Search results

Search for "surfactant" in Full Text gives 201 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Heat-induced morphological changes in silver nanowires deposited on a patterned silicon substrate

  • Elyad Damerchi,
  • Sven Oras,
  • Edgars Butanovs,
  • Allar Liivlaid,
  • Mikk Antsov,
  • Boris Polyakov,
  • Annamarija Trausa,
  • Veronika Zadin,
  • Andreas Kyritsakis,
  • Loïc Vidal,
  • Karine Mougin,
  • Siim Pikker and
  • Sergei Vlassov

Beilstein J. Nanotechnol. 2024, 15, 435–446, doi:10.3762/bjnano.15.39

Graphical Abstract
  • , after depositing NWs onto a substrate, heat treatment at temperatures around a few hundred degrees Celsius is often employed to eliminate the surfactant used during synthesis [18][19]. The melting temperature of silver is 962 °C, which is significantly higher than the temperatures required to remove
PDF
Album
Supp Info
Full Research Paper
Published 22 Apr 2024

Potential of a deep eutectic solvent in silver nanoparticle fabrication for antibiotic residue detection

  • Le Hong Tho,
  • Bui Xuan Khuyen,
  • Ngoc Xuan Dat Mai and
  • Nhu Hoa Thi Tran

Beilstein J. Nanotechnol. 2024, 15, 426–434, doi:10.3762/bjnano.15.38

Graphical Abstract
  • to form hydrogen bonds. The DES acts as a surfactant helping to stabilize Ag NPs. The rod-like appearance with 122.6 nm average length and small crystals on the surface of Ag NPs crucially contribute to strengthening the LSPR phenomenon thanks to the lightning rod effect [42]. As reported by other
PDF
Album
Full Research Paper
Published 16 Apr 2024

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • : (1) nanoliposomes, which are a nanoscale bilayer lipid vesicle [132]; (2) nanocapsules, which consist of an inner aqueous core surrounded by a nontoxic polymeric membrane [133]; (3) solid lipid nanoparticles, which consist of a solid lipid core stabilized by a surfactant [134]; and (4) nanocrystals
PDF
Album
Review
Published 12 Apr 2024

Nanomedicines against Chagas disease: a critical review

  • Maria Jose Morilla,
  • Kajal Ghosal and
  • Eder Lilia Romero

Beilstein J. Nanotechnol. 2024, 15, 333–349, doi:10.3762/bjnano.15.30

Graphical Abstract
  • the cumulative dose of BNZ would reduce its toxicity without losing effectiveness [48], BNZ has recently been formulated as nanocrystals (NCs). The solubility of BNZ formulated as nanocrystals prepared by nanoprecipitation using the non-ionic surfactant poloxamer 188 as a stabilizer (BNZ-NC) was
PDF
Album
Review
Published 27 Mar 2024

Nanocarrier systems loaded with IR780, iron oxide nanoparticles and chlorambucil for cancer theragnostics

  • Phuong-Thao Dang-Luong,
  • Hong-Phuc Nguyen,
  • Loc Le-Tuan,
  • Xuan-Thang Cao,
  • Vy Tran-Anh and
  • Hieu Vu Quang

Beilstein J. Nanotechnol. 2024, 15, 180–189, doi:10.3762/bjnano.15.17

Graphical Abstract
  • approach employing 3% PVA as the surfactant was suitable for encapsulating iron oxide nanoparticles, CHL, and IR780, which created stable nanoparticles with the desired size. Additionally, it was documented that nanoparticles with a hydrodynamic size above 100 nm are incapable of traversing the endothelium
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2024

Modification of graphene oxide and its effect on properties of natural rubber/graphene oxide nanocomposites

  • Nghiem Thi Thuong,
  • Le Dinh Quang,
  • Vu Quoc Cuong,
  • Cao Hong Ha,
  • Nguyen Ba Lam and
  • Seiichi Kawahara

Beilstein J. Nanotechnol. 2024, 15, 168–179, doi:10.3762/bjnano.15.16

Graphical Abstract
  • agent and SDS as a surfactant. About 80 g of HANR (60% DRC) was incubated with 80 g of water containing 1.6 g of SDS and 0.16 g of urea for 1 h before the 1st centrifugation at 10,000 rpm at 15 °C for 30 min. The cream recovered after centrifugation was redispersed in 80 g of water containing 0.8 g SDS
PDF
Album
Full Research Paper
Published 05 Feb 2024

Development and characterization of potential larvicidal nanoemulsions against Aedes aegypti

  • Jonatas L. Duarte,
  • Leonardo Delello Di Filippo,
  • Anna Eliza Maciel de Faria Mota Oliveira,
  • Rafael Miguel Sábio,
  • Gabriel Davi Marena,
  • Tais Maria Bauab,
  • Cristiane Duque,
  • Vincent Corbel and
  • Marlus Chorilli

Beilstein J. Nanotechnol. 2024, 15, 104–114, doi:10.3762/bjnano.15.10

Graphical Abstract
  • HLB, one can obtain the nanoemulsion with the smallest droplet size, leading to more stable formulations [20]. The rHLB is usually determined by preparing NEs with different ratios of surfactant blends and choosing the most stable formulation to determine the rHLB of the oil phase [21
  • the best ratio between two surfactants, one more lipophilic and one more hydrophilic, which will be necessary to obtain a stable NE [18]. The rHLB of myrcene and cymene was determined using a mixture of Span 80 (lipophilic) and Tween 20 (surfactant). At a time of 24 h after preparation, formulations
  • parameters throughout the analyzed period (60 days) (Table 1). For this reason, the formulation with HLB 15 was the formulation chosen as the rHLB of cymene. After 24 h, the myrcene formulations with lower HLB values (10–11), that is, a greater amount of the surfactant (Tween 20) plus lipophilic (Span 80
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2024

Fluorescent bioinspired albumin/polydopamine nanoparticles and their interactions with Escherichia coli cells

  • Eloïse Equy,
  • Jordana Hirtzel,
  • Sophie Hellé,
  • Béatrice Heurtault,
  • Eric Mathieu,
  • Morgane Rabineau,
  • Vincent Ball and
  • Lydie Ploux

Beilstein J. Nanotechnol. 2023, 14, 1208–1224, doi:10.3762/bjnano.14.100

Graphical Abstract
  • concentration for further experiments. During the freeze-drying process, BSA/PDA NPs acted as surfactant and were located around water droplets when the water was rapidly sublimated, which resulted in the formation of a foam (Supporting Information File 1, Figure S1a). After freeze-drying, the foam could be
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2023

Nanostructured lipid carriers containing benznidazole: physicochemical, biopharmaceutical and cellular in vitro studies

  • Giuliana Muraca,
  • María Esperanza Ruiz,
  • Rocío C. Gambaro,
  • Sebastián Scioli-Montoto,
  • María Laura Sbaraglini,
  • Gisel Padula,
  • José Sebastián Cisneros,
  • Cecilia Yamil Chain,
  • Vera A. Álvarez,
  • Cristián Huck-Iriart,
  • Guillermo R. Castro,
  • María Belén Piñero,
  • Matias Ildebrando Marchetto,
  • Catalina Alba Soto,
  • Germán A. Islan and
  • Alan Talevi

Beilstein J. Nanotechnol. 2023, 14, 804–818, doi:10.3762/bjnano.14.66

Graphical Abstract
  • delivering active principles [19]. SLNs comprise a lipid core, solid at 25 °C, stabilized by steric effects with a surfactant. The addition of small amounts of a liquid lipid at 25 °C leads to the improvement of SLNs in terms of sustained drug release and encapsulation efficiency (EE%), enabling the
  • , which could be referred to the melting points of the lipid and the surfactant, respectively. This suggests that no other endothermic changes occur to the formulation constituents or its load during the high-energy sonication procedure. A peak matching the phase transition peak of BNZ did not appear in
  • bulk material, considering the disarrangement caused by the incorporation of the drug and the surfactant. For that reason, it might require less energy to melt in comparison to the pure crystalline substance [25]. Thermogravimetric curves of myristyl myristate, poloxamer 188, and BNZ showed one thermal
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2023

Silver-based SERS substrates fabricated using a 3D printed microfluidic device

  • Phommachith Sonexai,
  • Minh Van Nguyen,
  • Bui The Huy and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2023, 14, 793–803, doi:10.3762/bjnano.14.65

Graphical Abstract
  • of nanoparticles. Ag NPs were created by reducing AgNO3 solution with NaBH4 as a reducing agent and TCD as a stabilizer [43][44]. Mineral oil served as a continuous phase when combined with the surfactant Span 80 (2% w/v). To prevent droplets from coalescing in the microchannel, Span 80 was added to
  • syringe pumps (NE-300 InfusionONE Syginge Pump, USA) were used to inject mineral oil mixed with the surfactant Span 80 (2% w/v), solution (a), and solution (b) into the droplet-based microfluidic system at flow rates of 20 and 80 µL·min−1, respectively. The as-synthesized colloidal solution of Ag NPs was
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2023

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  • low-energy methods (also called thermodynamic methods [5]) overcome this energy barrier by producing low interfacial tensions, changes in the surfactant layer curvature, or gradients of chemical potential between the phases. Herein, we focus on nanoemulsification by low-energy methods. The two main
  • ] proceeds at constant temperature (Figure 1b). Here, the change in the curvature of the surfactant layer from negative to positive or vice versa is driven by the addition of water (which increases POE hydration) to a mixture of oil + surfactant to produce an O/W nanoemulsion [14]. Under continued dilution
  • . Moreover, the composition-driven phase inversion can occur using nonionic or ionic surfactants, which adds flexibility to the process. Low-energy nanoemulsions can also be produced by processes that do not involve any phase inversion (i.e., any change in the sign of surfactant curvature), such as self
PDF
Album
Review
Published 13 Mar 2023

Liquid phase exfoliation of talc: effect of the medium on flake size and shape

  • Samuel M. Sousa,
  • Helane L. O. Morais,
  • Joyce C. C. Santos,
  • Ana Paula M. Barboza,
  • Bernardo R. A. Neves,
  • Elisângela S. Pinto and
  • Mariana C. Prado

Beilstein J. Nanotechnol. 2023, 14, 68–78, doi:10.3762/bjnano.14.8

Graphical Abstract
  • solution of sodium cholate (SC) at 6 mg/mL, previously employed in the literature [11]. SC is a bile salt ionic surfactant widely employed in LPE [6][19][20][21]. While it is less toxic than other organic compounds usually employed for the same purpose, such as N-methyl-pyrrolidone (NMP), it is expensive
  • talc, we also added less talc powder to the solution, to keep the ratio constant. We also tested the nonionic surfactant Triton-X100. Besides the absence of charged groups, compared to SC, Triton-X100 is also less expensive, although not environmentally friendly either. Finally, we tested an organic
  • the talc concentration was also diminished to keep the mass ratio between surfactant and talc constant, the effect must be due to the surfactant arrangement (i.e., the presence or absence of molecular aggregates) and a higher relative amount of dispersion medium (the water-to-talc ratio is larger in
PDF
Album
Full Research Paper
Published 09 Jan 2023

Single-step extraction of small-diameter single-walled carbon nanotubes in the presence of riboflavin

  • Polina M. Kalachikova,
  • Anastasia E. Goldt,
  • Eldar M. Khabushev,
  • Timofei V. Eremin,
  • Timofei S. Zatsepin,
  • Elena D. Obraztsova,
  • Konstantin V. Larionov,
  • Liubov Yu. Antipina,
  • Pavel B. Sorokin and
  • Albert G. Nasibulin

Beilstein J. Nanotechnol. 2022, 13, 1564–1571, doi:10.3762/bjnano.13.130

Graphical Abstract
  • carbon nanotube geometries remain one of the paramount technological challenges for their potential applications [2][5][8][9][10]. The noncovalent functionalization of carbon nanotubes promotes their individualization due to hydrophobic interactions between nanotubes and surfactant molecules that also
  • performance in both individualization and chirality separation of carbon nanotubes, excessive surfactant concentrations are usually required for their complete individualization [2][8][11]. Such excess subsequently introduces an additional step of surfactant removal to recover the SWCNTs in a pristine state
  • another class of biomolecules that can be potentially utilized as a surfactant for dispersing SWCNTs. Having relatively low solubility in water, flavins are generally innocuous for living cells. Riboflavin (also known as vitamin B2) is a precursor of such coenzymes as flavin mononucleotide phosphate and
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2022

Orally administered docetaxel-loaded chitosan-decorated cationic PLGA nanoparticles for intestinal tumors: formulation, comprehensive in vitro characterization, and release kinetics

  • Sedat Ünal,
  • Osman Doğan and
  • Yeşim Aktaş

Beilstein J. Nanotechnol. 2022, 13, 1393–1407, doi:10.3762/bjnano.13.115

Graphical Abstract
  • appears to be the primary problem and requires the addition of a co-solvent and/or a surfactant (ethanol/polysorbate 80) to the formulations [32][36]. However, results such as acute hypersensitivity reactions and decreased clinical efficacy have been reported due to auxiliary components such as Cremophor
  • method, the organic and aqueous phase were prepared separately. First, the organic phase was prepared by dissolving 2% (w/v) PLGA and 20 mg docetaxel in 10 mL ethyl acetate. 25 mL of aqueous phase was prepared by dissolving the non-ionic surfactant PVA at a concentration of 2% and CS at a concentration
PDF
Album
Full Research Paper
Published 23 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • surfactant-free hydrothermal technique [55]. According to the results, the pH value has a significant impact on shape, surface area, particle size, and V–O bond length. The grain size was reduced when the pH value was raised, and the crystal structure became more closely stacked. Under visible-light
  • simple hydrothermal synthesis for preparing 2D BiOCl nanosheets [83]. This was accomplished by altering the pH value of the precursor solution and using of dulcitol (C6H14O6) as surfactant. The pH value substantially influenced the thickness of the nanosheets and the fraction of exposed (001) facets. The
PDF
Album
Review
Published 11 Nov 2022

Comparative molecular dynamics simulations of thermal conductivities of aqueous and hydrocarbon nanofluids

  • Adil Loya,
  • Antash Najib,
  • Fahad Aziz,
  • Asif Khan,
  • Guogang Ren and
  • Kun Luo

Beilstein J. Nanotechnol. 2022, 13, 620–628, doi:10.3762/bjnano.13.54

Graphical Abstract
  • future considerations, the system under observation should be modified with surfactants to increase stability for longer time periods, as systems without surfactant show agglomeration after a short time. Hence, this causes system destabilisation and creates sedimentation. Finally, surface modification of
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2022

A new method for obtaining the magnetic shape anisotropy directly from electron tomography images

  • Cristian Radu,
  • Ioana D. Vlaicu and
  • Andrei C. Kuncser

Beilstein J. Nanotechnol. 2022, 13, 590–598, doi:10.3762/bjnano.13.51

Graphical Abstract
  • analysis, 28–30 wt % solution of NH3 in water, Acros Organics). The preparation of the MNPs was performed by reverse precipitation, in which an aqueous solution (50 mL) of FeSO4 with the surfactant CTAB (2:1, mass ratio) was slowly dripped into a 50 mL basic solution of NaOH and NH4OH. The solution turned
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022

Stimuli-responsive polypeptide nanogels for trypsin inhibition

  • Petr Šálek,
  • Jana Dvořáková,
  • Sviatoslav Hladysh,
  • Diana Oleshchuk,
  • Ewa Pavlova,
  • Jan Kučka and
  • Vladimír Proks

Beilstein J. Nanotechnol. 2022, 13, 538–548, doi:10.3762/bjnano.13.45

Graphical Abstract
  • -Tyr nanogel, showing that in the presence of TWEEN 85 surfactant a spherical nanogel with low yield was obtained. In contrast, in the presence of SPAN 80 surfactant, the final nanogel was more irregular in shape while the yield of nanogelation was increased. The in vitro and in vivo tests proved
  • biocompatibility and biodegradability of PHEG-Tyr nanogel and biocompatibility of Nα-Lys-NG nanogel [23][24][25]. In this study, we attempt to obtain improved shape and morphology of PHEG-Tyr nanogel by combining surfactant SPAN 80 with surfactant TWEEN 85 based on a previous study presenting the stabilization
  • nanogel was separated by centrifugation (11,000 rpm/20 min), washed three times with CHX, dispersed in CHX (20 mL) overnight, and again washed seven times with CHX to completely remove any residual surfactant. Then, the nanogel was dispersed in distilled water and dialyzed (molecular weight cut-off: <100
PDF
Album
Full Research Paper
Published 22 Jun 2022

Photothermal ablation of murine melanomas by Fe3O4 nanoparticle clusters

  • Xue Wang,
  • Lili Xuan and
  • Ying Pan

Beilstein J. Nanotechnol. 2022, 13, 255–264, doi:10.3762/bjnano.13.20

Graphical Abstract
  • solution with high thermal stability. Transmission electron microscopy (TEM) revealed a typical face-centered cubic structure with uniform size and an average diameter of 5.2 ± 1.5 nm (Figure 1a) [17]. After the surfactant dodecyltrimethylammonium bromide (DTAB) was introduced, its lipophilic ends combined
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2022

Surfactant-free syntheses and pair distribution function analysis of osmium nanoparticles

  • Mikkel Juelsholt,
  • Jonathan Quinson,
  • Emil T. S. Kjær,
  • Baiyu Wang,
  • Rebecca Pittkowski,
  • Susan R. Cooper,
  • Tiffany L. Kinnibrugh,
  • Søren B. Simonsen,
  • Luise Theil Kuhn,
  • María Escudero-Escribano and
  • Kirsten M. Ø. Jensen

Beilstein J. Nanotechnol. 2022, 13, 230–235, doi:10.3762/bjnano.13.17

Graphical Abstract
  • X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, 9700 S Cass Ave, Lemont, IL 60439, USA Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej Bldg. 310, Lyngby, DK-2800 Kgs., Denmark 10.3762/bjnano.13.17 Abstract A surfactant
  • -free synthesis of precious metal nanoparticles (NPs) performed in alkaline low-boiling-point solvents has been recently reported. Monoalcohols are here investigated as solvents and reducing agents to obtain colloidal Os nanoparticles by using low-temperature (<100 °C) surfactant-free syntheses. The
  • ] complexes. Keywords: metal nanoparticles; osmium; pair distribution function; surfactant-free synthesis; Findings Precious metals are limited resources, yet fundamental for a range of applications, such as in medicine or catalysis [1][2][3]. There are relatively few reports on osmium (Os) compared to
PDF
Album
Supp Info
Letter
Published 16 Feb 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
  • membrane to remove Pb2+ and Cu2+ ions from aqueous solutions by electrospinning PVP and 3-mercaptopropyltrimethoxysilane (TMPTMS) infused with cerium oxide [62]. Also, they have modified the PVP/CeO2/TMPTMS nanofibers with a surfactant (Pluronic123) to obtain smaller fiber diameters and greater pore volume
  • /TMPTMS alone without surfactant. The sorbent membrane was regenerated by simply using 0.1 M HNO3 as a desorbing agent [62]. Electrospun nanohybrids have also been utilized to remove radioactive metals. Talebi et al. investigated the sorption of Th4+ and U6+ ions by an electrospun nanomembrane of a
  • the nanoscale roughness of the surface, which is a factor that enhances the superwettability. The authors investigated the separation capability of both surfactant-stabilized and surfactant-free oil-in-water emulsions. A permeation flux of 6290 ± 50 LMH and 1120 ± 80 LMH for surfactant-free and
PDF
Album
Review
Published 31 Jan 2022

Biocompatibility and cytotoxicity in vitro of surface-functionalized drug-loaded spinel ferrite nanoparticles

  • Sadaf Mushtaq,
  • Khuram Shahzad,
  • Tariq Saeed,
  • Anwar Ul-Hamid,
  • Bilal Haider Abbasi,
  • Nafees Ahmad,
  • Waqas Khalid,
  • Muhammad Atif,
  • Zulqurnain Ali and
  • Rashda Abbasi

Beilstein J. Nanotechnol. 2021, 12, 1339–1364, doi:10.3762/bjnano.12.99

Graphical Abstract
  • chemistry of NPs, thereby affecting their physiochemical and biological properties [11][20]. In the present work, we synthesized a variety of MFe2O4 (M = Co, Ni, and Zn) NPs using the sonochemical technique. Particle agglomeration was prevented by using oleic acid as the surfactant [21]. Phase change of
  • hydrophilic groups. The hydrophobic side chains interact with the hydrophobic surfactant (oleic acid) present on the surface of NPs, thereby exposing the hydrophilic end to interact with the aqueous environment and contributing towards a colloidal nanosuspension [23]. The surfaces of the NPs were further
PDF
Album
Full Research Paper
Published 02 Dec 2021

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • ethanol and citric acid played a vital role in the growth of the dendrite nanostructure, which exhibited a fractal dimension of 1.94. Bismuth vanadate -based fractals Zhao et al. synthesized large-scale highly uniform hyperbranched monoclinic BiVO4 (h-BiVO4) structures by a surfactant-free hydrothermal
  • showed good reproducibility, high stability, and selectivity towards ammonia over other gases. In 2015, Zhao et al. reported dandelion-like NiO hierarchical structures assembled with dendritic elements (ca. 1.8 µm) synthesized via a surfactant-free one-step hydrothermal route [86]. The dandelion-like NiO
PDF
Album
Supp Info
Review
Published 09 Nov 2021

Use of nanosystems to improve the anticancer effects of curcumin

  • Andrea M. Araya-Sibaja,
  • Norma J. Salazar-López,
  • Krissia Wilhelm Romero,
  • José R. Vega-Baudrit,
  • J. Abraham Domínguez-Avila,
  • Carlos A. Velázquez Contreras,
  • Ramón E. Robles-Zepeda,
  • Mirtha Navarro-Hoyos and
  • Gustavo A. González-Aguilar

Beilstein J. Nanotechnol. 2021, 12, 1047–1062, doi:10.3762/bjnano.12.78

Graphical Abstract
  • ± 12.25 nm, EE% 78.04 ± 0.54 >70% CUR). This was associated with the compatibility of the compound with the lipid medium and the presence of the surfactant in the polymer formulation (which has been reported to affect the % EE). In addition, they reported better cellular uptake of SLN, which was
  • through a thin interfacial surfactant layer [90]. Some of their advantages include high surface area and high kinetic stability against various types of instabilities. Nanoemulsions have been commercially used to encapsulate CUR and other bioactive agents [91][92]. Their properties allow them to be
PDF
Album
Review
Published 15 Sep 2021

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • surfactant for synthesizing anisotropic nanoparticles with high yield and monodispersity. The surfactant induces anisotropy during the growth of nanoparticles and enables NIR absorption capability due to longitudinal surface plasmon resonance (LSPR) [11]. However, despite the superior plasmonic properties
  • the year 2003 [26]. The first work on using DESs as a solvent in synthesizing anisotropic gold nanoparticles was reported in 2008 [27]. The synthesis involved no surfactant or seed in the reaction mixture. Later on, several studies were carried out to synthesize nanomaterials using DESs that embrace
  • carrageenan in the synthesis of nanomaterials that are nontoxic. The review begins by discussing widely used wet chemical methods of synthesizing anisotropic plasmonic metal nanomaterials. We also give insight in growth mechanisms during the initiation of anisotropy in the presence of a surfactant. This
PDF
Album
Review
Published 18 Aug 2021
Other Beilstein-Institut Open Science Activities