Search results

Search for "piezoelectric" in Full Text gives 135 result(s) in Beilstein Journal of Nanotechnology.

Unveiling the nature of atomic defects in graphene on a metal surface

  • Karl Rothe,
  • Nicolas Néel and
  • Jörg Kröger

Beilstein J. Nanotechnol. 2024, 15, 416–425, doi:10.3762/bjnano.15.37

Graphical Abstract
  • of an oscillating piezoelectric tuning fork sensor [37][38] (resonance frequency: 30.5 kHz, quality factor: 45000, amplitude: 50 pm) were mapped at constant height for topographic images. The vertical force between tip and sample was extracted from distance-dependent measurements of the resonance
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2024

Determining by Raman spectroscopy the average thickness and N-layer-specific surface coverages of MoS2 thin films with domains much smaller than the laser spot size

  • Felipe Wasem Klein,
  • Jean-Roch Huntzinger,
  • Vincent Astié,
  • Damien Voiry,
  • Romain Parret,
  • Houssine Makhlouf,
  • Sandrine Juillaguet,
  • Jean-Manuel Decams,
  • Sylvie Contreras,
  • Périne Landois,
  • Ahmed-Azmi Zahab,
  • Jean-Louis Sauvajol and
  • Matthieu Paillet

Beilstein J. Nanotechnol. 2024, 15, 279–296, doi:10.3762/bjnano.15.26

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2024

Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications

  • August K. Roos,
  • Ermes Scarano,
  • Elisabet K. Arvidsson,
  • Erik Holmgren and
  • David B. Haviland

Beilstein J. Nanotechnol. 2024, 15, 242–255, doi:10.3762/bjnano.15.23

Graphical Abstract
  • passed to the sample. A directional coupler separates incoming and reflected signal. The reflected signal is amplified with a cryogenic low-noise amplifier and additionally amplified at room temperature. A separate port on the microwave platform generates the low-frequency drive to a piezoelectric shaker
  • . (b) Photograph of the sample, the custom-made launcher, and the directional coupler integrated at the bottom of the microwave inset. The piezoelectric shaker used to inertially actuate the cantilever of the sample (held by three prongs at the front end of the launcher) is visible as the white disk
PDF
Album
Full Research Paper
Published 15 Feb 2024

Spatial mapping of photovoltage and light-induced displacement of on-chip coupled piezo/photodiodes by Kelvin probe force microscopy under modulated illumination

  • Zeinab Eftekhari,
  • Nasim Rezaei,
  • Hidde Stokkel,
  • Jian-Yao Zheng,
  • Andrea Cerreta,
  • Ilka Hermes,
  • Minh Nguyen,
  • Guus Rijnders and
  • Rebecca Saive

Beilstein J. Nanotechnol. 2023, 14, 1059–1067, doi:10.3762/bjnano.14.87

Graphical Abstract
  • In this work, a silicon photodiode integrated with a piezoelectric membrane is studied by Kelvin probe force microscopy (KPFM) under modulated illumination. Time-dependent KPFM enables simultaneous quantification of the surface photovoltage generated by the photodiode as well as the resulting
  • mechanical oscillation of the piezoelectric membrane with vertical atomic resolution in real-time. This technique offers the opportunity to measure concurrently the optoelectronic and mechanical response of the device at the nanoscale. Furthermore, time-dependent atomic force microscopy (AFM) was employed to
  • spatially map voltage-induced oscillation of various sizes of piezoelectric membranes without the photodiode to investigate their position- and size-dependent displacement. Keywords: Kelvin probe force microscopy (KPFM); light-driven micro/nano systems; piezoelectric membrane; surface photovoltage (SPV
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2023

Industrial perspectives for personalized microneedles

  • Remmi Danae Baker-Sediako,
  • Benjamin Richter,
  • Matthias Blaicher,
  • Michael Thiel and
  • Martin Hermatschweiler

Beilstein J. Nanotechnol. 2023, 14, 857–864, doi:10.3762/bjnano.14.70

Graphical Abstract
  • printers (e.g., Nanoscribe Quantum X platforms) producing polymer masters. The increased scan speed and throughput are the result of new supporting technologies coming to market, such as replacing piezoelectric stages with galvanometric mirrors. These new technologies continue to decrease the gap in
PDF
Album
Perspective
Published 15 Aug 2023

A wearable nanoscale heart sound sensor based on P(VDF-TrFE)/ZnO/GR and its application in cardiac disease detection

  • Yi Luo,
  • Jian Liu,
  • Jiachang Zhang,
  • Yu Xiao,
  • Ying Wu and
  • Zhidong Zhao

Beilstein J. Nanotechnol. 2023, 14, 819–833, doi:10.3762/bjnano.14.67

Graphical Abstract
  • University, Hangzhou 310018, China School of Cyberspace Security, Hangzhou DIANZI University, Hangzhou 310018, China 10.3762/bjnano.14.67 Abstract This paper describes a method for preparing flexible composite piezoelectric nanofilms of P(VDF-TrFE)/ZnO/graphene using a high-voltage electrospinning method
  • . Composition and β-phase content of the piezoelectric composite films were analyzed using X-ray diffraction. The morphology of the composite film fibers was observed through scanning electron microscopy. Finally, the P(VDF-TrFE)/ZnO/graphene composite film was encapsulated in a sandwich-structure heart sound
  • system designed in this paper can collect heart sound signals in real time and predict whether the heart sounds are normal or abnormal, providing a new solution for the diagnosis of heart diseases. Keywords: composite piezoelectric nanofilm; electrospinning; heart sound classification algorithm; heart
PDF
Album
Full Research Paper
Published 31 Jul 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • of their exceptionally high thermal and electrical conductivities, effective catalytic properties, high chemical stability, rapid rate of electron transfer, adequate surface area, and favourable piezoelectric, electronic and gravimetric properties, metal and metal oxide materials with sizes less than
PDF
Album
Review
Published 01 Jun 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • promising green and sustainable wastewater treatment method for a cleaner environment. Due to their narrow bandgaps, distinctive layered structures, plasmonic, piezoelectric and ferroelectric properties, and desirable physicochemical features, bismuth-based nanostructure photocatalysts have emerged as one
  • d10 configuration (6s26p3) in the sixth period of group V of the periodic table. Because of their intriguing optical, catalytic, electrical, ferroelectric, and piezoelectric properties, bismuth-based nanostructures are used in several significant fields, including optoelectronics, pollutant sensing
  • lowering the cost of treatment. Aside from its magnetic and optical properties, BiFeO3 also exhibits piezoelectric characteristics, photovoltaic effects, switchable ferroelectric diode effects, and spontaneous polarisation enhancement. It is also sensitive to epitaxial strain [88]. Given its intriguing
PDF
Album
Review
Published 03 Mar 2023

Intermodal coupling spectroscopy of mechanical modes in microcantilevers

  • Ioan Ignat,
  • Bernhard Schuster,
  • Jonas Hafner,
  • MinHee Kwon,
  • Daniel Platz and
  • Ulrich Schmid

Beilstein J. Nanotechnol. 2023, 14, 123–132, doi:10.3762/bjnano.14.13

Graphical Abstract
  • filled, although there are several exceptions with no indication of coupling. There are multiple explanations for the empty spaces, and all can have an impact on the lack of coupling. First, a piezoelectric actuator can have a minimum in its response function at the pump frequency. Second, the intermodal
PDF
Album
Full Research Paper
Published 19 Jan 2023

Enhanced electronic transport properties of Te roll-like nanostructures

  • E. R. Viana,
  • N. Cifuentes and
  • J. C. González

Beilstein J. Nanotechnol. 2022, 13, 1284–1291, doi:10.3762/bjnano.13.106

Graphical Abstract
  • Earth’s crust and a well-known p-type and narrow-bandgap (≈0.35 eV at room temperature) semiconductor material. Tellurium is widely used in thermoelectric devices, piezoelectric devices, photoconductive devices, gas sensing, nonlinear optical devices, solar cells, photonic crystals, holographic recording
  • ) = 881 cm2/V·s) in these nanostructures. Thermoelectric devices, piezoelectric devices, photoconductive devices, gas sensing, solar cells, and field-effect transistors would have better performance if the mobility of charge carriers in the active region of the devices was greater. In addition, the low
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2022

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • . Different nanostructures also have an influence on the performance of MEGs, which is worth further investigation. Metal compound nanomaterials have been successfully used in many fields, such as optoelectronic, thermoelectric, and piezoelectric devices [56][57][58][59][60]. With the knowledge about
PDF
Album
Review
Published 25 Oct 2022

Microneedle-based ocular drug delivery systems – recent advances and challenges

  • Piotr Gadziński,
  • Anna Froelich,
  • Monika Wojtyłko,
  • Antoni Białek,
  • Julia Krysztofiak and
  • Tomasz Osmałek

Beilstein J. Nanotechnol. 2022, 13, 1167–1184, doi:10.3762/bjnano.13.98

Graphical Abstract
  • deposited on the microneedle surface, has been mentioned. As in piezoelectric inkjet printing, the droplets are released from the nozzle as a result of the application of an electrical field to a piezoelectric crystal, which distorts and pushes the liquid out. The most important techniques applied in
PDF
Album
Review
Published 24 Oct 2022

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • frequency. The AFM measurement was carried out in tapping mode. A 633 nm laser light aimed at the back side of the cantilever tip was reflected toward a position-sensitive photodetector, which provides feedback signals to piezoelectric scanners that maintain the cantilever tip at constant height (force
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

Electrostatic pull-in application in flexible devices: A review

  • Teng Cai,
  • Yuming Fang,
  • Yingli Fang,
  • Ruozhou Li,
  • Ying Yu and
  • Mingyang Huang

Beilstein J. Nanotechnol. 2022, 13, 390–403, doi:10.3762/bjnano.13.32

Graphical Abstract
  • development of new materials and microelectromechanical and nanoelectromechanical systems (MEMS/NEMS), MEMS devices have become an essential part of flexible electronic systems. Common flexible MEMS devices are based on electrostatic, piezoelectric, and thermal actuation. Electrostatic actuation is one of the
  • [85], pyroelectric [86], piezoelectric [87][88][89], and other power generation forms to form a microscale energy system. In this system, microswitches can be used as either rectifier to connect the power source to the load circuit or as an actuator structure, which plays an important role in the
  • electrostatic switches. In addition, Cui et al. [92][93][94][95] showed that the self-powered triboelectrification nanogenerator (TENG) can also be used for human health detection and wound healing. Piezoelectric power generation: Piezoelectric materials can produce very precise tiny motions and have
PDF
Album
Review
Published 12 Apr 2022

The effect of metal surface nanomorphology on the output performance of a TENG

  • Yiru Wang,
  • Xin Zhao,
  • Yang Liu and
  • Wenjun Zhou

Beilstein J. Nanotechnol. 2022, 13, 298–312, doi:10.3762/bjnano.13.25

Graphical Abstract
  • can replace non-renewable resources such as coal and oil [3]. In order to convert mechanical energy into electrical energy, various methods were developed, such as electromagnetic generators [4][5][6], piezoelectric materials [7][8][9][10], and pyroelectric materials [11][12]. The underlying
PDF
Album
Full Research Paper
Published 15 Mar 2022

Piezoelectric nanogenerator for bio-mechanical strain measurement

  • Zafar Javed,
  • Lybah Rafiq,
  • Muhammad Anwaar Nazeer,
  • Saqib Siddiqui,
  • Muhammad Babar Ramzan,
  • Muhammad Qamar Khan and
  • Muhammad Salman Naeem

Beilstein J. Nanotechnol. 2022, 13, 192–200, doi:10.3762/bjnano.13.14

Graphical Abstract
  • , Pakistan Sapphire Finishing Mills Limited, Lahore, Pakistan Department of Clothing, Faculty of Textile Engineering, National Textile University, Karachi Campus, Pakistan 10.3762/bjnano.13.14 Abstract Piezoelectric materials have attracted more attention than other materials in the field of textiles
  • . Piezoelectric materials offer advantages as transducers, sensors, and energy-harvesting devices. Commonly, ceramics and quartz are used in such applications. However, polymeric piezoelectric materials have the advantage that they can be converted into any shape and size. In smart textiles, polyvinylidene
  • fluoride (PVDF) and other piezoelectric polymers are used in the form of fibers, filaments, and composites. In this research, PVDF nanofibers were developed and integrated onto a knitted fabric to fabricate a piezoelectric device for human body angle monitoring. Scanning electron microscopy and X-ray
PDF
Album
Full Research Paper
Published 07 Feb 2022

Cantilever signature of tip detachment during contact resonance AFM

  • Devin Kalafut,
  • Ryan Wagner,
  • Maria Jose Cadena,
  • Anil Bajaj and
  • Arvind Raman

Beilstein J. Nanotechnol. 2021, 12, 1286–1296, doi:10.3762/bjnano.12.96

Graphical Abstract
  • of a sample [6] and observe subsurface features in some biological and electronics samples [7][8][9][10][11][12]. PFM can measure piezoelectric and ferroelectric properties of a sample [13][14][15][16]. ESM can measure the ion diffusion in battery materials [4][17][18][19]. These different AFM
  • signature are provided in Supporting Information File 1. These were performed using the same Cypher S AFM microscope with an ACLA AFM cantilever (Applied NanoStructures, Inc., Mountain View, CA, USA) on a silicon sample, but driven by a piezoelectric actuator under the sample instead of via photothermal
PDF
Album
Supp Info
Full Research Paper
Published 24 Nov 2021

Enhancement of the piezoelectric coefficient in PVDF-TrFe/CoFe2O4 nanocomposites through DC magnetic poling

  • Marco Fortunato,
  • Alessio Tamburrano,
  • Maria Paola Bracciale,
  • Maria Laura Santarelli and
  • Maria Sabrina Sarto

Beilstein J. Nanotechnol. 2021, 12, 1262–1270, doi:10.3762/bjnano.12.93

Graphical Abstract
  • Rome, 00184 Rome, Italy Department of Chemical Engineering Materials and Environment, Sapienza University of Rome, 00184 Rome, Italy 10.3762/bjnano.12.93 Abstract In the last years flexible, low-cost, wearable, and innovative piezoelectric nanomaterials have attracted considerable interest regarding
  • the development of energy harvesters and sensors. Among the piezoelectric materials, special attention has been paid to electroactive polymers such as poly(vinylidene fluoride) (PVDF) and its copolymer poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFe), which is one of the most extensively
  • investigated piezoelectric polymers, due to the high β phase content resulting from specific curing or processing conditions. However, to obtain a high piezoelectric coefficient (d33) alignment of the β phase domains is needed, which is usually reached through applying a high electric field at moderate
PDF
Album
Full Research Paper
Published 19 Nov 2021

Two dynamic modes to streamline challenging atomic force microscopy measurements

  • Alexei G. Temiryazev,
  • Andrey V. Krayev and
  • Marina P. Temiryazeva

Beilstein J. Nanotechnol. 2021, 12, 1226–1236, doi:10.3762/bjnano.12.90

Graphical Abstract
  • related to changing the scanning procedure itself. Vertical mode The vertical mode (VM) is similar to amplitude modulation, that is, the probe oscillates near the resonant frequency, the driving frequency and power of the piezoelectric transducer are fixed. A key element of VM is a complete decoupling of
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2021

An overview of microneedle applications, materials, and fabrication methods

  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2021, 12, 1034–1046, doi:10.3762/bjnano.12.77

Graphical Abstract
  • in a study which integrated hollow silicon microneedles with a reservoir unit, a piezoelectric actuator system, and a flow sensor for real-time measurements of fluid dynamics [46]. In other research, much smaller microneedles – just 8 μm in height and 1 μm in diameter – were fabricated by DRIE for
PDF
Album
Review
Published 13 Sep 2021

The role of convolutional neural networks in scanning probe microscopy: a review

  • Ido Azuri,
  • Irit Rosenhek-Goldian,
  • Neta Regev-Rudzki,
  • Georg Fantner and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2021, 12, 878–901, doi:10.3762/bjnano.12.66

Graphical Abstract
  • quantities, that is, frequency (giving the stiffness), amplitude (giving the piezoresponse), Q (dissipation), and phase (directionality of polarization). PFM can map piezoelectric domains and the inverse piezoresponse of a sample, but signals are notoriously low. In this work, two arrays (real and imaginary
PDF
Album
Review
Published 13 Aug 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
  • [60]. Ultrasound is generally produced by the passage of electric current through a piezoelectric crystal [61]. The interaction of acoustic waves with the interfaces that exist between different tissues causes an alteration in the energy of the US. When these waves encounter tissues with different
PDF
Album
Review
Published 11 Aug 2021

Recent progress in actuation technologies of micro/nanorobots

  • Ke Xu and
  • Bing Liu

Beilstein J. Nanotechnol. 2021, 12, 756–765, doi:10.3762/bjnano.12.59

Graphical Abstract
  • –polypyrrole) oscillates, and then, due to the piezoelectric effect, the ferroelectric tail bends and the electric polarization changes. Experimental analysis shows that changing the magnitude and frequency of the magnetic field can transform the motion of the nanoeel from surface walking to three-dimensional
  • micro/nanorobots. Traditional piezoelectric actuators are suitable for millimeter-sized robots, but not for the micro/nanoscale. Therefore, the innovation was to design a new type of electrochemical actuator and to use it as legs of the robot. It was made of nanoscale platinum and manufactured by a
PDF
Album
Review
Published 20 Jul 2021

Recent progress in magnetic applications for micro- and nanorobots

  • Ke Xu,
  • Shuang Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2021, 12, 744–755, doi:10.3762/bjnano.12.58

Graphical Abstract
  • magnetoelectric core–shell composite nanowires had a magnetostrictive core and a piezoelectric shell, and it exhibited a strain-mediated magnetoelectric effect. In terms of device design and manufacturing, this biphasic core–shell configuration offered greater flexibility than single-phase magnetoelectric
  • trigger drug release. The fabrication method of Chen’s team yielded not only easily adjustable length and diameter of the nanowires, but also excellent interface coupling between the piezoelectric and magnetostrictive phases. It enabled precise magnetic manipulation on patterned surfaces and 3D swimming
PDF
Album
Review
Published 19 Jul 2021

Nanogenerator-based self-powered sensors for data collection

  • Yicheng Shao,
  • Maoliang Shen,
  • Yuankai Zhou,
  • Xin Cui,
  • Lijie Li and
  • Yan Zhang

Beilstein J. Nanotechnol. 2021, 12, 680–693, doi:10.3762/bjnano.12.54

Graphical Abstract
  • energy supplies. Triboelectric nanogenerators (TENGs) were used as electronic skin for pressure detection and material identification [50][51]. Pressure sensors based on piezoelectric nanogenerators (PENGs) were used to detect tiny pressure deviations from water droplets [52][53], wind flow [53][54][55
  • changes through the output response signal. Gas molecules can be adsorbed on the surface of piezoelectric/triboelectric materials, causing changes in the carrier density [95]. Thus, the gas concentration can be obtained from the output voltage of the PENG/TENGs. The output of a PENG based on ZnO NWs is
  • under exposure to oxygen (O2), hydrogen sulfide (H2S) gas, and water vapor. The sensitivity to H2S gas was as low as 100 ppm. The design of the whole self-powered sensor system consists of three parts. A ZnO NW array as the piezoelectric energy generation module, Ti foil and Al layer as electrodes, and
PDF
Album
Review
Published 08 Jul 2021
Other Beilstein-Institut Open Science Activities