Search results

Search for "photocatalytic performance" in Full Text gives 67 result(s) in Beilstein Journal of Nanotechnology.

Optical and photocatalytic properties of TiO2 nanoplumes

  • Viviana Scuderi,
  • Massimo Zimbone,
  • Maria Miritello,
  • Giuseppe Nicotra,
  • Giuliana Impellizzeri and
  • Vittorio Privitera

Beilstein J. Nanotechnol. 2017, 8, 190–195, doi:10.3762/bjnano.8.20

Graphical Abstract
  • nanoplumes, increasing the generation of electron–hole pairs and, therefore, enhancing the photocatalytic performance. Conclusion In summary, TiO2 nanoplumes were synthesized by a straightforward method, involving rapid chemical etching of Ti films in a H2O2 solution. The present results reveal that the most
PDF
Album
Full Research Paper
Published 18 Jan 2017

Role of RGO support and irradiation source on the photocatalytic activity of CdS–ZnO semiconductor nanostructures

  • Suneel Kumar,
  • Rahul Sharma,
  • Vipul Sharma,
  • Gurunarayanan Harith,
  • Vaidyanathan Sivakumar and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2016, 7, 1684–1697, doi:10.3762/bjnano.7.161

Graphical Abstract
  • [19], ion doping [20] and coupling of semiconductors [21]. Recently, coupling of the semiconductors have attracted much attention and it has been proved that this coupling efficiently increases the photocatalytic performance by reducing the recombination probability of photo-generated charge carriers
  • degradation of organic pollutants [32][33][34][35]. In one of our recent works [34], we have reported the synergistic effect of MoS2–RGO support to improve the photocatalytic performance of ZnO nanoparticles. However, the role played by RGO support in enhancing the photocatalytic performance of the
  • performance The photocatalytic performance of CdS–ZnO binary and CdS–ZnO–RGO ternary nanocomposites is evaluated by measuring the photodegradation of methyl orange (MO), as model dye, under visible light irradiation from a solar simulator or under natural sun light. Prior to illumination, the suspension was
PDF
Album
Full Research Paper
Published 11 Nov 2016

High photocatalytic activity of V-doped SrTiO3 porous nanofibers produced from a combined electrospinning and thermal diffusion process

  • Panpan Jing,
  • Wei Lan,
  • Qing Su and
  • Erqing Xie

Beilstein J. Nanotechnol. 2015, 6, 1281–1286, doi:10.3762/bjnano.6.132

Graphical Abstract
  • -doped SrTiO3 porous nanofibers have excellent catalytic efficiency. Furthermore, the excellent catalytic activity was maintained even after five cycle tests, indicating that they have outstanding photocatalytic endurance. It is suggested that the excellent photocatalytic performance of doped SrTiO3
  • photocatalytic reaction. Accordingly, the V-doped SrTiO3 porous nanofibers could be a promising candidate for the clean-up of industrial waste water. In this work, it is suggested that there are three main contributors to the remarkable photocatalytic performance of V-doped SrTiO3 porous nanofibers. Firstly, the
PDF
Album
Letter
Published 09 Jun 2015

Transformation of hydrogen titanate nanoribbons to TiO2 nanoribbons and the influence of the transformation strategies on the photocatalytic performance

  • Melita Rutar,
  • Nejc Rozman,
  • Matej Pregelj,
  • Carla Bittencourt,
  • Romana Cerc Korošec,
  • Andrijana Sever Škapin,
  • Aleš Mrzel,
  • Srečo D. Škapin and
  • Polona Umek

Beilstein J. Nanotechnol. 2015, 6, 831–844, doi:10.3762/bjnano.6.86

Graphical Abstract
  • spectroscopy. According to electron paramagnetic resonance measurements the calcination in the reductive atmosphere also resulted in a partial reduction of Ti4+ to Ti3+. The photocatalytic performance of the derived TiO2 NRs was estimated on the basis of the photocatalytic oxidation of isopropanol. After
  • calcinating in air, the photocatalytic performance of the investigated TiO2 NRs increased with an increased content of anatase. In contrast, the photocatalytic performance of the N-doped TiO2 NRs showed no dependence on the calcination temperature. An additional comparison showed that the N-doping
  • significantly suppressed the photocatalytic performance of the TiO2 NRs, i.e., by 3 to almost 10 times, in comparison with the TiO2 NRs derived by calcination in air. On the other hand, the photocatalytic performance of the hydrothermally derived TiO2 NRs was additionally improved by a subsequent heat treatment
PDF
Album
Supp Info
Full Research Paper
Published 27 Mar 2015

Palladium nanoparticles anchored to anatase TiO2 for enhanced surface plasmon resonance-stimulated, visible-light-driven photocatalytic activity

  • Kah Hon Leong,
  • Hong Ye Chu,
  • Shaliza Ibrahim and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2015, 6, 428–437, doi:10.3762/bjnano.6.43

Graphical Abstract
  • reusability trend proved the photostability of the prepared photocatalysts. Hence, the study provides a new insight about the modification of TiO2 with noble metals in order to enhance the absorption in the visible-light region for superior photocatalytic performance. Keywords: endocrine disrupting compound
  • . This high charge carrier separation efficiency extends the reactive electron–hole lifetime and, hence, leads to a better photocatalytic performance by Pd/TiO2 photocatalyst. Photocatalytic studies Figure 9 shows the photocatalytic performance of the prepared samples (Pd/TiO2) for the degradation of AMX
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2015

Photocatalysis

  • Rong Xu

Beilstein J. Nanotechnol. 2014, 5, 1071–1072, doi:10.3762/bjnano.5.119

Graphical Abstract
  • , two review articles present an excellent overview of the significance of nanostructures in visible light photocatalysis in a timely manner. Many materials aspects of photocatalysts influence the photocatalytic performance, such as the electronic, structural, and morphological features of the
PDF
Editorial
Published 16 Jul 2014

Functionalized nanostructures for enhanced photocatalytic performance under solar light

  • Liejin Guo,
  • Dengwei Jing,
  • Maochang Liu,
  • Yubin Chen,
  • Shaohua Shen,
  • Jinwen Shi and
  • Kai Zhang

Beilstein J. Nanotechnol. 2014, 5, 994–1004, doi:10.3762/bjnano.5.113

Graphical Abstract
  • production under visible light [19]. We have also investigated the visible-light-driven photocatalytic performance over a nanosized WS2-sensitized mesoporous TiO2 photocatalyst [20]. Compared to bulk TiO2 without mesopores, more WS2 can be loaded in the mesoporous TiO2. Moreover, the mesoporous channels can
  • for another metal sulfide photocatalyst [31]. Although the mechanism for the formation of nanostep structures could be different, the important role of the nanostep surface for the enhancement of photocatalytic performance was also shown. The surface architecture of composite photocatalysts can
PDF
Album
Review
Published 09 Jul 2014

Growth and characterization of CNT–TiO2 heterostructures

  • Yucheng Zhang,
  • Ivo Utke,
  • Johann Michler,
  • Gabriele Ilari,
  • Marta D. Rossell and
  • Rolf Erni

Beilstein J. Nanotechnol. 2014, 5, 946–955, doi:10.3762/bjnano.5.108

Graphical Abstract
  • photocatalytic performance than the chemical bond between CNTs and TiO2, since the arc-discharge-synthesized CNTs show a dramatically higher photocatalytic dye degradation rate than the CVD-synthesized CNTs, which is attributed to the smaller number of defects in the multi-wall (MW) tubes of the former. In
PDF
Album
Review
Published 02 Jul 2014

Biomolecule-assisted synthesis of carbon nitride and sulfur-doped carbon nitride heterojunction nanosheets: An efficient heterojunction photocatalyst for photoelectrochemical applications

  • Hua Bing Tao,
  • Hong Bin Yang,
  • Jiazang Chen,
  • Jianwei Miao and
  • Bin Liu

Beilstein J. Nanotechnol. 2014, 5, 770–777, doi:10.3762/bjnano.5.89

Graphical Abstract
  • and by doping with foreign atoms [5][6][7][8]. However, the photocatalytic performance of CN is still limited because of the fast charge recombination [6][8][9][10]. How to efficiently separate photogenerated charge carriers in CN becomes a critical factor in further improving the photocatalytic
  • performance. The construction of heterojunctions is a simple and effective way to enhance charge carrier separation, in which the build-in electric field across the junction could drive electrons and holes moving towards different parts of the photocatalyst, and thus improving the lifetime of charge carriers
  • increased thickness of nanosheets. Figure 4d presents the pore size distribution of CN, CNS and the CN/CNS heterostructure. It is clear that sulfur doping significantly increases the pore volume of micro- (smaller than 10 nm) and meso- (larger than 100 nm) pores, which could favor the photocatalytic
PDF
Album
Supp Info
Full Research Paper
Published 03 Jun 2014

Visible light photooxidative performance of a high-nuclearity molecular bismuth vanadium oxide cluster

  • Johannes Tucher and
  • Carsten Streb

Beilstein J. Nanotechnol. 2014, 5, 711–716, doi:10.3762/bjnano.5.83

Graphical Abstract
  • oxidant. Trapping experiments using ethanol as a hydroxyl radical scavenger show significantly decreased photocatalytic substrate oxidation in the presence of EtOH. Photocatalytic performance analyses using monochromatic visible light irradiation show that the quantum efficiency Φ for indigo
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2014

Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

  • Hongjun Chen and
  • Lianzhou Wang

Beilstein J. Nanotechnol. 2014, 5, 696–710, doi:10.3762/bjnano.5.82

Graphical Abstract
  • exhibit a much better photocatalytic performance than N-doped TiO2 nanoparticles or TiO2 nanotubes alone. Electromagnetic simulations based on the finite-difference time-domain method provided the theoretical support for this local electric field enhancement mechanism. In contrast to the local electric
  • enhanced photocatalytic performance for ion-exchangeable semiconductors in the visible region. Secondly, ion-exchangeable layered semiconductors have spatially well-separated photocatalytic reduction and oxidation reaction sites, which can effectively decelerate the recombination of the photogenerated
PDF
Album
Review
Published 23 May 2014

A visible-light-driven composite photocatalyst of TiO2 nanotube arrays and graphene quantum dots

  • Donald K. L. Chan,
  • Po Ling Cheung and
  • Jimmy C. Yu

Beilstein J. Nanotechnol. 2014, 5, 689–695, doi:10.3762/bjnano.5.81

Graphical Abstract
  • ), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and UV–vis absorption spectroscopy. The product exhibited high photocatalytic performance in the photodegradation of methylene blue and enhanced photocurrent under visible
  • improved photocatalytic performance of GQDs/TNAs over TNAs can be simply explained by the photosensitization of TNAs by GQDs [38]. Upon visible light irradiation, electron–hole pairs are generated by the GQDs. Typically, the conduction band level of GQDs is higher than that of TiO2 [36][42]. Thus, an
PDF
Album
Supp Info
Full Research Paper
Published 22 May 2014

Effects of the preparation method on the structure and the visible-light photocatalytic activity of Ag2CrO4

  • Difa Xu,
  • Shaowen Cao,
  • Jinfeng Zhang,
  • Bei Cheng and
  • Jiaguo Yu

Beilstein J. Nanotechnol. 2014, 5, 658–666, doi:10.3762/bjnano.5.77

Graphical Abstract
  • comparative study about the effect of the preparation methods on the structure and photocatalytic performance of Ag2CrO4. Herein, for the first time, special attention is paid to evaluate the effect of preparation methods on the structure and visible-light photocatalytic activity of Ag2CrO4. Microemulsion
  • areas are beneficial for the enhancement of photocatalytic performance by facilitating the absorption of pollutants for degradation. UV–vis spectroscopy measurements A comparison of UV–vis diffuse reflectance spectra (DRS) and the corresponding colours of the Ag2CrO4 samples are displayed in Figure 5
  • , Degussa, Germany) is also used as a reference. Figure 7 shows that all Ag2CrO4 samples exhibit a much better photocatalytic performance than P25 in the MB degradation. In particular, the S-M Ag2CrO4 sample shows the highest activity with a rate constant of 0.033 min−1, and MB is almost completely degraded
PDF
Album
Full Research Paper
Published 19 May 2014

Dye-sensitized Pt@TiO2 core–shell nanostructures for the efficient photocatalytic generation of hydrogen

  • Jun Fang,
  • Lisha Yin,
  • Shaowen Cao,
  • Yusen Liao and
  • Can Xue

Beilstein J. Nanotechnol. 2014, 5, 360–364, doi:10.3762/bjnano.5.41

Graphical Abstract
  • recombination rate of photogenerated electrons and holes often leads to low quantum yields and a poor photocatalytic activity [6]. Tremendous efforts have been made to improve the photocatalytic performance of TiO2. One typical strategy is prolonging the lifetime of the electron–hole pair through deposition of
PDF
Album
Supp Info
Full Research Paper
Published 26 Mar 2014

Preparation of NiS/ZnIn2S4 as a superior photocatalyst for hydrogen evolution under visible light irradiation

  • Liang Wei,
  • Yongjuan Chen,
  • Jialin Zhao and
  • Zhaohui Li

Beilstein J. Nanotechnol. 2013, 4, 949–955, doi:10.3762/bjnano.4.107

Graphical Abstract
  • successfully prepared via a facile two-step hydrothermal process. The as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). Their photocatalytic performance
  • the poor separation efficiency and migration ability of the photo-excited charge carriers. A variety of effects have been made to enhance the photocatalytic performance of ZnIn2S4. For example, by size control on ZnIn2S4 [20], doping with transition metals [21] and incorporation of metal sulfides [22
  • ] or RGO [23] into ZnIn2S4 nanostructures, the photocatalytic performance for hydrogen evolution over ZnIn2S4 have been enhanced to a certain degree. Studies on semiconductor-based photocatalysts revealed that the deposition of a suitable co-catalyst on the semiconductor photocatalysts can play
PDF
Album
Full Research Paper
Published 23 Dec 2013

Structural, optical and photocatalytic properties of flower-like ZnO nanostructures prepared by a facile wet chemical method

  • Sini Kuriakose,
  • Neha Bhardwaj,
  • Jaspal Singh,
  • Biswarup Satpati and
  • Satyabrata Mohapatra

Beilstein J. Nanotechnol. 2013, 4, 763–770, doi:10.3762/bjnano.4.87

Graphical Abstract
  • optical properties were studied by UV–vis absorption spectroscopy in the wavelength range from 200 to 800 nm using a HITACHI U3900 spectrophotometer with doubly distilled water as the reference medium. Photocatalytic measurements The photocatalytic performance of the ZnO nanostructures were evaluated by
PDF
Album
Full Research Paper
Published 18 Nov 2013

Mesoporous MgTa2O6 thin films with enhanced photocatalytic activity: On the interplay between crystallinity and mesostructure

  • Jin-Ming Wu,
  • Igor Djerdj,
  • Till von Graberg and
  • Bernd M. Smarsly

Beilstein J. Nanotechnol. 2012, 3, 123–133, doi:10.3762/bjnano.3.13

Graphical Abstract
  • impact of the ordered mesoporous structure on the photocatalytic activity is reinforced by the significantly higher photocatalytic performance of the mesoporous MgTa2O6 film compared to the nonporous one (Figure 9). In addition, the KLE-templated mesoporous MgTa2O6 film exhibited higher photocatalytic
  • enhanced ability to assist photodegradation of rhodamine B in water under UV irradiation. The optimal photocatalytic activity, when evaluated in terms of turnover frequency, was about four times that of previously reported anatase films with ordered mesopores [15] and even exceeded the photocatalytic
  • performance of such films doped with other elements (see, e.g., [30] and references therein). In conclusion, our work represents a show-case study regarding the interplay of crystallinity/crystallite size and mesoscopic order. The combination of photocatalytical characterization with comprehensive
PDF
Album
Supp Info
Video
Full Research Paper
Published 13 Feb 2012
Other Beilstein-Institut Open Science Activities