Search results

Search for "sputtering" in Full Text gives 356 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Ta2N3 nanocrystals grown in Al2O3 thin layers

  • Krešimir Salamon,
  • Maja Buljan,
  • Iva Šarić,
  • Mladen Petravić and
  • Sigrid Bernstorff

Beilstein J. Nanotechnol. 2017, 8, 2162–2170, doi:10.3762/bjnano.8.215

Graphical Abstract
  • isolated nitride NPs within thin dielectric layers. An emphasis is placed here on the control of size and spatial arrangement of NPs, which should then ensure the desired optical properties. This is achieved by using reactive magnetron sputtering and the deposition procedure we already used for the self
  • by using the reactive magnetron sputtering deposition technique under conditions that implied a high nitrogen fraction in sputtering gas mixture and post-deposition annealing [23]. We found that the Ta2N3 phase has metallic properties, which makes it a possible candidate for the LSPR applications
  • (nitrogen fraction in sputtering gas mixture pN2 = 0.2) with a total gas pressure of 0.47 Pa. Ta (99.95% purity) and Al2O3 (99.995% purity) targets were used in dc (15 W) and rf (140 W) operated magnetrons, respectively. The deposition rates were 0.31 nm/s for the Ta target and 0.19 nm/s for the Al2O3
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2017

Advances and challenges in the field of plasma polymer nanoparticles

  • Andrei Choukourov,
  • Pavel Pleskunov,
  • Daniil Nikitin,
  • Valerii Titov,
  • Artem Shelemin,
  • Mykhailo Vaidulych,
  • Anna Kuzminova,
  • Pavel Solař,
  • Jan Hanuš,
  • Jaroslav Kousal,
  • Ondřej Kylián,
  • Danka Slavínská and
  • Hynek Biederman

Beilstein J. Nanotechnol. 2017, 8, 2002–2014, doi:10.3762/bjnano.8.200

Graphical Abstract
  • plasma polymerization of volatile monomers or via radio frequency (RF) magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a
  • focus on the development of novel nanostructured surfaces. Keywords: gas aggregation cluster source; nanocomposite; nanoparticles; plasma polymer; sputtering; Review Historical background “A macromolecule is a molecule of high relative molecular mass, the structure of which essentially comprises the
  • the production of metal NPs by vacuum thermal evaporation with subsequent condensation of atomic metal vapours on a cool buffer gas and later thermal evaporation was replaced by magnetron sputtering [41]. At least one work investigated the formation of polymeric NPs by thermal evaporation of poly(N
PDF
Album
Review
Published 25 Sep 2017

Bi-layer sandwich film for antibacterial catheters

  • Gerhard Franz,
  • Florian Schamberger,
  • Hamideh Heidari Zare,
  • Sara Felicitas Bröskamp and
  • Dieter Jocham

Beilstein J. Nanotechnol. 2017, 8, 1982–2001, doi:10.3762/bjnano.8.199

Graphical Abstract
  • the intended manner. 3. Simple deposition techniques, such as impregnation and dipping, do not generate a film that steadily sticks on the substrate. Other methods, such as sputtering and evaporation of silver, only affect the exterior of the catheter. 4. In addition to its antibacterial potential
PDF
Album
Full Research Paper
Published 22 Sep 2017

Intercalation of Si between MoS2 layers

  • Rik van Bremen,
  • Qirong Yao,
  • Soumya Banerjee,
  • Deniz Cakir,
  • Nuri Oncel and
  • Harold J. W. Zandvliet

Beilstein J. Nanotechnol. 2017, 8, 1952–1960, doi:10.3762/bjnano.8.196

Graphical Abstract
  • reveal no noteworthy differences. (4) Spatial maps of dI/dz reveal that the surface exhibits a uniform work function and a lattice constant of 3.16 Å. (5) X-ray photo-electron spectroscopy measurements reveal that sputtering of the MoS2/Si substrate does not lead to a decrease, but an increase of the
  • silicon evaporator was calibrated by depositing a sub-monolayer amount of Si on a Ge(001) substrate. The Ge(001) surface was cleaned by applying several cycles of Ar ion sputtering and annealing. After deposition and mild annealing at a temperature of 450–500 K, the Ge(001) substrate was inserted into the
  • and 1.18 eV, respectively. The ratios of the areas of the doublet peaks were also fixed. During sputtering the pressure is increased to 3 × 10−8 mbar by leaking in Ar gas while the pressure around the filament in the differentially pumped argon gas chamber increased to 1 × 10−4 mbar. The sample was
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2017

Coexistence of strongly buckled germanene phases on Al(111)

  • Weimin Wang and
  • Roger I. G. Uhrberg

Beilstein J. Nanotechnol. 2017, 8, 1946–1951, doi:10.3762/bjnano.8.195

Graphical Abstract
  • prepared by repeated cycles of sputtering by Ar+ ions (1 keV) and annealing at approximately 400 °C until a sharp (1×1) LEED pattern was obtained. About 0.6 ML of Ge was deposited at different rates between 0.37 ML/min and 0.55 ML/min while the Al(111) substrate was kept around 200 °C. The reason for
PDF
Album
Supp Info
Full Research Paper
Published 18 Sep 2017

Growth and characterization of textured well-faceted ZnO on planar Si(100), planar Si(111), and textured Si(100) substrates for solar cell applications

  • Chin-Yi Tsai,
  • Jyong-Di Lai,
  • Shih-Wei Feng,
  • Chien-Jung Huang,
  • Chien-Hsun Chen,
  • Fann-Wei Yang,
  • Hsiang-Chen Wang and
  • Li-Wei Tu

Beilstein J. Nanotechnol. 2017, 8, 1939–1945, doi:10.3762/bjnano.8.194

Graphical Abstract
  • (101) plane in the hexagonal lattice [12]. Furthermore, hexagonal and pyramidal ZnO composed of the (101) and (001) planes has been synthesized in ionic liquids or obtained on Si(111) substrates by RF magnetron sputtering [13][14]. Nevertheless, the growth of well-faceted pyramidal-like ZnO on silicon
PDF
Album
Full Research Paper
Published 15 Sep 2017

Self-assembly of chiral fluorescent nanoparticles based on water-soluble L-tryptophan derivatives of p-tert-butylthiacalix[4]arene

  • Pavel L. Padnya,
  • Irina A. Khripunova,
  • Olga A. Mostovaya,
  • Timur A. Mukhametzyanov,
  • Vladimir G. Evtugyn,
  • Vyacheslav V. Vorobev,
  • Yuri N. Osin and
  • Ivan I. Stoikov

Beilstein J. Nanotechnol. 2017, 8, 1825–1835, doi:10.3762/bjnano.8.184

Graphical Abstract
  • ) were prepared similar to those studied by DLS. The sample on the chuck was moved in the vacuum chamber apparatus by Quorum (Q 150T ES). A conductive layer was deposited by the cathode sputtering technique using an Au/Pd alloy (80/20). The thickness of the alloy was 15 nm. Possible paths of the
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2017

Non-intuitive clustering of 9,10-phenanthrenequinone on Au(111)

  • Ryan D. Brown,
  • Rebecca C. Quardokus,
  • Natalie A. Wasio,
  • Jacob P. Petersen,
  • Angela M. Silski,
  • Steven A. Corcelli and
  • S. Alex Kandel

Beilstein J. Nanotechnol. 2017, 8, 1801–1807, doi:10.3762/bjnano.8.181

Graphical Abstract
  • argon sputtering followed by a 15 min annealing. The substrates were allowed to cool to room temperature prior to deposition. The samples were produced by preparing a 2 mg/mL solution of either 9,10-phenanthrenequinone or 9-fluorenone in tetrahydrofuran and injecting microliter droplets of this solution
PDF
Album
Full Research Paper
Published 30 Aug 2017

Evaluation of preparation methods for suspended nano-objects on substrates for dimensional measurements by atomic force microscopy

  • Petra Fiala,
  • Daniel Göhler,
  • Benno Wessely,
  • Michael Stintz,
  • Giovanni Mattia Lazzerini and
  • Andrew Yacoot

Beilstein J. Nanotechnol. 2017, 8, 1774–1785, doi:10.3762/bjnano.8.179

Graphical Abstract
  • ., cleaning) application of conditioned sample on the conditioned substrate post-conditioning of sample/substrate (e.g., sputtering) During the pre-conditioning of the sample each suspension was dispersed by ultrasonication (US bath, model SONOREX RK100, Bandelin electronic, Berlin, Germany) for between five
PDF
Album
Full Research Paper
Published 28 Aug 2017

Fluorination of vertically aligned carbon nanotubes: from CF4 plasma chemistry to surface functionalization

  • Claudia Struzzi,
  • Mattia Scardamaglia,
  • Jean-François Colomer,
  • Alberto Verdini,
  • Luca Floreano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2017, 8, 1723–1733, doi:10.3762/bjnano.8.173

Graphical Abstract
  • vapor deposition (CCVD) at atmospheric pressure. The catalysts are prepared by magnetron sputtering: a 30 nm Al2O3 buffer layer is deposited on Si wafers with native SiO2 and a 6 nm Fe layer is then deposited to form nanoparticles which catalyse the vCNT growth. Then, the substrate is placed inside the
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2017

Transport characteristics of a silicene nanoribbon on Ag(110)

  • Ryoichi Hiraoka,
  • Chun-Liang Lin,
  • Kotaro Nakamura,
  • Ryo Nagao,
  • Maki Kawai,
  • Ryuichi Arafune and
  • Noriaki Takagi

Beilstein J. Nanotechnol. 2017, 8, 1699–1704, doi:10.3762/bjnano.8.170

Graphical Abstract
  • temperature STM (P < 10−10 Torr, T = 6 K). A Ag(110) single crystal surface was cleaned by repeated Ar ion sputtering and annealing at around 800 K. The STM tip was made of an electrochemically etched W wire and postannealed in the UHV chamber. The SiNRs were synthesized on Ag(110) by depositing Si atoms from
PDF
Album
Full Research Paper
Published 16 Aug 2017

Process-specific mechanisms of vertically oriented graphene growth in plasmas

  • Subrata Ghosh,
  • Shyamal R. Polaki,
  • Niranjan Kumar,
  • Sankarakumar Amirthapandian,
  • Mohamed Kamruddin and
  • Kostya (Ken) Ostrikov

Beilstein J. Nanotechnol. 2017, 8, 1658–1670, doi:10.3762/bjnano.8.166

Graphical Abstract
  • species, etching rate of carbon species by nascent H produced in the plasma and sputtering by highly energetic ion bombardment. Ion bombardment induced sputtering is negligible at lower ion energies and pronouncedly displaces C atoms from their stable position at higher ion energies [59]. The hydrogen
  • (above 375 W), the amount and energy of hydrogen species also increases, which reduces the density of C2 radicals. This eliminates the carbon species and, simultaneously, ion-induced sputtering takes place during the deposition [52]. These factors reduce the growth rate of VGNs and also modify the
PDF
Album
Full Research Paper
Published 10 Aug 2017

Fixation mechanisms of nanoparticles on substrates by electron beam irradiation

  • Daichi Morioka,
  • Tomohiro Nose,
  • Taiki Chikuta,
  • Kazutaka Mitsuishi and
  • Masayuki Shimojo

Beilstein J. Nanotechnol. 2017, 8, 1523–1529, doi:10.3762/bjnano.8.153

Graphical Abstract
  • nm, was deposited by sputtering on the same Si substrate as used for Au nanoparticles. The surface of the Au-deposited substrate was covered with a monolayer of amino-undecanethiol. Then, the substrate was immersed in a colloidal silica (surface-modified with –COOH) solution for 24 h to arrange
PDF
Album
Full Research Paper
Published 26 Jul 2017

Comprehensive Raman study of epitaxial silicene-related phases on Ag(111)

  • Dmytro Solonenko,
  • Ovidiu D. Gordan,
  • Guy Le Lay,
  • Dietrich R. T. Zahn and
  • Patrick Vogt

Beilstein J. Nanotechnol. 2017, 8, 1357–1365, doi:10.3762/bjnano.8.137

Graphical Abstract
  • formation of both 2D and 3D moieties. Experimental Clean Ag(111) surfaces were prepared by alternating cycles of sputtering (Ar+, 1.5 keV, 1·10−5 mbar) and annealing (520 °C) until sharp 1×1 spots of the unreconstructed surface were observed by LEED. Si was evaporated subsequently from a directly heated
PDF
Album
Full Research Paper
Published 03 Jul 2017

A top-down approach for fabricating three-dimensional closed hollow nanostructures with permeable thin metal walls

  • Carlos Angulo Barrios and
  • Víctor Canalejas-Tejero

Beilstein J. Nanotechnol. 2017, 8, 1231–1237, doi:10.3762/bjnano.8.124

Graphical Abstract
  • could be considered to form the nanocages. For example, sputtering could be used to create nanometer-thick amorphous or polycrystalline films, which are expected to have pores (voids) and diffusion paths (grain boundaries). Note, however, that the sputtering technique typically leads to highly conformal
PDF
Album
Full Research Paper
Published 08 Jun 2017

Metal oxide nanostructures: preparation, characterization and functional applications as chemical sensors

  • Dario Zappa,
  • Angela Bertuna,
  • Elisabetta Comini,
  • Navpreet Kaur,
  • Nicola Poli,
  • Veronica Sberveglieri and
  • Giorgio Sberveglieri

Beilstein J. Nanotechnol. 2017, 8, 1205–1217, doi:10.3762/bjnano.8.122

Graphical Abstract
  • –condensation are the evaporation temperature of the source material and the condensation temperature at which materials start to condensate and grow as 1D nanostructure. An ultrathin layer of gold particles were deposited on alumina substrates with RF magnetron sputtering at 70 W, Ar flow 7 sccm for 5 sec
  • ) nanowires directly on the final transducer, starting from a metallic tungsten layer deposited by magnetron sputtering [54]. Metallic tungsten was deposited by RF magnetron sputtering (100 W, 5 × 10−3 mbar, argon plasma, room temperature) via a shadow-mask technique, in order to obtain a 180 nm thin layer on
  • by Fang et al. [56], but worked on a thin layer of niobium deposited on alumina substrates by magnetron sputtering. For this reason, we carried out several experiments to obtain the optimal conditions (set out below) for the growth of nanostructures. RF magnetron sputtering was used to deposit a
PDF
Album
Full Research Paper
Published 06 Jun 2017

Preparation of thick silica coatings on carbon fibers with fine-structured silica nanotubes induced by a self-assembly process

  • Benjamin Baumgärtner,
  • Hendrik Möller,
  • Thomas Neumann and
  • Dirk Volkmer

Beilstein J. Nanotechnol. 2017, 8, 1145–1155, doi:10.3762/bjnano.8.116

Graphical Abstract
  • -vacuum mode (0.6 mbar) and a Leo 1530 Gemini SEM (Zeiss) was used for recording scanning electron micrographs in high-vacuum mode, in all cases without sputtering the samples. TEM investigations were performed using a JEOL 2100F microscope with a FEG electron source operated at 200 kV. The microscope is
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2017

Adsorption characteristics of Er3N@C80on W(110) and Au(111) studied via scanning tunneling microscopy and spectroscopy

  • Sebastian Schimmel,
  • Zhixiang Sun,
  • Danny Baumann,
  • Denis Krylov,
  • Nataliya Samoylova,
  • Alexey Popov,
  • Bernd Büchner and
  • Christian Hess

Beilstein J. Nanotechnol. 2017, 8, 1127–1134, doi:10.3762/bjnano.8.114

Graphical Abstract
  • and without its conventionally carbon-induced reconstruction. The preparation of the Au(111)-surface was done by Ar-ion sputtering with an ion-energy of 1 keV. By posterior annealing (T ≈ 823 K; t ≈ 60–120 min) extended terraces with monoatomic step edges could be obtained. By this standard procedure
PDF
Album
Full Research Paper
Published 23 May 2017

Growth, structure and stability of sputter-deposited MoS2 thin films

  • Reinhard Kaindl,
  • Bernhard C. Bayer,
  • Roland Resel,
  • Thomas Müller,
  • Viera Skakalova,
  • Gerlinde Habler,
  • Rainer Abart,
  • Alexey S. Cherevan,
  • Dominik Eder,
  • Maxime Blatter,
  • Fabian Fischer,
  • Jannik C. Meyer,
  • Dmitry K. Polyushkin and
  • Wolfgang Waldhauser

Beilstein J. Nanotechnol. 2017, 8, 1115–1126, doi:10.3762/bjnano.8.113

Graphical Abstract
  • films by magnetron sputtering. MoS2 films with thicknesses from ≈10 to ≈1000 nm were deposited on SiO2/Si and reticulated vitreous carbon (RVC) substrates. Samples deposited at room temperature (RT) and at 400 °C were compared. The deposited MoS2 was characterized by macro- and microscopic X-ray
  • sputter chamber under medium pressure Ar conditions several sources of contaminational add-elements could persist, such as chemical residues in target, unintentional co-sputtering from the chamber or incorporation of Ar gas or other gaseous residues etc. While we currently do not have sensitive enough
  • electrocatalysis applications of our PVD MoS2 films. Experimental Magnetron sputter deposition MoS2 deposition was undertaken in a modified, industrially compatible sputtering plant (Pfeiffer Vakuum, Germany). Thin films have been sputter deposited by an unbalanced cathode from AJA (AJA International, North
PDF
Album
Full Research Paper
Published 22 May 2017

Stable Au–C bonds to the substrate for fullerene-based nanostructures

  • Taras Chutora,
  • Jesús Redondo,
  • Bruno de la Torre,
  • Martin Švec,
  • Pavel Jelínek and
  • Héctor Vázquez

Beilstein J. Nanotechnol. 2017, 8, 1073–1079, doi:10.3762/bjnano.8.109

Graphical Abstract
  • /bjnano.8.109 Abstract We report on the formation of fullerene-derived nanostructures on Au(111) at room temperature and under UHV conditions. After low-energy ion sputtering of fullerene films deposited on Au(111), bright spots appear at the herringbone corner sites when measured using a scanning
  • tunneling microscope. These features are stable at room temperature against diffusion on the surface. We carry out DFT calculations of fullerene molecules having one missing carbon atom to simulate the vacancies in the molecules resulting from the sputtering process. These modified fullerenes have an
  • vacancies. This provides a pathway for the formation of fullerene-based nanostructures on Au at room temperature. Keywords: Au–C bonds; density functional theory (DFT); fullerenes; scanning tunneling microscopy (STM); sputtering; Introduction In single-molecule electronics, the active element in an
PDF
Album
Full Research Paper
Published 17 May 2017

Assembly of metallic nanoparticle arrays on glass via nanoimprinting and thin-film dewetting

  • Sun-Kyu Lee,
  • Sori Hwang,
  • Yoon-Kee Kim and
  • Yong-Jun Oh

Beilstein J. Nanotechnol. 2017, 8, 1049–1055, doi:10.3762/bjnano.8.106

Graphical Abstract
  • with the periodic array of inverted pyramidal pits and annealed in a furnace at ≈300–500 °C to assemble nanoparticle arrays via solid-state dewetting of the deposited films. The base pressure and RF power of the sputtering system were 3 × 10−6 Torr and 100 W, respectively. Fourier transform infrared
PDF
Album
Letter
Published 12 May 2017

Near-field surface plasmon field enhancement induced by rippled surfaces

  • Mario D’Acunto,
  • Francesco Fuso,
  • Ruggero Micheletto,
  • Makoto Naruse,
  • Francesco Tantussi and
  • Maria Allegrini

Beilstein J. Nanotechnol. 2017, 8, 956–967, doi:10.3762/bjnano.8.97

Graphical Abstract
  • and height much smaller than the wavelength of typical plasmon resonances. Different top-down or bottom-up fabrication techniques have been introduced to produce metal nanostructures with active plasmonic reactivity [14]. For example, ion beam sputtering (IBS) is a widely employed bottom-up technique
  • ion-beam sputtering (IBS) generally show a fractal structure, the function C in Equation 13 is chosen to be Gaussian, that is, a special case of a fractal surface with the Hurst exponent equal to one [47]: where a is known as the transverse autocorrelation length, as it describes the mean length
PDF
Album
Supp Info
Full Research Paper
Published 28 Apr 2017

High photocatalytic activity of Fe2O3/TiO2 nanocomposites prepared by photodeposition for degradation of 2,4-dichlorophenoxyacetic acid

  • Shu Chin Lee,
  • Hendrik O. Lintang and
  • Leny Yuliati

Beilstein J. Nanotechnol. 2017, 8, 915–926, doi:10.3762/bjnano.8.93

Graphical Abstract
  • ], plasma enhanced-chemical vapor deposition (PE-CVD) and radio frequency (RF) sputtering approach [12], and plasma enhanced-chemical vapor deposition and atomic layer deposition (ALD) followed by thermal treatment [13]. Among these preparation methods, impregnation is a commonly used approach for the
PDF
Album
Supp Info
Full Research Paper
Published 24 Apr 2017

3D Nanoprinting via laser-assisted electron beam induced deposition: growth kinetics, enhanced purity, and electrical resistivity

  • Brett B. Lewis,
  • Robert Winkler,
  • Xiahan Sang,
  • Pushpa R. Pudasaini,
  • Michael G. Stanford,
  • Harald Plank,
  • Raymond R. Unocic,
  • Jason D. Fowlkes and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2017, 8, 801–812, doi:10.3762/bjnano.8.83

Graphical Abstract
  • to gold sputtering, to promote adhesion between the gold contacts and the underlying, insulating SiO2 film (290 nm). The original photolithographically defined spacing between electrical contacts was 20 µm. EBL was performed using a Raith ELPHY Quantum patterning engine equipped on the FEI NovaLab
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2017

Ion beam profiling from the interaction with a freestanding 2D layer

  • Ivan Shorubalko,
  • Kyoungjun Choi,
  • Michael Stiefel and
  • Hyung Gyu Park

Beilstein J. Nanotechnol. 2017, 8, 682–687, doi:10.3762/bjnano.8.73

Graphical Abstract
  • freestanding two-dimensional (2D) layer. Experimentally determined sputtering yields of the perforation process can be quantitatively explained using the binary collision theory. The main peculiarity of the interaction between the ion beams and the suspended 2D material lies in the absence of collision
  • resultant pore diameter. In return, the pore dimension as a function of the exposure dose brings out the ion beam profiles. Using this method of determining an ion-beam point spread function, we verify a Gaussian profile of focused gallium ion beams. Graphene sputtering yield is extracted from the
  • are exposed to ion beams, and in return this dependency reflects information of the ion beam profile. We determine a Ga-FIB point spread function and verify its Gaussian profile for different beam current values. The volume under the Gaussian profile is used to extract the graphene sputtering yield in
PDF
Album
Full Research Paper
Published 23 Mar 2017
Other Beilstein-Institut Open Science Activities