Search results

Search for "single molecule" in Full Text gives 155 result(s) in Beilstein Journal of Nanotechnology.

Revisiting semicontinuous silver films as surface-enhanced Raman spectroscopy substrates

  • Malwina Liszewska,
  • Bogusław Budner,
  • Małgorzata Norek,
  • Bartłomiej J. Jankiewicz and
  • Piotr Nyga

Beilstein J. Nanotechnol. 2019, 10, 1048–1055, doi:10.3762/bjnano.10.105

Graphical Abstract
  • nanoscale regions called “hot spots” [3]. These “hot spots” can be utilized in surface-enhanced Raman spectroscopy (SERS) [4], allowing for the detection of trace amounts of chemicals and biological materials, down to the single molecule or cell level [5]. SERS was discovered in the 1970s [6][7][8] and a
PDF
Album
Full Research Paper
Published 15 May 2019

Features and advantages of flexible silicon nanowires for SERS applications

  • Hrvoje Gebavi,
  • Vlatko Gašparić,
  • Dubravko Risović,
  • Nikola Baran,
  • Paweł Henryk Albrycht and
  • Mile Ivanda

Beilstein J. Nanotechnol. 2019, 10, 725–734, doi:10.3762/bjnano.10.72

Graphical Abstract
  • , preferably with clusters of metal nanoparticles, sharp edges and tips, are the key to strong electromagnetic enhancement ranging from 1010 to 1014 [3]. If the values of Raman cross section of the analyte and of SERS enhancement are appropriate, even single-molecule detection is possible. For example, under
  • resonant laser excitation of analyte molecules with differential cross section of ca. 10−27 cm2/sr, a SERS enhancement factor (EF) of 108 would be adequate for single-molecule detection. Under non-resonant conditions and/or for lower cross sections (ca. 10−30 cm2/sr ) EF values above 1011 are required [4
PDF
Album
Supp Info
Full Research Paper
Published 15 Mar 2019

The effect of translation on the binding energy for transition-metal porphyrines adsorbed on Ag(111) surface

  • Luiza Buimaga-Iarinca and
  • Cristian Morari

Beilstein J. Nanotechnol. 2019, 10, 706–717, doi:10.3762/bjnano.10.70

Graphical Abstract
  • positions. Voronoi populations, expressed in |e| for the central TM atom for all TMPP molecules. From left to right: single molecule at relaxed geometry; single molecule at the adsorption geometry; molecule adsorbed at the bridge site and total population over the entire adsorbed molecule. Supporting
PDF
Album
Supp Info
Full Research Paper
Published 13 Mar 2019

Biomimetic synthesis of Ag-coated glasswing butterfly arrays as ultra-sensitive SERS substrates for efficient trace detection of pesticides

  • Guochao Shi,
  • Mingli Wang,
  • Yanying Zhu,
  • Yuhong Wang,
  • Xiaoya Yan,
  • Xin Sun,
  • Haijun Xu and
  • Wanli Ma

Beilstein J. Nanotechnol. 2019, 10, 578–588, doi:10.3762/bjnano.10.59

Graphical Abstract
  • analytical spectroscopy technique that can achieve single-molecule detection and provide high-resolution “fingerprint” spectral information [1][2]. The electromagnetic enhancement mechanism (EM), a consequence of the coherent collective electron oscillation, plays a dominant role in the enhancement of Raman
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2019

Nitrous oxide as an effective AFM tip functionalization: a comparative study

  • Taras Chutora,
  • Bruno de la Torre,
  • Pingo Mutombo,
  • Jack Hellerstedt,
  • Jaromír Kopeček,
  • Pavel Jelínek and
  • Martin Švec

Beilstein J. Nanotechnol. 2019, 10, 315–321, doi:10.3762/bjnano.10.30

Graphical Abstract
  • calculation of a single N2O molecule on the surface confirms that its adsorption configuration on Au(111) is primarily driven by a non-covalent dispersion interaction and prefers to orient its longer axis parallel to the axis of the surface. The vertical distance between the single molecule and the surface
  • supercell, composed of three Au layers to represent the Au(111) surface. Both a single molecule and trimer clusters were initially placed on the surface according to experimental findings. The structural optimization of the slab was carried out, except for the two bottom Au layers, until the remaining
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2019

Low cost tips for tip-enhanced Raman spectroscopy fabricated by two-step electrochemical etching of 125 µm diameter gold wires

  • Antonino Foti,
  • Francesco Barreca,
  • Enza Fazio,
  • Cristiano D’Andrea,
  • Paolo Matteini,
  • Onofrio Maria Maragò and
  • Pietro Giuseppe Gucciardi

Beilstein J. Nanotechnol. 2018, 9, 2718–2729, doi:10.3762/bjnano.9.254

Graphical Abstract
  • spectroscopy (TERS) has become a well-applied technique for nanospectroscopy, allowing for single molecule sensitivity with sub-nanometer spatial resolution. The demand for efficient, reproducible and cost-effective probes for TERS is increasing. Here we report on a new electrochemical etching protocol to
  • ]. The tips efficiently enhance and confine the electromagnetic field at the nanoscale [8][9] or even at sub-nanometer levels [10]. TERS has a sensitivity that can reach the single molecule level [11][12]. TERS setups based on atomic force microscopy (AFM) [1][13], scanning tunneling microscopy (STM) [14
PDF
Album
Supp Info
Full Research Paper
Published 22 Oct 2018

Dumbbell gold nanoparticle dimer antennas with advanced optical properties

  • Janning F. Herrmann and
  • Christiane Höppener

Beilstein J. Nanotechnol. 2018, 9, 2188–2197, doi:10.3762/bjnano.9.205

Graphical Abstract
  • asymmetric gold nanoparticle antennas (AuNPs) with improved optical near-field properties based on the formation of sub-nanometer size gaps, which are suitable for studying matter with high-resolution and single molecule sensitivity. These dumbbell antennas are characterized in regard to their far-field and
PDF
Album
Full Research Paper
Published 17 Aug 2018

Filling nanopipettes with apertures smaller than 50 nm: dynamic microdistillation

  • Evelyne Salançon and
  • Bernard Tinland

Beilstein J. Nanotechnol. 2018, 9, 2181–2187, doi:10.3762/bjnano.9.204

Graphical Abstract
  • Evelyne Salancon Bernard Tinland Aix Marseille Univ, CNRS, CINAM, Marseille, France 10.3762/bjnano.9.204 Abstract Using nanopipettes with very small apertures (<10 nm) is a good way to improve the spatial resolution in scanning conductance experiments, to monitor single-molecule delivery and to
  • small and large angles, would therefore be highly desirable. It would help to improve the spatial resolution in scanning conductance experiments, in optimizing the signal-to-noise ratio during single-molecule delivery and in straining long-molecule stretching during translocation. Small nanopipette
PDF
Album
Full Research Paper
Published 16 Aug 2018

Recent highlights in nanoscale and mesoscale friction

  • Andrea Vanossi,
  • Dirk Dietzel,
  • Andre Schirmeisen,
  • Ernst Meyer,
  • Rémy Pawlak,
  • Thilo Glatzel,
  • Marcin Kisiel,
  • Shigeki Kawai and
  • Nicola Manini

Beilstein J. Nanotechnol. 2018, 9, 1995–2014, doi:10.3762/bjnano.9.190

Graphical Abstract
  • crystals [58] can be analyzed (see [59] for a detailed review on single-molecule manipulation in nanotribology). These experimental efforts are accompanied by increasing theoretical work, where the analysis of specific nanoscale systems and systematic variation of their key characteristics provides
  • [47], as discussed in Section “Controlled nanomovements” (see Figure 2). Pawlak et al. investigated the sliding of a single molecule on a Cu(111) surface in order to shed light on the interplay between intra-molecular mechanics and friction [183]. The experiment was realized by attaching a single
  • distances per manipulation step are less than a 0.6–0.8 nm in the attractive mode and up to 2–3 nm in the repulsive mode. The pilots from the University of Basel, Rémy Pawlak and Tobias Meier, were able to efficiently steer a single molecule along the 100 nm racetrack over a time of five hours, thus
PDF
Album
Review
Published 16 Jul 2018

Electronic conduction during the formation stages of a single-molecule junction

  • Atindra Nath Pal,
  • Tal Klein,
  • Ayelet Vilan and
  • Oren Tal

Beilstein J. Nanotechnol. 2018, 9, 1471–1477, doi:10.3762/bjnano.9.138

Graphical Abstract
  • , Kolkata 700 106, India 10.3762/bjnano.9.138 Abstract Single-molecule junctions are versatile test beds for electronic transport at the atomic scale. However, not much is known about the early formation steps of such junctions. Here, we study the electronic transport properties of premature junction
  • configurations before the realization of a single-molecule bridge based on vanadocene molecules and silver electrodes. With the aid of conductance measurements, inelastic electron spectroscopy and shot noise analysis, we identify the formation of a single-molecule junction in parallel to a single-atom junction
  • and examine the interplay between these two conductance pathways. Furthermore, the role of this structure in the formation of single-molecule junctions is studied. Our findings reveal the conductance and structural properties of premature molecular junction configurations and uncover the different
PDF
Album
Full Research Paper
Published 17 May 2018

Artifacts in time-resolved Kelvin probe force microscopy

  • Sascha Sadewasser,
  • Nicoleta Nicoara and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2018, 9, 1272–1281, doi:10.3762/bjnano.9.119

Graphical Abstract
  • function [3][4][5]. (ii) The CPD can reflect spatial variations in the charge density [6][7][8], individual localized charges [9], or even partial charge densities within a single molecule [10][11]. Finally, (iii) doping type and charge-carrier concentration in semiconductors will control the position of
PDF
Album
Full Research Paper
Published 24 Apr 2018

Correction: Photobleaching of YOYO-1 in super-resolution single DNA fluorescence imaging

  • Joseph R. Pyle and
  • Jixin Chen

Beilstein J. Nanotechnol. 2018, 9, 809–811, doi:10.3762/bjnano.9.74

Graphical Abstract
  • Joseph R. Pyle Jixin Chen Department of Chemistry and Biochemistry, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, USA 10.3762/bjnano.9.74 Keywords: diffusion; PAINT; single-molecule photophysics; super-resolution imaging; The originally published Figure 7 and
PDF
Album
Original
Article
Correction
Published 06 Mar 2018

Mechanistic insights into plasmonic photocatalysts in utilizing visible light

  • Kah Hon Leong,
  • Azrina Abd Aziz,
  • Lan Ching Sim,
  • Pichiah Saravanan,
  • Min Jang and
  • Detlef Bahnemann

Beilstein J. Nanotechnol. 2018, 9, 628–648, doi:10.3762/bjnano.9.59

Graphical Abstract
  • ) derivative that can produce fluorescent diepoxide through cycloaddition (Figure 14b) was adopted to detect 1O2 generated in air. This TDI derivative is usually coated on a glass plate and faced the photocatalyst with an air gap through which 1O2 diffuses. The detection of single-molecule fluorescence can be
  • ) Experimental setup for the single-molecule detection of photogenerated •OH in H2O. Reprinted with permission from [131], copyright 2014 Wiley-VCH Verlag GmbH & Co. (a) Reactions involved in the detection of •O2− with DMPO. (b) Chemical structures of the spin-trapping reagents for •O2−, BMPO, DEPMPO and CYPMPO
PDF
Album
Review
Published 19 Feb 2018

Anchoring of a dye precursor on NiO(001) studied by non-contact atomic force microscopy

  • Sara Freund,
  • Antoine Hinaut,
  • Nathalie Marinakis,
  • Edwin C. Constable,
  • Ernst Meyer,
  • Catherine E. Housecroft and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2018, 9, 242–249, doi:10.3762/bjnano.9.26

Graphical Abstract
  •  1), adsorbed on an atomically clean NiO(001) crystal surface. It adsorbs either as single molecule or forms specific assemblies increasing in size from small clusters up to complete islands inducing a clear change of the surface potential. Results and Discussion Atomic resolution of NiO(001) Figure
  • applied only for molecules adsorbed on terraces. Figure 3c shows the topographic image of DCPDMbpy on a NiO(001) surface acquired during the first scan using this method. The size is consistent with the molecular dimensions, (i.e., length ≈ 1.8 nm and height ≈ 150 pm) and suggests that a single molecule
  • atomic rows of the substrate for this particular type of cluster is visible as observed for single molecules (see Figure 3e). Each DCPDMbpy in a cluster appears to lie flat implying that the adsorption geometry of the molecule on NiO(001) is the same when adsorbing as a single molecule or when forming
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2018

Inelastic electron tunneling spectroscopy of difurylethene-based photochromic single-molecule junctions

  • Youngsang Kim,
  • Safa G. Bahoosh,
  • Dmytro Sysoiev,
  • Thomas Huhn,
  • Fabian Pauly and
  • Elke Scheer

Beilstein J. Nanotechnol. 2017, 8, 2606–2614, doi:10.3762/bjnano.8.261

Graphical Abstract
  • theoretical analysis of charge transport through diarylethene-derived single-molecule devices, which are created using the mechanically controlled break-junction technique. Inelastic electron tunneling (IET) spectroscopy measurements performed at 4.2 K are compared with first-principles calculations in the
  • two distinct forms of diarylethenes connected to gold electrodes. The combined approach clearly demonstrates that the IET spectra of single-molecule junctions show specific vibrational features that can be used to identify different isomeric molecular states by transport experiments. Keywords
  • : inelastic electron tunneling spectroscopy; molecular junction; photochromic; single molecule; Introduction Molecular junctions hold promise for the realization of novel miniaturized electronic circuits [1][2][3][4][5][6] as well as for thermoelectric energy conversion devices [7][8][9][10]. Optoelectronic
PDF
Album
Full Research Paper
Published 06 Dec 2017

Refractive index sensing and surface-enhanced Raman spectroscopy using silver–gold layered bimetallic plasmonic crystals

  • Somi Kang,
  • Sean E. Lehman,
  • Matthew V. Schulmerich,
  • An-Phong Le,
  • Tae-woo Lee,
  • Stephen K. Gray,
  • Rohit Bhargava and
  • Ralph G. Nuzzo

Beilstein J. Nanotechnol. 2017, 8, 2492–2503, doi:10.3762/bjnano.8.249

Graphical Abstract
  • enhanced electromagnetic fields generated by surface plasmons [12][13]. Raman scattering signals can be dramatically amplified on a plasmonic substrate, reportedly by as much as 10 to 11 orders of magnitude, reaching levels of sensitivity suitable for single molecule detection [14][15]. In general, photons
PDF
Album
Supp Info
Full Research Paper
Published 24 Nov 2017

Adsorption of iron tetraphenylporphyrin on (111) surfaces of coinage metals: a density functional theory study

  • Hao Tang,
  • Nathalie Tarrat,
  • Véronique Langlais and
  • Yongfeng Wang

Beilstein J. Nanotechnol. 2017, 8, 2484–2491, doi:10.3762/bjnano.8.248

Graphical Abstract
  • the different conformations are 0.037 eV from S4 to D2d, 0.077 eV from D2d to S4, 0.074 eV from D2d to C2h and 0.055 eV for C2h to D2d. Intermolecular interactions The D2d conformation is the most extensively studied for both the single molecule and molecules in self-assembled 2D islands [16][17][18
PDF
Album
Full Research Paper
Published 23 Nov 2017

Towards molecular spintronics

  • Georgeta Salvan and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2017, 8, 2464–2466, doi:10.3762/bjnano.8.245

Graphical Abstract
  • ) (DFG FOR 1154) was focused on the ultimate down-scaled functional unit which integrates the spintronic functionality into one single molecule. In our ambitious approach towards molecular spintronics we combined two interdisciplinary research fields based in otherwise disjunctive research communities
PDF
Editorial
Published 21 Nov 2017

Photobleaching of YOYO-1 in super-resolution single DNA fluorescence imaging

  • Joseph R. Pyle and
  • Jixin Chen

Beilstein J. Nanotechnol. 2017, 8, 2296–2306, doi:10.3762/bjnano.8.229

Graphical Abstract
  • theoretically predicted with the proposed method in this report. Keywords: diffusion; PAINT; single-molecule photophysics; super-resolution imaging; Introduction Fluorescence imaging of DNA with intercalating dyes is important for DNA sensing [1][2], nucleic acid imaging inside cells and viruses [3][4][5
  • as stimulated emission depletion (STED) microscopy [26][27]; (2) using software to super-localize single molecules [28][29][30][31], such as stochastic optical reconstruction microscopy (STORM) [32], photo-activated localization microscopy (PALM) [33], single-molecule high-resolution imaging with
  • YOYO-1, low laser power is also desired to reduce photodamage to the immobilized DNA and to the YOYO-1 molecules in the bulk solution [39][41]. Thus, the effect of laser power is an important parameter to control during imaging to maintain single-molecule fluorescence while also preserving the DNA from
PDF
Album
Supp Info
Correction
Full Research Paper
Published 02 Nov 2017

The interplay between spin densities and magnetic superexchange interactions: case studies of mono- and trinuclear bis(oxamato)-type complexes

  • Azar Aliabadi,
  • Bernd Büchner,
  • Vladislav Kataev and
  • Tobias Rüffer

Beilstein J. Nanotechnol. 2017, 8, 2245–2256, doi:10.3762/bjnano.8.224

Graphical Abstract
  • ] diamagnetic molecules [23] and even individual single-molecule magnets (SMMs) [24] were already successfully integrated, and spin-organic field-effect transistors [25] or spin-organic light-emitting diodes [26] were developed. Although it remains puzzling to understand the spin-polarized transport phenomena
PDF
Album
Review
Published 27 Oct 2017

Ester formation at the liquid–solid interface

  • Nguyen T. N. Ha,
  • Thiruvancheril G. Gopakumar,
  • Nguyen D. C. Yen,
  • Carola Mende,
  • Lars Smykalla,
  • Maik Schlesinger,
  • Roy Buschbeck,
  • Tobias Rüffer,
  • Heinrich Lang,
  • Michael Mehring and
  • Michael Hietschold

Beilstein J. Nanotechnol. 2017, 8, 2139–2150, doi:10.3762/bjnano.8.213

Graphical Abstract
  • be sufficient monoester molecules available in the solution – especially after the corresponding treatments (sonication, stirring or heating, respectively) to enable single-molecule adsorption with a subsequent growth process around a seed molecule coming from the solution. However, once again, such
PDF
Album
Supp Info
Full Research Paper
Published 12 Oct 2017

Electronic structure, transport, and collective effects in molecular layered systems

  • Torsten Hahn,
  • Tim Ludwig,
  • Carsten Timm and
  • Jens Kortus

Beilstein J. Nanotechnol. 2017, 8, 2094–2105, doi:10.3762/bjnano.8.209

Graphical Abstract
  • development of further devices. Examples were demonstrated for a wide variety of applications including molecular spin filters [1], single-molecule or thin-film-based field-effect transistors [2][3][4], as well as potential candidates for memory devices utilizing organometallic complexes of
  • electronic interactions and correlations, which can be very strong in the confined molecular orbitals. Approaches beyond mean-field-type approximations are required for the treatment of correlation effects such as Coulomb blockade and the Kondo effect [14]. Such interactions not only occur within a single
  • molecule but also between neighboring molecules in a film [15], where they can lead to ordering phenomena. Our paper is organised as follows. First we will present the methodical background and results of our theoretical investigations on different phthalocyanine heterostructures by using the DFT-NEGF
PDF
Album
Full Research Paper
Published 06 Oct 2017

Adsorbate-driven cooling of carbene-based molecular junctions

  • Giuseppe Foti and
  • Héctor Vázquez

Beilstein J. Nanotechnol. 2017, 8, 2060–2068, doi:10.3762/bjnano.8.206

Graphical Abstract
  • stability under bias of single-molecule circuits. Keywords: adsorbate; carbene; current-induced heating and cooling; molecular junction; vibrations; Introduction Molecular electronics has experienced a remarkable progress since its first proposal [1]. Theoretical as well as experimental advances have made
  • it possible to achieve a detailed understanding of the main factors governing single-molecule transport [2][3][4]. Recently, energy-exchange processes between tunneling electrons and vibrational degrees of freedom have been considered. Understanding heat generation and dissipation in the molecular
  • junction is particularly relevant for the stability of molecular circuits under bias [5][6][7][8][9][10]. However, simulations of single-molecule studies have usually assumed rather idealized conditions with “clean” junctions in which no molecular species other than the conducting molecules are considered
PDF
Album
Supp Info
Full Research Paper
Published 02 Oct 2017

(Metallo)porphyrins for potential materials science applications

  • Lars Smykalla,
  • Carola Mende,
  • Michael Fronk,
  • Pablo F. Siles,
  • Michael Hietschold,
  • Georgeta Salvan,
  • Dietrich R. T. Zahn,
  • Oliver G. Schmidt,
  • Tobias Rüffer and
  • Heinrich Lang

Beilstein J. Nanotechnol. 2017, 8, 1786–1800, doi:10.3762/bjnano.8.180

Graphical Abstract
  • the integration of single-molecule magnets into spintronic or quantum computing devices [12]. For the design of such devices the knowledge of the photon energy at which the MOKE is largest in magnitude is of crucial importance. The number of reports on spectroscopic MOKE investigations are very
  • (111). Manipulation of the electronic structure of H2TPP(OH)4 on Au(111) [45]: Molecules with two possible states, e.g., of conductivity, can be used as single-molecule switches. This functionality could be applied in nano-scaled molecular-based memory devices or logic gates [64], However, one must be
PDF
Album
Review
Published 29 Aug 2017

Transport characteristics of a silicene nanoribbon on Ag(110)

  • Ryoichi Hiraoka,
  • Chun-Liang Lin,
  • Kotaro Nakamura,
  • Ryo Nagao,
  • Maki Kawai,
  • Ryuichi Arafune and
  • Noriaki Takagi

Beilstein J. Nanotechnol. 2017, 8, 1699–1704, doi:10.3762/bjnano.8.170

Graphical Abstract
  • discuss the origin of the peak as it relates to the SiNR. Keywords: nanojunction; nanoribbon; scanning tunnelling microscopy; silicene; transport; Introduction The electronic transport characteristics of nanomaterials from a single molecule, nanowires, nanotubes, and nanoribbons to two-dimensional (2D
PDF
Album
Full Research Paper
Published 16 Aug 2017
Other Beilstein-Institut Open Science Activities