Search results

Search for "surfactants" in Full Text gives 176 result(s) in Beilstein Journal of Nanotechnology.

Soft materials nanoarchitectonics: liquid crystals, polymers, gels, biomaterials, and others

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2025, 16, 1025–1067, doi:10.3762/bjnano.16.77

Graphical Abstract
  • (Figure 6) [241]. The presence of two salts and two surfactants ensures the stability of the lyotropic liquid crystal mesophase even at elevated salt concentrations. The calcium and iron salts act as eutectic solvents, facilitating the assembly of surfactants into the lyotropic liquid crystal phase
  • materials nanoarchitectonics. Cornez, Azzaroni, and colleagues describe the preparation and functionalization of highly organized layered multilayer structures by layer-by-layer organization of lipid-like surfactants and polyelectrolytes (Figure 15) [276]. In this study, hydrophobic lamellar domains were
  • incorporation of an additional redox-active osmium complex layer between the surfactant bilayer and the glucose layer enhances the wiring efficiency of the redox assembly. The incorporation of lipid-like surfactants into polyelectrolyte multilayers can facilitate the development of soft materials
PDF
Album
Review
Published 04 Jul 2025

Synthesis and magnetic transitions of rare-earth-free Fe–Mn–Ni–Si-based compositionally complex alloys at bulk and nanoscale

  • Shabbir Tahir,
  • Tatiana Smoliarova,
  • Carlos Doñate-Buendía,
  • Michael Farle,
  • Natalia Shkodich and
  • Bilal Gökce

Beilstein J. Nanotechnol. 2025, 16, 823–836, doi:10.3762/bjnano.16.62

Graphical Abstract
  • available for producing CCA NPs, pulsed laser ablation in liquids (PLAL) stands out as a particularly promising method [41][42][43]. PLAL is a straightforward and versatile method that does not require expensive precursors, reducing agents, or surfactants [44][45]. The process is based on the laser
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2025

Colloidal few layered graphene–tannic acid preserves the biocompatibility of periodontal ligament cells

  • Teissir Ben Ammar,
  • Naji Kharouf,
  • Dominique Vautier,
  • Housseinou Ba,
  • Nivedita Sudheer,
  • Philippe Lavalle and
  • Vincent Ball

Beilstein J. Nanotechnol. 2025, 16, 664–677, doi:10.3762/bjnano.16.51

Graphical Abstract
  • yielding high-quality graphene [10][11]. The ability to produce large quantities of FLG with minimal structural defects makes this method particularly well-suited for industrial applications, including those in the dental field [4][12]. A key aspect of LPE is the use of surfactants to prevent the
  • reaggregation of exfoliated graphene layers [11]. Various surfactants have been employed. For instance, sodium dodecylbenzene sulfonate and sodium cholate have been reported to be able to produce stable graphene colloidal dispersions [13]. However, these synthetic surfactants often raise concerns about toxicity
PDF
Album
Supp Info
Full Research Paper
Published 20 May 2025

Aprepitant-loaded solid lipid nanoparticles: a novel approach to enhance oral bioavailability

  • Mazhar Hussain,
  • Muhammad Farooq,
  • Muhammad Asad Saeed,
  • Muhammad Ijaz,
  • Sherjeel Adnan,
  • Zeeshan Masood,
  • Muhammad Waqas,
  • Wafa Ishaq and
  • Nabeela Ameer

Beilstein J. Nanotechnol. 2025, 16, 652–663, doi:10.3762/bjnano.16.50

Graphical Abstract
  • class-IV drug [10]. Low solubility and poor dissolution of BCS class-IV drugs can be improved by using techniques such as incorporating the drug or prodrug into lipid or polymeric formulations, using solid lipid nanoparticles (SLNs), applying surfactants, adjusting the pH value, reducing particle size
PDF
Album
Full Research Paper
Published 15 May 2025

A formulation containing Cymbopogon flexuosus essential oil: improvement of biochemical parameters and oxidative stress in diabetic rats

  • Ailton Santos Sena-Júnior,
  • Cleverton Nascimento Santana Andrade,
  • Pedro Henrique Macedo Moura,
  • Jocsã Hémany Cândido dos Santos,
  • Cauãn Torres Trancoso,
  • Eloia Emanuelly Dias Silva,
  • Deise Maria Rego Rodrigues Silva,
  • Ênio Pereira Telles,
  • Luiz André Santos Silva,
  • Isabella Lima Dantas Teles,
  • Sara Fernanda Mota de Almeida,
  • Daniel Alves de Souza,
  • Jileno Ferreira Santos,
  • Felipe José Aidar Martins,
  • Ana Mara de Oliveira e Silva,
  • Sandra Lauton-Santos,
  • Guilherme Rodolfo Souza de Araujo,
  • Cristiane Bani Correa,
  • Rogéria De Souza Nunes,
  • Lysandro Pinto Borges and
  • Ana Amélia Moreira Lira

Beilstein J. Nanotechnol. 2025, 16, 617–636, doi:10.3762/bjnano.16.48

Graphical Abstract
  • stabilized by surfactants, with a very small droplet size (<100 nm), which facilitates their permeation through membranes [9]. In addition, MEs showed increased anti-inflammatory activity, reduced irritation, and improved the stability of EOs in previous studies [10][11]. Thus, from an innovative perspective
  • diagram Various surfactants in different combinations were tested to obtain the ME. In general, non-ionic surfactants are most commonly used because they have a low critical micelle concentration, low toxicity, and greater stability to changes in pH and charge when compared to other classes of surfactants
  • [14]. Another important parameter is the hydrophilic–lipophilic balance (HLB). Surfactants with low HLB values between 3 and 6 generally promote the formation of water/oil (W/O) emulsions, while high HLB values between 8 and 18 predominantly result in O/W emulsions [14]. The HLB values of Eumulgin® CO
PDF
Album
Supp Info
Full Research Paper
Published 07 May 2025

Size control of nanoparticles synthesized by pulsed laser ablation in liquids using donut-shaped beams

  • Abdel Rahman Altakroury,
  • Oleksandr Gatsa,
  • Farbod Riahi,
  • Zongwen Fu,
  • Miroslava Flimelová,
  • Andrei Samokhvalov,
  • Stephan Barcikowski,
  • Carlos Doñate-Buendía,
  • Alexander V. Bulgakov and
  • Bilal Gökce

Beilstein J. Nanotechnol. 2025, 16, 407–417, doi:10.3762/bjnano.16.31

Graphical Abstract
  • polygon laser scanner [21]. However, narrowing the NP size distribution remains a challenge for PLAL [22]. Typically, PLAL-generated NPs exhibit broad and/or bimodal size distributions [23][24]. Extensive research has been conducted to reduce NP size dispersion by PLAL, mainly by adding surfactants [25
PDF
Album
Supp Info
Full Research Paper
Published 25 Mar 2025

Engineered PEG–PCL nanoparticles enable sensitive and selective detection of sodium dodecyl sulfate: a qualitative and quantitative analysis

  • Soni Prajapati and
  • Ranjana Singh

Beilstein J. Nanotechnol. 2025, 16, 385–396, doi:10.3762/bjnano.16.29

Graphical Abstract
  • synthesized nanoparticles exhibited a distinct colorimetric response to SDS when combined with the Bradford reagent, which acted as a linker molecule. Interference studies demonstrated the high selectivity of the method, even in the presence of various heavy metals and other surfactants. The method showed
  • technique for quantifying surfactants employs ionic electrodes to measure the unknown concentration of the target substance within 30 minutes. However, this method exhibits reduced sensitivity (280–600 µg/mL) and selectivity, rendering it less than optimal for analyzing surfactants in relatively complex
  • using PEG–PCL NPs. Thus, this study is the first of its kind to develop a colorimetric/spectrometric detection system for anionic surfactants. Materials and Methods Materials Methoxy polyethylene glycol (mPEG5000, Cat. No. 81323), ε-caprolactone (Cat. No. 704067), stannous octoate (Cat. No. S3252
PDF
Album
Full Research Paper
Published 20 Mar 2025

Pulsed laser in liquid grafting of gold nanoparticle–carbon support composites

  • Madeleine K. Wilsey,
  • Teona Taseska,
  • Qishen Lyu,
  • Connor P. Cox and
  • Astrid M. Müller

Beilstein J. Nanotechnol. 2025, 16, 349–361, doi:10.3762/bjnano.16.26

Graphical Abstract
  • surfactants for size control [17][18][19]. Nanoparticles prepared by pulsed laser in liquid synthesis are surfactant-free [1], but the same binder strategies are used for nanoparticle–support composites as for conventionally made nanoparticles. Capping ligands and binders hinder intimate contact between
  • nanoparticles and supports, lowering electrical contact fidelity and energy efficiency of the composite electrodes. Surfactants alter nanoparticle surfaces, complicating understanding and often lowering catalytic performance by blocking active sites. Surfactants (like binders) partake in electrochemical
  • function of gold nanoparticle preparation method. The pulsed laser-grafted integrated composites showed superior electrical contact compared to analogous electrodes with chemically synthesized gold nanoparticles with citrate surfactants that were electrostatically attached to hydrophilic carbon fiber paper
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2025

Fabrication and evaluation of BerNPs regarding the growth and development of Streptococcus mutans

  • Tuyen Huu Nguyen,
  • Hong Thanh Pham,
  • Kieu Kim Thanh Nguyen,
  • Loan Hong Ngo,
  • Anh Ngoc Tuan Mai,
  • Thu Hoang Anh Lam,
  • Ngan Thi Kim Phan,
  • Dung Tien Pham,
  • Duong Thuy Hoang,
  • Thuc Dong Nguyen and
  • Lien Thi Xuan Truong

Beilstein J. Nanotechnol. 2025, 16, 308–315, doi:10.3762/bjnano.16.23

Graphical Abstract
  • an efficient technique for fabricating nanoparticles from crystalline structures of organic pharmaceutical raw materials [18]. Other studies have shown that incorporating surfactants into the wet ball milling process significantly enhances particle size reduction, facilitates the effective production
PDF
Album
Full Research Paper
Published 27 Feb 2025

Preferential enrichment and extraction of laser-synthesized nanoparticles in organic phases

  • Theo Fromme,
  • Maximilian L. Spiekermann,
  • Florian Lehmann,
  • Stephan Barcikowski,
  • Thomas Seidensticker and
  • Sven Reichenberger

Beilstein J. Nanotechnol. 2025, 16, 254–263, doi:10.3762/bjnano.16.20

Graphical Abstract
  • in liquid; laser synthesis and processing of colloids; phase transfer; size separation; thermomorphic multiphase system; Introduction Laser ablation in liquids (LAL) provides nanoparticles without the need of external surfactants while retaining the initial composition of the educt material in the
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2025

Recent advances in photothermal nanomaterials for ophthalmic applications

  • Jiayuan Zhuang,
  • Linhui Jia,
  • Chenghao Li,
  • Rui Yang,
  • Jiapeng Wang,
  • Wen-an Wang,
  • Heng Zhou and
  • Xiangxia Luo

Beilstein J. Nanotechnol. 2025, 16, 195–215, doi:10.3762/bjnano.16.16

Graphical Abstract
  • excreted by penetrating the renal filtration barrier, but too small AuNPs may enter cell membranes and irreversibly bind to cellular biopolymers, leading to cytotoxicity [217]. Large AuNPs may accumulate in eye, liver, and spleen, causing long-term toxicity. Surfactants such as CTAB and CTAC used to assist
PDF
Album
Review
Published 17 Feb 2025

Polymer lipid hybrid nanoparticles for phytochemical delivery: challenges, progress, and future prospects

  • Iqra Rahat,
  • Pooja Yadav,
  • Aditi Singhal,
  • Mohammad Fareed,
  • Jaganathan Raja Purushothaman,
  • Mohammed Aslam,
  • Raju Balaji,
  • Sonali Patil-Shinde and
  • Md. Rizwanullah

Beilstein J. Nanotechnol. 2024, 15, 1473–1497, doi:10.3762/bjnano.15.118

Graphical Abstract
  • matrix, which can vary in its configuration depending on the specific requirements of the delivery system [12][13]. The lipid components, often phospholipids, cholesterol, and surfactants are integral for solubilizing lipophilic drugs. The polymer component, which can include materials such as
  • , including phospholipids, cholesterol, and surfactants, play a crucial role in solubilizing lipophilic phytochemicals and facilitating interactions with biological membranes. The polymers provide structural stability, controlled release properties, and protection against premature degradation [40][41
  • simplest among PLHNPs; they are simply mixed nanosystems of polymer/copolymer and lipids with the help of surfactants. In this system, the lipids are scattered in a polymeric/copolymeric matrix [48]. Monolithic PLHNP systems are very similar to colloidal polymeric nanocarriers. In these nanocarriers
PDF
Album
Review
Published 22 Nov 2024

Nanotechnological approaches for efficient N2B delivery: from small-molecule drugs to biopharmaceuticals

  • Selin Akpinar Adscheid,
  • Akif E. Türeli,
  • Nazende Günday-Türeli and
  • Marc Schneider

Beilstein J. Nanotechnol. 2024, 15, 1400–1414, doi:10.3762/bjnano.15.113

Graphical Abstract
  • lipid NPs (SLNs) are prepared from lipids that are solid at room temperature, which are then stabilized by surfactants [100]. While both liposomes and SLNs are considered biocompatible and biodegradable, SLNs provide increased stability because of their rigid core [101]. Nevertheless, SLNs suffer from
PDF
Album
Review
Published 12 Nov 2024

Nanoarchitectonics with cetrimonium bromide on metal nanoparticles for linker-free detection of toxic metal ions and catalytic degradation of 4-nitrophenol

  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2024, 15, 1312–1332, doi:10.3762/bjnano.15.106

Graphical Abstract
  • agents on the metal surface and further dominates functionalization. Various capping agents such as citrate, PVP, and surfactants have been the choice for metal nanoparticles. Controlled size, shape, and surface properties have been achieved using strong capping and reducing agents. Capping agents
  • environments or functional groups [3]. Surfactants bind to metal surfaces and create a stable colloidal solution by preventing the nanoparticles from aggregation or clustering [4]. CTAB is a widely used cationic surfactant that provides nanoparticle ionic stability and anisotropy [5]. Although CTAB delivers
  • plasmons due to the easy desorption of CTAB in the presence of NaOH, which is not observed in the case of small gold nanorods and nanospheres. The CTAB is tightly packed on short nanorods and nanospheres [43]. It was reported that NaOH significantly alters the micelles of quaternary ammonium surfactants
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2024

Synthesis, characterization and anticancer effect of doxorubicin-loaded dual stimuli-responsive smart nanopolymers

  • Ömür Acet,
  • Pavel Kirsanov,
  • Burcu Önal Acet,
  • Inessa Halets-Bui,
  • Dzmitry Shcharbin,
  • Şeyda Ceylan Cömert and
  • Mehmet Odabaşı

Beilstein J. Nanotechnol. 2024, 15, 1189–1196, doi:10.3762/bjnano.15.96

Graphical Abstract
  • 0.230 g NaHSO3 (solution D) were added to the medium, and polymerization was initiated. After about 10 h of polymerization, the surfactants and unreacted monomers were washed out with the help of an ethanol–water mixture, and the mixture was centrifuged at 25,000 rpm (Beckman Coulter, Allegra 64R
PDF
Album
Full Research Paper
Published 26 Sep 2024

Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications

  • Shakhzodjon Uzokboev,
  • Khojimukhammad Akhmadbekov,
  • Ra’no Nuritdinova,
  • Salah M. Tawfik and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2024, 15, 1077–1104, doi:10.3762/bjnano.15.88

Graphical Abstract
  • aldehydes is widely awaited. Coating fluorescent alginate-modified surfactants (APGF and APOF) on ZIF-8 metal-organic frameworks (MOFs) resulted in the development of novel APGF@ZIF-8 and APOF@ZIF-8 sensing materials, which are porous fluorescent sensors (SBET up to 1519 m2/g). The developed sensors
PDF
Album
Review
Published 22 Aug 2024

Therapeutic effect of F127-folate@PLGA/CHL/IR780 nanoparticles on folate receptor-expressing cancer cells

  • Thi Ngoc Han Pham,
  • Phuong-Thao Dang-Luong,
  • Hong-Phuc Nguyen,
  • Loc Le-Tuan,
  • Xuan Thang Cao,
  • Thanh-Danh Nguyen,
  • Vy Tran Anh and
  • Hieu Vu_Quang

Beilstein J. Nanotechnol. 2024, 15, 954–964, doi:10.3762/bjnano.15.78

Graphical Abstract
  • emulsion, or nanoprecipitation [1][4], in which copolymers are dissolved in an organic solvent, called the organic phase, and then are put into an immiscible aqueous solution, called the water phase, to form the nanoparticles. Various surfactants, including poly(vinyl alcohol) (PVA), sodium cholate, or
  • F127-folate to enhance their therapeutic efficacy. Size and charge of the nanoparticles PLGA nanoparticles can be synthesized by several methods, such as single emulsion evaporation, double emulsion evaporation, or microfluidics using different surfactants, including PVA, F127, sodium cholate, or SDS
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2024

Electrospun nanofibers: building blocks for the repair of bone tissue

  • Tuğrul Mert Serim,
  • Gülin Amasya,
  • Tuğba Eren-Böncü,
  • Ceyda Tuba Şengel-Türk and
  • Ayşe Nurten Özdemir

Beilstein J. Nanotechnol. 2024, 15, 941–953, doi:10.3762/bjnano.15.77

Graphical Abstract
  • required for Taylor cone formation increases [50]. With the decrease in surface tension, fewer beads are formed [55][71], and ionic surfactants can be used to reduce the number of beads by the lowering surface tension [72][73]. Conductivity The conductivity of the solution is of great importance to improve
  • polymer liquid will not be fully stretched [74][75]. Salts or surfactants can be added to increase the conductivity [76][77][78]. Optimizing the conductivity is essential to prevent bead formation and to improve fiber structures [76][77][78]. With the increase of conductivity smaller fiber diameters and
PDF
Album
Review
Published 25 Jul 2024

Gold nanomakura: nanoarchitectonics and their photothermal response in association with carrageenan hydrogels

  • Nabojit Das,
  • Vikas,
  • Akash Kumar,
  • Sanjeev Soni and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2024, 15, 678–693, doi:10.3762/bjnano.15.56

Graphical Abstract
  • hydrogels is not well reported. In this study, nanomakura-shaped anisotropic gold nanoparticles (AuNMs) were synthesized via a surfactant-assisted seed-mediated protocol. Quaternary cationic surfactants having variable carbon tail length (n = 16, 14, 12) were used as capping for tuning the plasmon peak of
  • hydrogels for enabling usage on nanophotonic, photothermal, and bio-imaging applications. Keywords: anisotropy; hydrogel; kappa-carrageenan; metal nanoparticles; nanoarchitectonics; nanomakura; photothermal properties; surfactants; Introduction Nanoarchitectonics is the fabrication of functional material
  • excellent biocompatibility. However, its thermoresponsive behaviour in association with anisotropic gold nanoparticles is yet to be explored towards photothermal response [23]. In the present work, we developed pillow-shaped (called nanomakura in Japanese) AuNPs using surfactants myristyltrimethylammonium
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2024

Laser synthesis of nanoparticles in organic solvents – products, reactions, and perspectives

  • Theo Fromme,
  • Sven Reichenberger,
  • Katharine M. Tibbetts and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2024, 15, 638–663, doi:10.3762/bjnano.15.54

Graphical Abstract
  • generation of inorganic particles is a physicochemical approach that claims to synthesize particles without surfactants or molecular additives. In contrast to other approaches of nanoparticle synthesis, LSPC only requires the neat (elemental) target materials while no other precursors or ligand exchange
  • the surfactants (or inorganic anions) used, the carbon stemming from the organic solvent molecules acts as a surface modification of the nanoparticles and is often obtained as carbon shells. The carbon shell can be amorphous carbon [100][101], graphitic carbon [104][149][150][151][152], or carbide [99
PDF
Album
Review
Published 05 Jun 2024

Potential of a deep eutectic solvent in silver nanoparticle fabrication for antibiotic residue detection

  • Le Hong Tho,
  • Bui Xuan Khuyen,
  • Ngoc Xuan Dat Mai and
  • Nhu Hoa Thi Tran

Beilstein J. Nanotechnol. 2024, 15, 426–434, doi:10.3762/bjnano.15.38

Graphical Abstract
  • by different kinds of surfactants such as cetyltrimethylammonium bromide [20][21], polyvinylpyrrolidone [18], and sodium dodecyl sulfate [21][22]. However, these chemicals have many negative effects on the environment including microbial, plant, soil, and marine ecosystems as reported by Rebello and
PDF
Album
Full Research Paper
Published 16 Apr 2024

Nanomedicines against Chagas disease: a critical review

  • Maria Jose Morilla,
  • Kajal Ghosal and
  • Eder Lilia Romero

Beilstein J. Nanotechnol. 2024, 15, 333–349, doi:10.3762/bjnano.15.30

Graphical Abstract
  • pharmaceutical technology such as lyophilization, micrometerization, microemulsion, the inclusion of surfactants, solid dispersion, and the use of complexing agents such as cyclodextrins, Zer-Os tablet innovation, soft gels, and triglas [32]. Nanomedicines can also be used to increase the oral bioavailability of
  • self-nanoemulsified drug delivery systems (SNEDDSs). SNEEDSs provide a pediatric liquid formulation of BNZ, which is only marketed as solid tablets. SNEDDSs are isotropic mixtures of oil, surfactants, and co-surfactants that form submicrometer-droplet emulsions under agitation in water or
PDF
Album
Review
Published 27 Mar 2024

Development and characterization of potential larvicidal nanoemulsions against Aedes aegypti

  • Jonatas L. Duarte,
  • Leonardo Delello Di Filippo,
  • Anna Eliza Maciel de Faria Mota Oliveira,
  • Rafael Miguel Sábio,
  • Gabriel Davi Marena,
  • Tais Maria Bauab,
  • Cristiane Duque,
  • Vincent Corbel and
  • Marlus Chorilli

Beilstein J. Nanotechnol. 2024, 15, 104–114, doi:10.3762/bjnano.15.10

Graphical Abstract
  • the best ratio between two surfactants, one more lipophilic and one more hydrophilic, which will be necessary to obtain a stable NE [18]. The rHLB of myrcene and cymene was determined using a mixture of Span 80 (lipophilic) and Tween 20 (surfactant). At a time of 24 h after preparation, formulations
  • was the one with HLB 16, which has in its composition a greater amount of Tween 20, the more hydrophilic surfactant. It has been shown that a significant difference of the headgroup size of the surfactants has a synergistic effect on emulsion stabilization. Furthermore, the use of mixed surfactants
  • surfactants and active ingredient concentration (5%) [26][27][28]. However, there is only a limited number of studies that focus specifically on the production and characterization of nanoemulsions incorporating cymene or myrcene. Nevertheless, it has been demonstrated that a high-energy method can yield a
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2024

Curcumin-loaded nanostructured systems for treatment of leishmaniasis: a review

  • Douglas Dourado,
  • Thayse Silva Medeiros,
  • Éverton do Nascimento Alencar,
  • Edijane Matos Sales and
  • Fábio Rocha Formiga

Beilstein J. Nanotechnol. 2024, 15, 37–50, doi:10.3762/bjnano.15.4

Graphical Abstract
  • systems made of an isotropic blend of oils, surfactants, and co-surfactants or co-solvents [76]. These spontaneously form O/W nanoemulsions (≤200 nm) in aqueous media (generally in a physiological media) [77][78]. The SNEDDSs have been successfully used to carry molecules with biopharmaceutical
  • able to kill the intracellular amastigotes in macrophages. Moreover, the authors developed a further study wherein seven nanoformulations with different mixtures of oils, surfactants, and co-surfactants were reported [48]. The obtained SNEDDSs showed droplet size between 30–80 nm and IC50 values of
PDF
Album
Review
Published 04 Jan 2024

Nanotechnological approaches in the treatment of schistosomiasis: an overview

  • Lucas Carvalho,
  • Michelle Sarcinelli and
  • Beatriz Patrício

Beilstein J. Nanotechnol. 2024, 15, 13–25, doi:10.3762/bjnano.15.2

Graphical Abstract
  • resistant to gastrointestinal barriers, representing another avenue of opportunity for the presented nanoformulation [42]. Niosomes are nanosystems similar to liposomes but formed using non-ionic surfactants like Span 60 [43]. They also could incorporate cholesterol in their structure beyond other lipids
PDF
Album
Supp Info
Review
Published 03 Jan 2024
Other Beilstein-Institut Open Science Activities