Search results

Search for "porous carbon" in Full Text gives 41 result(s) in Beilstein Journal of Nanotechnology.

Uniform cobalt nanoparticles embedded in hexagonal mesoporous nanoplates as a magnetically separable, recyclable adsorbent

  • Can Zhao,
  • Yuexiao Song,
  • Tianyu Xiang,
  • Wenxiu Qu,
  • Shuo Lou,
  • Xiaohong Yin and
  • Feng Xin

Beilstein J. Nanotechnol. 2018, 9, 1770–1781, doi:10.3762/bjnano.9.168

Graphical Abstract
  • ) has proved to be one of the most effective strategies for enhancing their adsorption performance in aqueous solutions [10][11][12]. Torad et al. [13] reported the high adsorption capacity of porous carbon particles with magnetic Co nanoparticles towards methylene blue (MB) dye. They attributed this to
  • composite materials are expected to show excellent performance in the preparation of TM-MCNs. Here we report a facile approach for the preparation of novel hexagonal nanoplates (NPLs) containing magnetic Co nanoparticles (in CoAl2O4 phase) and porous carbon by carbonizing PDA-coated CoAl LDH, which can be
  • increasing concentration of DA (Figure S2A–D, Supporting Information File 1). After the heat treatment at 800 °C, Co nanoparticles embedded in the rough and porous carbon layer are observed (Figure S2E–H, Supporting Information File 1). The surface roughness is observed to reduce with decreasing
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2018

One-step chemical vapor deposition synthesis and supercapacitor performance of nitrogen-doped porous carbon–carbon nanotube hybrids

  • Egor V. Lobiak,
  • Lyubov G. Bulusheva,
  • Ekaterina O. Fedorovskaya,
  • Yury V. Shubin,
  • Pavel E. Plyusnin,
  • Pierre Lonchambon,
  • Boris V. Senkovskiy,
  • Zinfer R. Ismagilov,
  • Emmanuel Flahaut and
  • Alexander V. Okotrub

Beilstein J. Nanotechnol. 2017, 8, 2669–2679, doi:10.3762/bjnano.8.267

Graphical Abstract
  • over magnesium-oxide-supported metal catalysts. CNx nanotubes were grown on Co/Mo, Ni/Mo, or Fe/Mo alloy nanoparticles, and MgO grains served as a template for the porous carbon. The simultaneous formation of morphologically different carbon structures was due to the slow activation of catalysts for
  • the nanotube growth in a carbon-containing gas environment. An analysis of the obtained products by means of transmission electron microscopy, thermogravimetry and X-ray photoelectron spectroscopy methods revealed that the catalyst's composition influences the nanotube/porous carbon ratio and
  • reduces the resistance at the carbon surface/electrolyte interface and the nanotubes permeating the porous carbon provide fast charge transport in the cell. Keywords: bimetallic catalyst; electrochemical impedance spectroscopy; N-doped carbon; porous carbon–carbon nanotube hybrid; supercapacitor
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2017

Oxidative stabilization of polyacrylonitrile nanofibers and carbon nanofibers containing graphene oxide (GO): a spectroscopic and electrochemical study

  • İlknur Gergin,
  • Ezgi Ismar and
  • A. Sezai Sarac

Beilstein J. Nanotechnol. 2017, 8, 1616–1628, doi:10.3762/bjnano.8.161

Graphical Abstract
  • these pores are well distributed on the fibers. The morphological property of the porous carbon electrodes such as the surface and pore size distributions are the factor that influences the double-layer capacitance. Therefore, the pore size distribution of porous carbons also affect the performance of
PDF
Album
Full Research Paper
Published 07 Aug 2017

Hierarchically structured nanoporous carbon tubes for high pressure carbon dioxide adsorption

  • Julia Patzsch,
  • Deepu J. Babu and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2017, 8, 1135–1144, doi:10.3762/bjnano.8.115

Graphical Abstract
  • sensors [30][31][32] or photoelectrodes for dye-sensitive solar cells [33]. This technique has also be extended for the synthesis of one-dimensional metal oxide nanomaterials [34][35][36][37]. Herein, we introduce a process which allows highly porous carbon tubes as well as nanocrystalline silicon carbide
  • transformed into carbon. If the silica shell is removed by etching, self-supporting carbon tubes 4 remain (Figure 2d). Due to the carbonization of the molten PS, the remaining carbon forms an interconnected porous carbon framework structure which allows the infiltration of the etching solution. Silicon
PDF
Album
Full Research Paper
Published 24 May 2017

Mesoporous hollow carbon spheres for lithium–sulfur batteries: distribution of sulfur and electrochemical performance

  • Anika C. Juhl,
  • Artur Schneider,
  • Boris Ufer,
  • Torsten Brezesinski,
  • Jürgen Janek and
  • Michael Fröba

Beilstein J. Nanotechnol. 2016, 7, 1229–1240, doi:10.3762/bjnano.7.114

Graphical Abstract
  • to 15.5 cm3·mol−1 for sulfur) [12]. This can lead to the loss of electrical contact of Li2S with the conducting additive or the current collector [9]. Cathode materials composed of porous carbon and sulfur show promising results with regard to overcoming these problems. Thus, a lot of research has
  • filling of the cavities, and only the mesoporous shell is filled with sulfur. Electrochemical characterization Since we could show that, for a HCS/sulfur ratio of approximately 40:60, the sulfur is completely incorporated in the porous carbon, electrochemical testing was performed on coin-type cells using
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2016

In situ characterization of hydrogen absorption in nanoporous palladium produced by dealloying

  • Eva-Maria Steyskal,
  • Christopher Wiednig,
  • Norbert Enzinger and
  • Roland Würschum

Beilstein J. Nanotechnol. 2016, 7, 1197–1201, doi:10.3762/bjnano.7.110

Graphical Abstract
  • dealloying were performed in a 1 M solution of KOH, a highly porous carbon fabric contacted by a Pd wire served as counter electrode. The property variations of np-Pd upon electrochemical charging were calculated with respect to the sample resistance R0 and thickness L0 in the electrochemical double layer
PDF
Album
Letter
Published 17 Aug 2016

Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries

  • Luc Aymard,
  • Yassine Oumellal and
  • Jean-Pierre Bonnet

Beilstein J. Nanotechnol. 2015, 6, 1821–1839, doi:10.3762/bjnano.6.186

Graphical Abstract
  • , composites containing MgH2 nanoparticles (with a narrow size distribution of 1–10 nm) which were well-dispersed into a porous carbon host have been prepared by Zlotea et al. [68]. These were produced with varying metal content up to 50 wt % and were designed to be used as a negative electrode for Li-ion
PDF
Album
Review
Published 31 Aug 2015

Interaction of electromagnetic radiation in the 20–200 GHz frequency range with arrays of carbon nanotubes with ferromagnetic nanoparticles

  • Agylych Atdayev,
  • Alexander L. Danilyuk and
  • Serghej L. Prischepa

Beilstein J. Nanotechnol. 2015, 6, 1056–1064, doi:10.3762/bjnano.6.106

Graphical Abstract
  • composed of a porous carbon matrix, ferromagnetic nanoparticles and the interfaces between them [8]. In such systems, accounting for the properties of the carbon matrix, nanoparticles and interfaces becomes of great importance [8]. This issue can be taken into account when considering the CNT-based
PDF
Album
Full Research Paper
Published 24 Apr 2015

From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

  • Philipp Adelhelm,
  • Pascal Hartmann,
  • Conrad L. Bender,
  • Martin Busche,
  • Christine Eufinger and
  • Juergen Janek

Beilstein J. Nanotechnol. 2015, 6, 1016–1055, doi:10.3762/bjnano.6.105

Graphical Abstract
PDF
Album
Review
Published 23 Apr 2015

Liquid fuel cells

  • Grigorii L. Soloveichik

Beilstein J. Nanotechnol. 2014, 5, 1399–1418, doi:10.3762/bjnano.5.153

Graphical Abstract
PDF
Album
Review
Published 29 Aug 2014

A catechol biosensor based on electrospun carbon nanofibers

  • Dawei Li,
  • Zengyuan Pang,
  • Xiaodong Chen,
  • Lei Luo,
  • Yibing Cai and
  • Qufu Wei

Beilstein J. Nanotechnol. 2014, 5, 346–354, doi:10.3762/bjnano.5.39

Graphical Abstract
  • ][6][7][8], activated or porous carbon nanofibers [9][10][11][12][13][14][15][16][17][18][19] have been widely studied. Notably, the carbon nanofibers (CNFs) possess a history of more than a century, the carbon filaments discovered in 1889 may be the earliest CNFs [20]. After more than a century of
PDF
Album
Full Research Paper
Published 24 Mar 2014

Study of mesoporous CdS-quantum-dot-sensitized TiO2 films by using X-ray photoelectron spectroscopy and AFM

  • Mohamed N. Ghazzal,
  • Robert Wojcieszak,
  • Gijo Raj and
  • Eric M. Gaigneaux

Beilstein J. Nanotechnol. 2014, 5, 68–76, doi:10.3762/bjnano.5.6

Graphical Abstract
  • during the following cycles. Films characterization TEM analysis was performed by using a LEO922 electron microscope operating at 200 keV. The film was scratched off from the substrate, dispersed in ethanol and subsequently deposited on copper grids coated with a porous carbon film. The solvent was
PDF
Album
Full Research Paper
Published 20 Jan 2014

Design criteria for stable Pt/C fuel cell catalysts

  • Josef C. Meier,
  • Carolina Galeano,
  • Ioannis Katsounaros,
  • Jonathon Witte,
  • Hans J. Bongard,
  • Angel A. Topalov,
  • Claudio Baldizzone,
  • Stefano Mezzavilla,
  • Ferdi Schüth and
  • Karl J. J. Mayrhofer

Beilstein J. Nanotechnol. 2014, 5, 44–67, doi:10.3762/bjnano.5.5

Graphical Abstract
  • especially in proximity to platinum cannot be excluded. While an identification of the platinum nanoparticles on the rough and porous carbon surface of the two Pt@HGS samples via SEM at this magnification is not straightforward, the platinum particles can be readily identified on the Pt/Vulcan 3–4 nm
PDF
Album
Supp Info
Review
Published 16 Jan 2014

AFM as an analysis tool for high-capacity sulfur cathodes for Li–S batteries

  • Renate Hiesgen,
  • Seniz Sörgel,
  • Rémi Costa,
  • Linus Carlé,
  • Ines Galm,
  • Natalia Cañas,
  • Brigitta Pascucci and
  • K. Andreas Friedrich

Beilstein J. Nanotechnol. 2013, 4, 611–624, doi:10.3762/bjnano.4.68

Graphical Abstract
  • a stable three-dimensional conductive network achieved by the introduction of carbon nanofibres has also been demonstrated [22]. Besides these more sophisticated approaches the introduction of a porous carbon/polytetrafluorethylen (PTFE) containing material, which is used as a gas diffusion layer in
PDF
Album
Full Research Paper
Published 04 Oct 2013

In situ monitoring magnetism and resistance of nanophase platinum upon electrochemical oxidation

  • Eva-Maria Steyskal,
  • Stefan Topolovec,
  • Stephan Landgraf,
  • Heinz Krenn and
  • Roland Würschum

Beilstein J. Nanotechnol. 2013, 4, 394–399, doi:10.3762/bjnano.4.46

Graphical Abstract
  • sample served as the working electrode and was charged via the Pt wire contacted to the center of the sample. Porous carbon fabric and a commercial Ag/AgCl (sat. KCl) electrode (Radiometer Analytical) were used as counter and reference electrode, respectively. The electrical resistance was measured in a
  • with an Autolab PGSTAT128N potentiostat (Metrohm). The magnetic measurements were performed in a miniaturized electrochemical cell by using porous carbon fabric and a gold wire as counter and quasi-reference electrode, respectively, similar to our setup presented recently [12]. In the present improved
PDF
Album
Letter
Published 24 Jun 2013

Synthesis and catalytic applications of combined zeolitic/mesoporous materials

  • Jarian Vernimmen,
  • Vera Meynen and
  • Pegie Cool

Beilstein J. Nanotechnol. 2011, 2, 785–801, doi:10.3762/bjnano.2.87

Graphical Abstract
  • ][47][48][50]. Carbon-based templates are the most common type of hard template. The concept of using carbon in combination with zeolites was first applied to obtain nanosized zeolites in the so-called confined-space synthesis, whereby zeolites were grown inside the voids of porous carbon [47][96
  • ]. However, by altering the synthesis conditions, it is also possible to completely encapsulate the porous carbon matrix [97], resulting in the formation of mesoporous zeolite crystals (Figure 5) [98]. A wide variety of carbon templates can be used, such as carbon black [99][100][101], ordered mesoporous
  • formation of mesoporous silicalite-1 (MFI) zeolite. In the first step, the zeolite precursor solution is combined with a mesoporous carbon template (= black matrix). Then the zeolite is crystallized and the crystals entirely or partially encapsulate the porous carbon. In addition, amorphous silica is also
PDF
Album
Review
Published 30 Nov 2011
Other Beilstein-Institut Open Science Activities