Search results

Search for "plants" in Full Text gives 122 result(s) in Beilstein Journal of Nanotechnology.

Development of an anti-pollution coating process technology for the application of an on-site PV module

  • Sejin Jung,
  • Wonseok Choi,
  • Jung Hyun Kim and
  • Jang Myoun Ko

Beilstein J. Nanotechnol. 2019, 10, 332–336, doi:10.3762/bjnano.10.32

Graphical Abstract
  • light transmittance of 95% or higher [5][6]. Large solar power plants are currently being installed for power generation, and a huge amount of time and cost is required for maintenance, including surface cleaning. Therefore, the introduction of a technology capable of easily removing pollutants using
PDF
Album
Supp Info
Full Research Paper
Published 01 Feb 2019

Targeting strategies for improving the efficacy of nanomedicine in oncology

  • Gonzalo Villaverde and
  • Alejandro Baeza

Beilstein J. Nanotechnol. 2019, 10, 168–181, doi:10.3762/bjnano.10.16

Graphical Abstract
  • organelles, such as nucleus or mitochondria [41][42]. This enables the precise delivery of therapeutics to key organelles of the cells, which could significantly increase their cytotoxic effect. Mitochondria are the energetic plants of the cells. In addition, they carry out other important functions such as
PDF
Album
Review
Published 14 Jan 2019

New micro/mesoporous nanocomposite material from low-cost sources for the efficient removal of aromatic and pathogenic pollutants from water

  • Emmanuel I. Unuabonah,
  • Robert Nöske,
  • Jens Weber,
  • Christina Günter and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2019, 10, 119–131, doi:10.3762/bjnano.10.11

Graphical Abstract
  • of such contaminants is a necessity for public health in many developing countries because these pollutants can negatively alter important biochemical processes and thus are a critical threat to the health of plants, animals, and humans [5]. In addition to chemical contaminants, the removal of
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

Wet chemistry route for the decoration of carbon nanotubes with iron oxide nanoparticles for gas sensing

  • Hussam M. Elnabawy,
  • Juan Casanova-Chafer,
  • Badawi Anis,
  • Mostafa Fedawy,
  • Mattia Scardamaglia,
  • Carla Bittencourt,
  • Ahmed S. G. Khalil,
  • Eduard Llobet and
  • Xavier Vilanova

Beilstein J. Nanotechnol. 2019, 10, 105–118, doi:10.3762/bjnano.10.10

Graphical Abstract
  • CNTs and iron oxide have been also used for sensing ammonia and NOx [22][23]. Among those gases NO2 is considered one of the most dangerous air pollutants occurring both indoors, due to using of gas stoves, and outdoors from fuel powered motor vehicles and power plants especially in long-term exposure
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

A comparison of tarsal morphology and traction force in the two burying beetles Nicrophorus nepalensis and Nicrophorus vespilloides (Coleoptera, Silphidae)

  • Liesa Schnee,
  • Benjamin Sampalla,
  • Josef K. Müller and
  • Oliver Betz

Beilstein J. Nanotechnol. 2019, 10, 47–61, doi:10.3762/bjnano.10.5

Graphical Abstract
  • of insect adhesion have been performed with ‘good plant climbers’ [4][5][6][7]. Although burying beetles can be observed climbing plants to reach a better position from which to start flying to their carrion resources [1], they do not primarily use their tarsi in the context of plant climbing
  • local release might support shear-induced adhesion [46] and help to dose the secretion economically. In terms of the biological role, the higher attachment force in the pull direction might help the animals to climb effectively on a variety of structures such as plants and fur and might enable the males
PDF
Album
Full Research Paper
Published 04 Jan 2019

A new bioinspired method for pressure and flow sensing based on the underwater air-retaining surface of the backswimmer Notonecta

  • Matthias Mail,
  • Adrian Klein,
  • Horst Bleckmann,
  • Anke Schmitz,
  • Torsten Scherer,
  • Peter T. Rühr,
  • Goran Lovric,
  • Robin Fröhlingsdorf,
  • Stanislav N. Gorb and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2018, 9, 3039–3047, doi:10.3762/bjnano.9.282

Graphical Abstract
  • Matthias Mail Adrian Klein Horst Bleckmann Anke Schmitz Torsten Scherer Peter T. Ruhr Goran Lovric Robin Frohlingsdorf Stanislav N. Gorb Wilhelm Barthlott Nees Institute for Biodiversity of Plants, University of Bonn, Venusbergweg 22, D-53115 Bonn, Germany Institute of Crop Science and Resource
  • . Keywords: mechanoreceptor; Notonecta sensor; pressure sensor; Salvinia effect; superhydrophobic surfaces; Introduction The surfaces of animals and plants are interfaces between the organisms and the environment. Since animals and plants inhabit many different environments, it is not surprising that over
  • adhesive pads [6] or the structural colors of Morpho menelaus [7]. Superhydrophobic surfaces are also important in the above context. Several plants and animals, which can maintain stable air layers while submerged (Salvinia effect [8]), have been analyzed. Especially the floating ferns of the genus
PDF
Album
Supp Info
Full Research Paper
Published 14 Dec 2018

Nanocellulose: Recent advances and its prospects in environmental remediation

  • Katrina Pui Yee Shak,
  • Yean Ling Pang and
  • Shee Keat Mah

Beilstein J. Nanotechnol. 2018, 9, 2479–2498, doi:10.3762/bjnano.9.232

Graphical Abstract
  • cellulose nanomaterial. Figure 1 illustrates the difference in length of CNF and CNC alongside with a few examples of microscopic images of nanocellulose derived from plants [25][26][27][28]. However, the Technical Association of the Pulp and Paper Industry (TAPPI) and multiple concerned bodies have
  • purification steps must be taken to extract and obtain CNC. Sources of nanocellulose Cellulose, generally speaking, has to be extracted from a source before nanocellulose can be produced. To date, cellulose can be obtained from a broad range of sources including algae, bacteria, plants, and tunicates. The
  • Cladophora cellulose suggests higher inertness of its cellulose which reduces its susceptibility to chemical treatments compared to most native cellulose derived from conventional land plants. The filters fabricated from Cladophora algae cellulose have been tested and proven for trapping swine influenza
PDF
Album
Review
Published 19 Sep 2018

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
  • produced nanomaterials, which can be found in the bodies of organisms, insects, plants, animals and human bodies. However, the distinctions between naturally occurring, incidental, and manufactured NPs are often blurred. In some cases, for example, incidental NMs can be considered as a subcategory of
  • plants and animals, which is frequent in nature, contributes to NP composition in nature. Dust storms, volcanic eruptions, and forest fires are events of natural origin that are reported to produce high quantities of nanoparticulate matter that significantly affect worldwide air quality. Similarly
  • -mediated natural precipitation. It has been reported that formation of CaCO3 NPs in Lake Michigan is due to weather and temperature changes [81]. These small sea salt aerosols act to transfer microorganisms and pollutants that may increase casualties in plants, animals, and humans via adverse health
PDF
Album
Review
Published 03 Apr 2018

Bioinspired self-healing materials: lessons from nature

  • Joseph C. Cremaldi and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2018, 9, 907–935, doi:10.3762/bjnano.9.85

Graphical Abstract
  • and animal kingdoms created through evolution. Plants and animals approach healing in similar ways but with unique pathways, such as damage containment in plants or clotting in animals. After analyzing the examples of healing and defense mechanisms found in living nature, eight prevalent mechanisms
  • avenues of insight and research into self-healing materials. Keywords: animals; biomimetics, bioinspired; capsules; functional coatings; healing mechanisms; plants; protective surfaces; self-healing; vascular systems; Review Introduction The ability to heal is intrinsic to all multicellular organisms
  • base of the food chain, plant life is varied and robust to ensure widespread growth and high reproductive rates [10][11]. In some ways, plants and animals approach healing in the same ways, including the existence of immune systems and damage prevention. However, the differences in need and biology
PDF
Album
Review
Published 19 Mar 2018

A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide

  • Shahreen Binti Izwan Anthonysamy,
  • Syahidah Binti Afandi,
  • Mehrnoush Khavarian and
  • Abdul Rahman Bin Mohamed

Beilstein J. Nanotechnol. 2018, 9, 740–761, doi:10.3762/bjnano.9.68

Graphical Abstract
  • practically evaluated. In recent years, many abatement technologies including dry and wet techniques have been utilised in industrial boilers and power plants to control NOx emissions. Post-combustion such as selective catalytic reduction (SCR), non-selective catalytic reduction (NSCR), adsorption, corona
PDF
Review
Published 27 Feb 2018

Mechanistic insights into plasmonic photocatalysts in utilizing visible light

  • Kah Hon Leong,
  • Azrina Abd Aziz,
  • Lan Ching Sim,
  • Pichiah Saravanan,
  • Min Jang and
  • Detlef Bahnemann

Beilstein J. Nanotechnol. 2018, 9, 628–648, doi:10.3762/bjnano.9.59

Graphical Abstract
  • ). The so called green synthesis of Au and Ag are suitably used in clinical and biomedical fields because it is free of toxic chemicals and non-polar solvents. Numerous researches have proved that Au and Ag NPs can be synthesized from the chemicals extracted from plants and microorganisms such as fungi
  • , algae, bacteria and yeasts [156][157][158][159][160][161]. Different types of biomolecules available in plants, for example, polysaccharides, phenolics, or flavonoids are capable of producing metal nanoparticles of different sizes and shapes [162]. This phytosynthesis is more favourable than that which
PDF
Album
Review
Published 19 Feb 2018

Colloidal solution of silver nanoparticles for label-free colorimetric sensing of ammonia in aqueous solutions

  • Alessandro Buccolieri,
  • Antonio Serra,
  • Gabriele Giancane and
  • Daniela Manno

Beilstein J. Nanotechnol. 2018, 9, 499–507, doi:10.3762/bjnano.9.48

Graphical Abstract
  • –vis spectroscopy; Introduction Important sources of ammonia include synthetic fertilizers, oceans, the burning of biomass, the decomposition of plants, natural land [1] and the chemical industry [2]. Ammonia is also an organic compound normally produced by human metabolism [3] through the urea cycle
PDF
Album
Full Research Paper
Published 09 Feb 2018

Optimal fractal tree-like microchannel networks with slip for laminar-flow-modified Murray’s law

  • Dalei Jing,
  • Shiyu Song,
  • Yunlu Pan and
  • Xiaoming Wang

Beilstein J. Nanotechnol. 2018, 9, 482–489, doi:10.3762/bjnano.9.46

Graphical Abstract
  • , in tree branches and leaf veins of plants, all of which can provide inspiration for the optimal design of the channel layout to achieve the optimal mass and heat transfer [3][4][5]. These branched networks are known to have excellent performance in transport processes of heat and mass, and have been
PDF
Album
Full Research Paper
Published 08 Feb 2018

Kinetics of solvent supported tubule formation of Lotus (Nelumbo nucifera) wax on highly oriented pyrolytic graphite (HOPG) investigated by atomic force microscopy

  • Sujit Kumar Dora,
  • Kerstin Koch,
  • Wilhelm Barthlott and
  • Klaus Wandelt

Beilstein J. Nanotechnol. 2018, 9, 468–481, doi:10.3762/bjnano.9.45

Graphical Abstract
  • Biodiversity of Plants, University of Bonn, Venusbergweg 22, 53115 Bonn, Germany Institute of Experimental Physics, University of Wroclaw, pl. M. Borna 9, 50-204 Wrocław, Poland 10.3762/bjnano.9.45 Abstract The time dependence of the formation of lotus wax tubules after recrystallization from various
  • (intracuticular wax) or deposited over the cutin surface (epicuticular wax) of primary plant organs. Being the first point of contact between plants and environment, the cuticle provides protection against water loss and external environmental stresses. Other important functions include control of transpiration
  • concentration of wax molecules in the applied solution and the presence of any foreign substances, e.g., water or salts in the wax solution. In plants, the transport of wax molecules from the location of synthesis inside the cells onto the cuticle is discussed as co-transport of the wax components with water
PDF
Album
Supp Info
Full Research Paper
Published 07 Feb 2018

Humidity-dependent wound sealing in succulent leaves of Delosperma cooperi – An adaptation to seasonal drought stress

  • Olga Speck,
  • Mark Schlechtendahl,
  • Florian Borm,
  • Tim Kampowski and
  • Thomas Speck

Beilstein J. Nanotechnol. 2018, 9, 175–186, doi:10.3762/bjnano.9.20

Graphical Abstract
  • evolution, plants evolved various reactions to wounding. Fast wound sealing and subsequent healing represent a selective advantage of particular importance for plants growing in arid habitats. An effective self-sealing function by internal deformation has been found in the succulent leaves of Delosperma
  • the last 3.8 billion years of biological evolution, plants have increasingly evolved diverse mechanisms of wound reactions. High selective pressure on the development of self-repair in the plant kingdom and the independent evolution of various mechanisms of self-repair in the different plant groups
  • initial wound reaction protects the plants from infection by pathogens and may help to inhibit overcritical water loss. These sealing effects give time for the subsequent self-healing of the injury resulting in the disappearance of the fissure, which is structurally repaired in terms of the (partial
PDF
Album
Supp Info
Full Research Paper
Published 16 Jan 2018

Review on optofluidic microreactors for artificial photosynthesis

  • Xiaowen Huang,
  • Jianchun Wang,
  • Tenghao Li,
  • Jianmei Wang,
  • Min Xu,
  • Weixing Yu,
  • Abdel El Abed and
  • Xuming Zhang

Beilstein J. Nanotechnol. 2018, 9, 30–41, doi:10.3762/bjnano.9.5

Graphical Abstract
  • and coenzyme regeneration. NPS is naturally an optofluidic system since the cells (typical size 10 to 100 µm) of green plants, algae, and cyanobacteria enable light capture, biochemical and enzymatic reactions and the related material transport in a microscale, aqueous environment. The long history of
  • devastating problems to be solved, and artificial photosynthesis (APS) is considered to be the most promising and viable method [1][2][3][4][5][6][7][8][9]. As the name implies, APS is the human replication of natural photosynthesis (NPS). NPS is a very important process in plants and other organisms which
  • or methane [45][46]. Additionally, with the consumption of CO2, APS possibly provides a solution to the greenhouse effect and global warming. Unlike human beings, plants have no need to use CO2 as a clean fuel or for to reduce the greenhouse effect. They simply “consume” CO2 to produce carbohydrates
PDF
Album
Review
Published 04 Jan 2018

Surfactant-induced enhancement of droplet adhesion in superhydrophobic soybean (Glycine max L.) leaves

  • Oliver Hagedorn,
  • Ingo Fleute-Schlachter,
  • Hans Georg Mainx,
  • Viktoria Zeisler-Diehl and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2017, 8, 2345–2356, doi:10.3762/bjnano.8.234

Graphical Abstract
  • higher plant surfaces, represents the interface between plants and their environment and accomplishes essential functions to ensure the maintenance of a terrestrial plant life, such as the reduction of water loss [1], control of gas exchange [2][3], protection from harmful UV radiation [4] and aiding
  • tissues (shoots, leaves, fruits) of higher plants [10][11]. It is built up by a network of the cross-linked ester-like biopolymer, cutin, with integrated (intracuticular) and superimposed (epicuticular) waxes [12][13]. A large diversity of epicuticular wax chemistry and morphology has been described [14
  • efficacy in pest control by spray application techniques. Experimental Plant material Plants of the black soybean Glycine max L. convar. max var. nigra-lutescens “Schwarze Poppelsdorfer” were cultivated in the trial fields of the Botanical Gardens of the University of Bonn (acquisition number BONN-19242
PDF
Album
Full Research Paper
Published 08 Nov 2017

Air–water interface of submerged superhydrophobic surfaces imaged by atomic force microscopy

  • Markus Moosmann,
  • Thomas Schimmel,
  • Wilhelm Barthlott and
  • Matthias Mail

Beilstein J. Nanotechnol. 2017, 8, 1671–1679, doi:10.3762/bjnano.8.167

Graphical Abstract
  • Markus Moosmann Thomas Schimmel Wilhelm Barthlott Matthias Mail Nees Institute for Biodiversity of Plants, University of Bonn, Venusbergweg 22, D-53115 Bonn, Germany Institute of Applied Physics and Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1
  • sensory systems. Biological surfaces are the basis of the discovery and are models for the development of biomimetic surfaces. The conquest of land some 450 million years ago led to the evolution of an almost endless variety of surface structures and functionalities in plants and animals [3]. One of the
  • sputter-coated onto the surface to enhance their conductivity. Biological role models of air-retaining Salvinia effect surfaces. a) The floating fern Salvinia molesta has one of the most complex surface structures in plants. Reproduced with permission from [5], copyright 2010 Wiley-VCH Verlag GmbH & Co
PDF
Album
Supp Info
Full Research Paper
Published 11 Aug 2017

Treatment of fly ash from power plants using thermal plasma

  • Sulaiman Al-Mayman,
  • Ibrahim AlShunaifi,
  • Abdullah Albeladi,
  • Imed Ghiloufi and
  • Saud Binjuwair

Beilstein J. Nanotechnol. 2017, 8, 1043–1048, doi:10.3762/bjnano.8.105

Graphical Abstract
  • , Saudi Arabia 10.3762/bjnano.8.105 Abstract Fly ash from power plants is very toxic because it contains heavy metals. In this study fly ash was treated with a thermal plasma. Before their treatment, the fly ash was analyzed by many technics such as X-ray fluorescence, CHN elemental analysis, inductively
  • glassy. Keywords: fly ash; power plant; stabilization/solidification; surface characterization; thermal plasma; Introduction Fly ash is a residue material produced in power plants. This fly ash contains a high level of residual carbon [1], and it contains also transition metals (Fe, Mn, and Co) and
  • hospital wastes, and organohalogen wastes [11]. The first objective of the present study was to characterize the fly ash from power plants using heavy fuel oils in Saudi Arabia. After the characterization, the fly ash will be treated by thermal plasma system built in the laboratory at KACST, which is based
PDF
Album
Full Research Paper
Published 11 May 2017

Needs and challenges for assessing the environmental impacts of engineered nanomaterials (ENMs)

  • Michelle Romero-Franco,
  • Hilary A. Godwin,
  • Muhammad Bilal and
  • Yoram Cohen

Beilstein J. Nanotechnol. 2017, 8, 989–1014, doi:10.3762/bjnano.8.101

Graphical Abstract
PDF
Album
Supp Info
Review
Published 05 May 2017

Biological and biomimetic materials and surfaces

  • Stanislav Gorb and
  • Thomas Speck

Beilstein J. Nanotechnol. 2017, 8, 403–407, doi:10.3762/bjnano.8.42

Graphical Abstract
  • surfaces. From everyday life experience, we all know that during watering or rainfall, water rolls off the leaves of many plants in the form of spherical droplets leaving the leaves themselves entirely dry. This effect can be seen in an especially impressive manner on the leaves of the sacred lotus
  • biomimetic application [9]. In addition to the fields of botanical–biomimetic research, Wilhelm Barthlott has significantly contributed to many other fields of botany, for example, systematics and functional morphology of carnivorous plants and epiphytic cacti, biogeography/biodiversity and pollination
  • shrubby monocotyledons plants with an emphasis on the structure–function relationships in Dracaena marginata stems [11]. Based on the results of microscopy and mechanical testing, a model of mechanical interactions between tissues and vascular bundles in the D. marginata stem was generated, and the
PDF
Editorial
Published 08 Feb 2017

Innovations from the “ivory tower”: Wilhelm Barthlott and the paradigm shift in surface science

  • Christoph Neinhuis

Beilstein J. Nanotechnol. 2017, 8, 394–402, doi:10.3762/bjnano.8.41

Graphical Abstract
  • , the unique natural history of isolated rocky outcrops called inselbergs, or the global distribution of biodiversity), plant surfaces and especially the tremendous diversity of minute structures on leaves, fruits, seeds and other parts of plants represent a common thread through 40 years of scientific
  • as well as their natural history in connection with a botanic garden, which was keeping extensive collections, being at his disposal. During his approach to conduct broad surveys among various groups of plants, he soon recognized that certain structures were not distributed randomly but
  • characteristic for distinct genera, families or higher-order groups. One of the first structures studied in detail were seeds [3][4][5][6][7][8]. Apart from the sole description of structures based on the surveys functional aspects of plants were always considered as well [3][6][9][10][11]. Soon, and even more
PDF
Album
Commentary
Published 08 Feb 2017

Performance of natural-dye-sensitized solar cells by ZnO nanorod and nanowall enhanced photoelectrodes

  • Saif Saadaoui,
  • Mohamed Aziz Ben Youssef,
  • Moufida Ben Karoui,
  • Rached Gharbi,
  • Emanuele Smecca,
  • Vincenzina Strano,
  • Salvo Mirabella,
  • Alessandra Alberti and
  • Rosaria A. Puglisi

Beilstein J. Nanotechnol. 2017, 8, 287–295, doi:10.3762/bjnano.8.31

Graphical Abstract
  • Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, Catania, Italy 10.3762/bjnano.8.31 Abstract In this work, two natural dyes extracted from henna and mallow plants with a maximum absorbance at 665 nm were studied and used as sensitizers in the fabrication of dye-sensitized solar
  • dyes extracted from henna and mallow plants. We discuss also their application to different semiconductor structures. The photoelectrode is regarded as an important part in the DSSC where it represents the electron generator of the cell. Solar cell parameters, such as open-circuit voltage (Voc), short
  • and mallow plants in different concentrations and at various immersion times. Furthermore, we analyzed the properties of the different used dyes and we reported the most anchoring-dominant molecules. By studying different gases used in the annealing process, we noted that the FG gave the most
PDF
Album
Full Research Paper
Published 30 Jan 2017

When the going gets rough – studying the effect of surface roughness on the adhesive abilities of tree frogs

  • Niall Crawford,
  • Thomas Endlein,
  • Jonathan T. Pham,
  • Mathis Riehle and
  • W. Jon P. Barnes

Beilstein J. Nanotechnol. 2016, 7, 2116–2131, doi:10.3762/bjnano.7.201

Graphical Abstract
  • distributed over their surfaces. Indeed, cuticular folds have been demonstrated to be slippery for beetles [9][10], and stomata also contribute to a leaf’s roughness. Additionally, on some plants (e.g., the stems of Macaranga trees), one may find epicuticular wax crystals [11]. In Macaranga, the resulting
  • an artificial insect leg, Song et al. [46] claim that, in situations where both claws and pads are both operating, the total force may even exceed the sum of the forces that either system, acting on its own, would have produced. A number of plants have evolved structures that deter insects (e.g
  • ., Macaranga trees [12]) or attempt to capture them (e.g., pitcher plants [47]). In both cases, the surfaces will be slippery or otherwise non-adhesive. In many cases, the slipperiness is produced by surfaces covered by epicuticular wax crystals, which break off, contaminating the insect’s adhesive pads [48
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2016

The cleaner, the greener? Product sustainability assessment of the biomimetic façade paint Lotusan® in comparison to the conventional façade paint Jumbosil®

  • Florian Antony,
  • Rainer Grießhammer,
  • Thomas Speck and
  • Olga Speck

Beilstein J. Nanotechnol. 2016, 7, 2100–2115, doi:10.3762/bjnano.7.200

Graphical Abstract
  • developments were derived from biological examples over the last years [5][6][7]. The analysis of plant surfaces as contribution to the systematics of plants lead to the discovery of the operating principle of the self-cleaning effect of plant surfaces. This was brought into the construction market as
PDF
Album
Supp Info
Full Research Paper
Published 29 Dec 2016
Other Beilstein-Institut Open Science Activities