high-performance anodes for microbial fuel cells [101], and self-cleaning applications [102]. Vanadium oxide (VO, V2O3, VO2, V2O5)–graphene hybrids
PDF
Album
Review
Published 24 Mar 2017

Investigation of the photocatalytic efficiency of tantalum alkoxy carboxylate-derived Ta2O5 nanoparticles in rhodamine B removal

  • Subia Ambreen,
  • Mohammad Danish,
  • Narendra D. Pandey and
  • Ashutosh Pandey

Beilstein J. Nanotechnol. 2017, 8, 604–613, doi:10.3762/bjnano.8.65

Graphical Abstract
  • and CeO2, serve as potential photocatalysts [1][2][3][4]. The properties of the metal oxide nanoparticles (surface area, band gap, porosity) determine its photocatalytic activity for the degradation of organic pollutants from water. Because of properties such as high refractive index and large band
  • photocatalytic activity of the nanoparticles was investigated regarding the degradation of rhodamine B (RhB). Experimental All reactions before the sol–gel synthesis were carried out under strict anhydrous conditions by using Schlenk tubes and vacuum line techniques. Ta(OEt)5 and Ta(On-Bu)5 were purchased from
PDF
Album
Supp Info
Full Research Paper
Published 13 Mar 2017

Photocatalysis applications of some hybrid polymeric composites incorporating TiO2 nanoparticles and their combinations with SiO2/Fe2O3

  • Andreea Laura Chibac,
  • Tinca Buruiana,
  • Violeta Melinte and
  • Emil C. Buruiana

Beilstein J. Nanotechnol. 2017, 8, 272–286, doi:10.3762/bjnano.8.30

Graphical Abstract
  • maximization of the photocatalytic efficiency. An interesting route to reach this goal is the use of iron(III) added to titanium dioxide photocatalysts, which improves the photocatalytic activity under visible light reducing the recombination rates of the photo-excited carriers [38]. Also, the immobilization
  • ), (004), (200), (105), (211), (204), and (215) planes, respectively, confirming the formation of nanocrystalline anatase. This characteristic is essential from the point of view of application since the crystal structure of TiO2 significantly affects the photocatalytic activity [47]. The average
  • UV radiation. The combination of titania with maghemite nanoparticles induced an increase of the absorption for S3 and S4 composites above 300 nm, a convenient characteristic for photocatalytic applications. Evaluation of photocatalytic activity of the hybrid composites The photocatalytic performance
PDF
Album
Full Research Paper
Published 27 Jan 2017

Laser irradiation in water for the novel, scalable synthesis of black TiOx photocatalyst for environmental remediation

  • Massimo Zimbone,
  • Giuseppe Cacciato,
  • Mohamed Boutinguiza,
  • Vittorio Privitera and
  • Maria Grazia Grimaldi

Beilstein J. Nanotechnol. 2017, 8, 196–202, doi:10.3762/bjnano.8.21

Graphical Abstract
  • a 2 MeV He+ beam with a scattering angle of 165° in normal incidence. The RUMP software was employed for the analysis of the RBS spectra. In order to evaluate the photocatalytic activity of the TiOx nanostructured film, the methylene blue (MB) discoloration test was performed [24]. The apparent
  • [23]. It is worth noting the obtained black TiOx has very high absorbance in the full range of solar radiation: in particular, solar radiation spans from 0.5 eV (2.5 µm) to 5 eV (250 nm). Although it depends on other concomitant surface processes, photocatalytic activity benefits from the high
  • recombination [2]. In the present work, the photocatalytic activity is measured by using the methylene blue (MB) discoloration method [27]. Samples for discolouration measurements were prepared by sandwiching the Ti substrate between a TiOx layer (irradiated surface) and a Pt nanoparticle layer, thus realizing
PDF
Album
Full Research Paper
Published 19 Jan 2017

Optical and photocatalytic properties of TiO2 nanoplumes

  • Viviana Scuderi,
  • Massimo Zimbone,
  • Maria Miritello,
  • Giuseppe Nicotra,
  • Giuliana Impellizzeri and
  • Vittorio Privitera

Beilstein J. Nanotechnol. 2017, 8, 190–195, doi:10.3762/bjnano.8.20

Graphical Abstract
  • ) samples exhibit the best photocatalytic activity in degrading the MB dye under UV irradiation. In order to analyze the obtained photocatalytic results, it is necessary to take into account different factors that influence the reaction. Although the macroscopic surface is the same, the active surface areas
  • , and as a consequence could favor the photocatalytic activity. In order to gain more insight into the realized structure, we performed transmittance (T) and reflectance (R) measurements in the range of 200–800 nm. The optical spectra are reported in Figure 4. The transmittance spectra (Figure 4a) show
  • chemical etching (in particular, Ti3+ and OH groups) are responsible for a blurring of the valence and conduction bands. Consequently, a reduction of the optical gap was reported. Ascertained of the high photocatalytic activity of the Ti (430-190) sample due to its structural and optical properties, we
PDF
Album
Full Research Paper
Published 18 Jan 2017

Organoclay hybrid materials as precursors of porous ZnO/silica-clay heterostructures for photocatalytic applications

  • Marwa Akkari,
  • Pilar Aranda,
  • Abdessalem Ben Haj Amara and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2016, 7, 1971–1982, doi:10.3762/bjnano.7.188

Graphical Abstract
  • suggest that an appropriate pore volume with an optimized pore size distribution besides a large specific surface area of these materials, can promote a more efficient photocatalytic activity but also a higher adsorption capacity of MB molecules, which also contributes to the removal of these molecules
  • photocatalyst for the degradation of drug pollutants in water, ibuprofen was selected as a model pharmaceutical. Ibuprofen shows a low adsorption affinity towards silica/silicate substrates and the observed degradation could be directly related to the photocatalytic activity of the tested materials. Figure 12
  • photocatalytic ability of the present materials indicates that ZnO/SiO2-clay heterostructures derived from smectites showed an enhanced photocatalytic activity for the degradation of methylene blue, probably due to the most suitable textural features among these ZnO-silica clay heterostructures. The observed
PDF
Album
Full Research Paper
Published 12 Dec 2016
Other Beilstein-Institut Open Science Activities