Search results

Search for "photolithography" in Full Text gives 83 result(s) in Beilstein Journal of Nanotechnology.

Deterministic placement of ultra-bright near-infrared color centers in arrays of silicon carbide micropillars

  • Stefania Castelletto,
  • Abdul Salam Al Atem,
  • Faraz Ahmed Inam,
  • Hans Jürgen von Bardeleben,
  • Sophie Hameau,
  • Ahmed Fahad Almutairi,
  • Gérard Guillot,
  • Shin-ichiro Sato,
  • Alberto Boretti and
  • Jean Marie Bluet

Beilstein J. Nanotechnol. 2019, 10, 2383–2395, doi:10.3762/bjnano.10.229

Graphical Abstract
  • . In particular N. Terrier for the UV photolithography, R. Mazurczyk for the ICP etching and S. Brottet for SEM imaging. We thank Mr. D. Stavrevski for the technical support with the confocal microscopes at the ARC Centre of Excellence for Nanoscale Biophotonics, School of Applied Science, RMIT
PDF
Album
Full Research Paper
Published 05 Dec 2019

Integration of sharp silicon nitride tips into high-speed SU8 cantilevers in a batch fabrication process

  • Nahid Hosseini,
  • Matthias Neuenschwander,
  • Oliver Peric,
  • Santiago H. Andany,
  • Jonathan D. Adams and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2019, 10, 2357–2363, doi:10.3762/bjnano.10.226

Graphical Abstract
  • silicon oxide and the LSNT layers are patterned by photolithography to cover only the etched pits. (iv) Deep reactive ion etching (DRIE) is used to etch the silicon vertically and laterally (4 and 1 µm, respectively) in order to provide access for the SU8 polymer to fill the base of the tips in the
  • subsequent steps. Figure 1b shows the SEM image of this step. (v) All SU8 (GM1050, GM1060 and GM1075, Gersteltec, Pully, Switzerland) structural layers, the cantilever beam and the three layers of the chip body are patterned by photolithography. A three-layer chip body with an offset between the successive
  • that introducing a long hard bake after the SU8 development, and a modification of the SU8 photolithography baking profiles make it possible to fabricate 500 µm long cantilevers with less than 20 µm initial bending for 2 µm thick SU8 cantilevers [41]. Although our cantilevers are already relatively
PDF
Album
Full Research Paper
Published 29 Nov 2019

Gas sensing properties of individual SnO2 nanowires and SnO2 sol–gel nanocomposites

  • Alexey V. Shaposhnik,
  • Dmitry A. Shaposhnik,
  • Sergey Yu. Turishchev,
  • Olga A. Chuvenkova,
  • Stanislav V. Ryabtsev,
  • Alexey A. Vasiliev,
  • Xavier Vilanova,
  • Francisco Hernandez-Ramirez and
  • Joan R. Morante

Beilstein J. Nanotechnol. 2019, 10, 1380–1390, doi:10.3762/bjnano.10.136

Graphical Abstract
  • electrical contacts with individual nanowires [21][22][23][24][25][26][27][28][29][30][31][32][33]. These contacts can be made by means of photolithography, but more often, focused ion beam (FIB) technology is used for this purpose. This approach has several advantages: first, a reliable electrical contact
PDF
Album
Full Research Paper
Published 08 Jul 2019

Effects of post-lithography cleaning on the yield and performance of CVD graphene-based devices

  • Eduardo Nery Duarte de Araujo,
  • Thiago Alonso Stephan Lacerda de Sousa,
  • Luciano de Moura Guimarães and
  • Flavio Plentz

Beilstein J. Nanotechnol. 2019, 10, 349–355, doi:10.3762/bjnano.10.34

Graphical Abstract
  • addition, we show that the size of these well-ordered domains is highly influenced by post-photolithography cleaning processes. Finally, we show that by using poly(dimethylglutarimide) (PMGI) as a protection layer, the production yield of CVD graphene devices is enhanced. Conversely, their electrical
  • chemical contamination of graphene in lithography processes [11]. Because of this, in the present work we investigate by Raman spectroscopy and electrical transport measurements the effects of different post-photolithography cleaning methods on the yield and performance of CVD-based graphene devices
  • . Experimental We made use of CVD graphene on top of a 300 nm thick SiO2 layer, which was purchased from Graphene Platform. The graphene devices were produced in the field-effect transistor configuration (GFET) in two photolithography steps (Figure 1). The first step was employed for defining the graphene device
PDF
Album
Full Research Paper
Published 05 Feb 2019

Nanoantenna structures for the detection of phonons in nanocrystals

  • Alexander G. Milekhin,
  • Sergei A. Kuznetsov,
  • Ilya A. Milekhin,
  • Larisa L. Sveshnikova,
  • Tatyana A. Duda,
  • Ekaterina E. Rodyakina,
  • Alexander V. Latyshev,
  • Volodymyr M. Dzhagan and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2018, 9, 2646–2656, doi:10.3762/bjnano.9.246

Graphical Abstract
  • (SEIRA) by optical phonons of semiconductor nanocrystals (NCs) deposited on the arrays. The arrays of nano- and microantennas fabricated with nano- and photolithography reveal infrared-active LSPR modes of energy ranging from the mid to far-infrared that allow the IR response from very low concentrations
  • symmetric cross-arms were introduced on the nanoantenna edges of the linear nanoantennas. The microantenna arrays with the overall dimensions of 8 × 8 mm2 were patterned on Si(001) substrates using a conventional photolithography technique. The width (height) of microantennas was chosen to be 4 µm (50 nm
PDF
Album
Full Research Paper
Published 05 Oct 2018

High-throughput micro-nanostructuring by microdroplet inkjet printing

  • Hendrikje R. Neumann and
  • Christine Selhuber-Unkel

Beilstein J. Nanotechnol. 2018, 9, 2372–2380, doi:10.3762/bjnano.9.222

Graphical Abstract
  • steps that are only achievable with clean-room methods. For example, so-called “micro-nanostructures” have been fabricated by combining BCML with electron-beam lithography and photolithography [20][21]. A different approach was proposed based on topography-induced micro-nanostructuring, but this method
  • BCML micro-nanostructuring strategies is the time for the patterning itself – it is much shorter and less complicated than other approaches that employ additional steps such as electron-beam lithography or photolithography [20][21]. A further result of the plasma treatment could be a rough surface
PDF
Album
Full Research Paper
Published 04 Sep 2018

Magnetism and magnetoresistance of single Ni–Cu alloy nanowires

  • Andreea Costas,
  • Camelia Florica,
  • Elena Matei,
  • Maria Eugenia Toimil-Molares,
  • Ionel Stavarache,
  • Andrei Kuncser,
  • Victor Kuncser and
  • Ionut Enculescu

Beilstein J. Nanotechnol. 2018, 9, 2345–2355, doi:10.3762/bjnano.9.219

Graphical Abstract
  • membranes. Photolithography was employed for obtaining interdigitated metallic electrode systems of Ti/Au onto SiO2/Si substrates and subsequent electron beam lithography was used for contacting single nanowires in order to investigate their galvano-magnetic properties. The results of the magnetoresistance
  • successively in chloroform and dichloromethane. Further, by ultrasonication, the nanowires were transferred in ultrapure isopropanol and placed on n++-doped SiO2/Si substrates having interdigitated metallic electrodes of Ti/Au (10/90 nm). The electrodes were obtained combining photolithography (using an EVG
  • obtained from single nanowire measurements is shown in the upper inset. (a) Ni–Cu alloy nanowires placed on SiO2/Si substrates between the interdigitated metallic electrodes obtained by photolithography; (b) alignment of the SiO2/Si substrate with the sample holder of the microscope; (c) the sample covered
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2018

Light–Matter interactions on the nanoscale

  • Mohsen Rahmani and
  • Chennupati Jagadish

Beilstein J. Nanotechnol. 2018, 9, 2125–2127, doi:10.3762/bjnano.9.201

Graphical Abstract
  • devices, as well as biomedical engineering [3][4]. Subsequently, with advances in photolithography, the microscale structure of materials began to attract much research interest due to their unique capability to interact with an applied electromagnetic wave in the radio frequency and terahertz regions [5
PDF
Editorial
Published 10 Aug 2018

Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale

  • Arindam Dasgupta,
  • Mickaël Buret,
  • Nicolas Cazier,
  • Marie-Maxime Mennemanteuil,
  • Reinaldo Chacon,
  • Kamal Hammani,
  • Jean-Claude Weeber,
  • Juan Arocas,
  • Laurent Markey,
  • Gérard Colas des Francs,
  • Alexander Uskov,
  • Igor Smetanin and
  • Alexandre Bouhelier

Beilstein J. Nanotechnol. 2018, 9, 1964–1976, doi:10.3762/bjnano.9.187

Graphical Abstract
  • is obtained in a second step of fabrication by ultraviolet (UV) photolithography. An image of a typical sample, constituted of 24 constrictions and their associated macroscopic electrodes, is illustrated in Figure 1b. The red and blue regions are realized by electron-beam lithography and UV
  • connections. The areas colored in red are made by electron-beam lithography, the regions in blue are those fabricated by photolithography. (a) Temporal extract of the electromigration sequence featuring the effect of partial annealing, Joule heating and onset of electromigration on the evolution of the
PDF
Album
Full Research Paper
Published 11 Jul 2018

Tailoring polarization and magnetization of absorbing terahertz metamaterials using a cut-wire sandwich structure

  • Hadi Teguh Yudistira,
  • Shuo Liu,
  • Tie Jun Cui and
  • Han Zhang

Beilstein J. Nanotechnol. 2018, 9, 1437–1447, doi:10.3762/bjnano.9.136

Graphical Abstract
  • on a silicon wafer and then baked on a hot plate at 80 °C, 120 °C, 180 °C and 250 °C for 5, 5, 5 and 20 min, respectively. Then, standard photolithography was performed [34][35], and another Ti/Au layer (30/100 nm) was deposited onto the PI substrate by electron beam evaporation. A standard lift-off
PDF
Album
Full Research Paper
Published 16 May 2018

Formation mechanisms of boron oxide films fabricated by large-area electron beam-induced deposition of trimethyl borate

  • Aiden A. Martin and
  • Philip J. Depond

Beilstein J. Nanotechnol. 2018, 9, 1282–1287, doi:10.3762/bjnano.9.120

Graphical Abstract
  • deposition of boron-containing materials through the EBID process has not been demonstrated. This is due to the majority of applications for EBID being targeted at the semiconductor industry, such as photolithography mask repair [7] and nanoscale fabrication of functional materials [8][9]. Materials of
PDF
Album
Supp Info
Letter
Published 24 Apr 2018

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
  • allows them to float on water without sinking [194][195]. Based on these reports, many artificial superhydrophobic materials with self-cleaning ability have been manufactured [196] through electrodeposition, photolithography and colloidal systems [197][198][199] with unique morphology and roughness [200
PDF
Album
Review
Published 03 Apr 2018

Wafer-scale bioactive substrate patterning by chemical lift-off lithography

  • Chong-You Chen,
  • Chang-Ming Wang,
  • Hsiang-Hua Li,
  • Hong-Hseng Chan and
  • Wei-Ssu Liao

Beilstein J. Nanotechnol. 2018, 9, 311–320, doi:10.3762/bjnano.9.31

Graphical Abstract
  • washed with ethanol to remove excess thiol molecules, and blown dry with nitrogen gas. Polydimethylsiloxane (PDMS) stamps with various patterns were fabricated by standard photolithography-created masters. A 10:1 mass ratio of SYLGARD 184 silicone elastomer base and curing agent (Dow Corning, Midland, MI
PDF
Album
Supp Info
Full Research Paper
Published 26 Jan 2018

The nanofluidic confinement apparatus: studying confinement-dependent nanoparticle behavior and diffusion

  • Stefan Fringes,
  • Felix Holzner and
  • Armin W. Knoll

Beilstein J. Nanotechnol. 2018, 9, 301–310, doi:10.3762/bjnano.9.30

Graphical Abstract
  • photolithography. Third, the masking layer was removed by wet etching (TechniEtch ACI2, MicroChemicals and TechniStrip Cr01, MicroChemicals) of the unprotected areas, leaving behind a central metal-resist stack defining the position of the mesa. The area around the stack was etched for 75 s by concentrated
PDF
Album
Full Research Paper
Published 26 Jan 2018

Review: Electrostatically actuated nanobeam-based nanoelectromechanical switches – materials solutions and operational conditions

  • Liga Jasulaneca,
  • Jelena Kosmaca,
  • Raimonds Meija,
  • Jana Andzane and
  • Donats Erts

Beilstein J. Nanotechnol. 2018, 9, 271–300, doi:10.3762/bjnano.9.29

Graphical Abstract
  • (2622 °C [116]) and Young’s modulus (290-380 GPa) [117]. Recent reports on Mo-based NEM switches have proven the robustness of the material. An all-molybdenum 3T NEM switch was fabricated by a top-down approach by filling Mo into a SiO2 mold, prepared by a one-mask photolithography process. This process
PDF
Album
Review
Published 25 Jan 2018

Electron-driven and thermal chemistry during water-assisted purification of platinum nanomaterials generated by electron beam induced deposition

  • Ziyan Warneke,
  • Markus Rohdenburg,
  • Jonas Warneke,
  • Janina Kopyra and
  • Petra Swiderek

Beilstein J. Nanotechnol. 2018, 9, 77–90, doi:10.3762/bjnano.9.10

Graphical Abstract
  • ]. Applications of this technology range from repair of masks for photolithography [2] and the fabrication of AFM tips [1] to novel photonic [3][4] or plasmonically active [5] devices and sensor concepts [6]. Also, nanoscale structures grown by FEBID may possess promising magnetic properties [7][8]. However
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2018

Study of the vertically aligned in-plane switching liquid crystal mode in microscale periodic electric fields

  • Artur R. Geivandov,
  • Mikhail I. Barnik,
  • Irina V. Kasyanova and
  • Serguei P. Palto

Beilstein J. Nanotechnol. 2018, 9, 11–19, doi:10.3762/bjnano.9.2

Graphical Abstract
  • speeding up the VA-IPS mode. Recent advances in photolithography allow for the use of sub-micrometer spatial resolution in electrode patterning. The decrease of the electrode size down to the micrometer and sub-micrometer scale opens up new possibilities for the application of the VA-IPS LC mode. When the
PDF
Album
Full Research Paper
Published 02 Jan 2018

Patterning of supported gold monolayers via chemical lift-off lithography

  • Liane S. Slaughter,
  • Kevin M. Cheung,
  • Sami Kaappa,
  • Huan H. Cao,
  • Qing Yang,
  • Thomas D. Young,
  • Andrew C. Serino,
  • Sami Malola,
  • Jana M. Olson,
  • Stephan Link,
  • Hannu Häkkinen,
  • Anne M. Andrews and
  • Paul S. Weiss

Beilstein J. Nanotechnol. 2017, 8, 2648–2661, doi:10.3762/bjnano.8.265

Graphical Abstract
  • in a 10:1 ratio by weight, stirred for 3–5 min, and degassed in a vacuum desiccator for at least 1 h to remove air bubbles. Degassed mixtures were poured over silicon molds (purchased from KTek Nanotechnology, LLC, Wilsonville, OR, USA or fabricated by photolithography) situated in Petri dishes
PDF
Album
Supp Info
Full Research Paper
Published 08 Dec 2017

Expanding the molecular-ruler process through vapor deposition of hexadecanethiol

  • Alexandra M. Patron,
  • Timothy S. Hooker,
  • Daniel F. Santavicca,
  • Corey P. Causey and
  • Thomas J. Mullen

Beilstein J. Nanotechnol. 2017, 8, 2339–2344, doi:10.3762/bjnano.8.233

Graphical Abstract
  • techniques such as photolithography or electron-beam lithography (Figure 1) [14][15][16][17][18][19][20][21][22][23][24]. In short, a metal structure that has been patterned on a non-metal substrate (e.g., Si) using conventional lithography is subsequently covered by a metal-ligated multilayer through the
PDF
Album
Supp Info
Letter
Published 07 Nov 2017

Substrate and Mg doping effects in GaAs nanowires

  • Perumal Kannappan,
  • Nabiha Ben Sedrine,
  • Jennifer P. Teixeira,
  • Maria R. Soares,
  • Bruno P. Falcão,
  • Maria R. Correia,
  • Nestor Cifuentes,
  • Emilson R. Viana,
  • Marcus V. B. Moreira,
  • Geraldo M. Ribeiro,
  • Alfredo G. de Oliveira,
  • Juan C. González and
  • Joaquim P. Leitão

Beilstein J. Nanotechnol. 2017, 8, 2126–2138, doi:10.3762/bjnano.8.212

Graphical Abstract
  • -doped GaAs nanowires, grown on a GaAs(111)B substrate, with approximately constant diameters (≈190 nm) along the axis, onto a heavily doped Si substrate covered by a 300 nm thick SiO2 layer. Standard photolithography methods were used to define several contact lines, with a lateral separation of 3 to 9
PDF
Album
Supp Info
Full Research Paper
Published 11 Oct 2017

(Metallo)porphyrins for potential materials science applications

  • Lars Smykalla,
  • Carola Mende,
  • Michael Fronk,
  • Pablo F. Siles,
  • Michael Hietschold,
  • Georgeta Salvan,
  • Dietrich R. T. Zahn,
  • Oliver G. Schmidt,
  • Tobias Rüffer and
  • Heinrich Lang

Beilstein J. Nanotechnol. 2017, 8, 1786–1800, doi:10.3762/bjnano.8.180

Graphical Abstract
  • mechanism of the organic material. A shadow mask during deposition was employed to avoid additional photolithography processing. This shadow mask also allows for the formation of thin molecular dendrites and even single dendrites on the Ni surface (Figure 2). The growth conditions of the dendrites were
PDF
Album
Review
Published 29 Aug 2017

Micro- and nano-surface structures based on vapor-deposited polymers

  • Hsien-Yeh Chen

Beilstein J. Nanotechnol. 2017, 8, 1366–1374, doi:10.3762/bjnano.8.138

Graphical Abstract
  • applied for surface modification regardless of the substrate material and geometry. Here, various ways to structure these vapor-deposited polymer thin films are described. Well-established and available photolithography and soft lithography techniques are widely performed for the creation of surface
  • materials (with the exception for the case of selective deposition on transition metals and charged surfaces). Because of the well-established and available photolithography and soft lithography techniques, promising patterned surface structures have been created. Attempts were conducted to produce
  • -deposited polymer coatings. The patterning methods include soft lithography, photolithography, and direct writing approaches. Schematic illustration of creating surface patterns/structures on substrates vapor-coated with polymers with 3D structure and complex geometry. The patterning methods include
PDF
Album
Review
Published 04 Jul 2017

Nanotopographical control of surfaces using chemical vapor deposition processes

  • Meike Koenig and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2017, 8, 1250–1256, doi:10.3762/bjnano.8.126

Graphical Abstract
  • photolithography [13], microcontact printing [14] or inkjet printing [15] for instance. A second option is the spatially selective in situ activation of the initiator, which has been homogeneously coated on the substrate. Nishida and co-workers created patterns of activated photoinitiator by irradiation of the
  • ]. Due to secondary adsorption on deactivated monomers, the authors found a maximum thickness of selectively grown polymer depending on the metal and the monomer type. Iron was found to be the most efficient inhibitor for the investigated polymers. By patterning iron molecules via photolithography or
PDF
Album
Review
Published 12 Jun 2017

3D Nanoprinting via laser-assisted electron beam induced deposition: growth kinetics, enhanced purity, and electrical resistivity

  • Brett B. Lewis,
  • Robert Winkler,
  • Xiahan Sang,
  • Pushpa R. Pudasaini,
  • Michael G. Stanford,
  • Harald Plank,
  • Raymond R. Unocic,
  • Jason D. Fowlkes and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2017, 8, 801–812, doi:10.3762/bjnano.8.83

Graphical Abstract
  • combination of photolithography and electron beam lithography (EBL) were used to produce the two-contact pads with a spacing of 500 nm. An initial set of gold electrical contacts were patterned using photolithography and deposited with a thickness of 100 nm. A 3 nm titanium adhesion layer was deposited, prior
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2017

Silicon microgrooves for contact guidance of human aortic endothelial cells

  • Sara Fernández-Castillejo,
  • Pilar Formentín,
  • Úrsula Catalán,
  • Josep Pallarès,
  • Lluís F. Marsal and
  • Rosa Solà

Beilstein J. Nanotechnol. 2017, 8, 675–681, doi:10.3762/bjnano.8.72

Graphical Abstract
  • -defined topographical and chemical cues to assess cell micropatterning [12][13][14][15][16]. Some of these approaches are based on photolithography and reactive ion etching that in some cases are followed by anisotropic etching [17]. A simple and effective geometry previously described, involves line
  • cardiovascular therapies [34]. The aim of this work was to prepare different collagen-coated silicon substrates with grooves by photolithography, and to study the cell behaviour on such structures compared with that on flat silicon substrates, used as control. Results and Discussion Fabrication of grooved
  • silicon substrates To study the cellular response on surfaces with different geometry, different grooved substrates were produced in silicon wafers using standard photolithography and wet etching techniques [35][36]. The etching time in tetramethylammonium hydroxide (TMAH) was varied in order to generate
PDF
Album
Full Research Paper
Published 22 Mar 2017
Other Beilstein-Institut Open Science Activities