Search results

Search for "thin films" in Full Text gives 466 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Ultrathin water layers on mannosylated gold nanoparticles

  • Maiara A. Iriarte Alonso,
  • Jorge H. Melillo,
  • Silvina Cerveny,
  • Yujin Tong and
  • Alexander M. Bittner

Beilstein J. Nanotechnol. 2025, 16, 2183–2198, doi:10.3762/bjnano.16.151

Graphical Abstract
  • of dimanno-AuNPs and PEG AuNPs was recorded in a broad-band VSFG system at Fritz-Haber-Institute (Max-Planck-Gesellschaft, Berlin, Germany). Gold thin films (200 nm on 10 nm Cr on glass) were used as surfaces. Prior to sample deposition, the surfaces were cleaned with ethanol and Milli-Q water under
PDF
Album
Supp Info
Full Research Paper
Published 04 Dec 2025

Evaluating metal-organic precursors for focused ion beam-induced deposition through solid-layer decomposition analysis

  • Benedykt R. Jany,
  • Katarzyna Madajska,
  • Aleksandra Butrymowicz-Kubiak,
  • Franciszek Krok and
  • Iwona B. Szymańska

Beilstein J. Nanotechnol. 2025, 16, 1942–1951, doi:10.3762/bjnano.16.135

Graphical Abstract
  • masks, and resistance, with the flexibility of depositing materials on non-planar surfaces [4][5][14]. The FIBID method has several advantages compared to the FEBID technique in depositing thin films on substrates. First, ions generate more secondary electrons on the substrate surface than electrons
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2025

Electrical, photocatalytic, and sensory properties of graphene oxide and polyimide implanted with low- and medium-energy silver ions

  • Josef Novák,
  • Eva Štěpanovská,
  • Petr Malinský,
  • Vlastimil Mazánek,
  • Jan Luxa,
  • Ulrich Kentsch and
  • Zdeněk Sofer

Beilstein J. Nanotechnol. 2025, 16, 1794–1811, doi:10.3762/bjnano.16.123

Graphical Abstract
  • for the precise introduction of implanted atoms into the surface layers without the need for subsequent chemical modification, thus opening new possibilities in the development of functional thin films. In this study, Ag ions were used to modify polymer matrices to improve chemical and electronic
  • Keithley 6317B electrometer. To quantify the sheet resistivity, two gold contacts, each with a thickness of 50 nm and a length of 10 mm, were deposited onto the surfaces of GO and PI thin films. The placement of these contacts adhered to a prescribed contact distance of 1 mm, ensuring a consistent and
PDF
Album
Full Research Paper
Published 13 Oct 2025

Photocatalytic degradation of ofloxacin in water assisted by TiO2 nanowires on carbon cloth: contributions of H2O2 addition and substrate absorbability

  • Iram Hussain,
  • Lisha Zhang,
  • Zhizhen Ye and
  • Jin-Ming Wu

Beilstein J. Nanotechnol. 2025, 16, 1567–1579, doi:10.3762/bjnano.16.111

Graphical Abstract
  • with the benchmark commercial P25 TiO2 nanoparticles deposited on a Ti substrate. All thin films were controlled to be of almost identical film thickness for a reasonable comparison. Both nanowire samples exhibit a photoactivity superior to that of the benchmark P25 when utilized in the form of thin
  • effect may involve (1) carbon cloth possessing a substantial specific surface area and surface mesopores, which offers numerous adsorption sites, thereby concentrating solute molecules near the surface of thin films [13], (2) the transfer of photogenerated electrons from TiO2 to the conductive carbon
  • cloth, facilitating the separation of photogenerated electron–hole pairs [13][35], and (3) the substrate’s fibrous structure significantly enhancing the effective contact area and preventing the aggregation of nanowires. Conclusion TiO2 nanowire thin films of ca. 1.5 μm in thickness were precipitated on
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2025

Modeling magnetic properties of cobalt nanofilms used as a component of spin hybrid superconductor–ferromagnetic structures

  • Aleksey Fedotov,
  • Olesya Severyukhina,
  • Anastasia Salomatina and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2025, 16, 1557–1566, doi:10.3762/bjnano.16.110

Graphical Abstract
  • thin films and the formation of Neel domain walls. Keywords: ferromagnetic properties; LAMMPS; mathematical modeling; MEAM; molecular dynamics; spin dynamics; Introduction Thin film structures [1][2] are increasingly employed each year in a wide range of applications, serving as functional [3][4
  • . Due to active experimental and theoretical research on thin films, significant progress has been made in recent years. Since the information in the field of thin film technologies is updated quite rapidly, there is a need for a thorough study and optimization of the main technological processes that
  • different thicknesses and to reveal the main interdependence mechanisms of dimensional, structural, and magnetic subsystems. The proposed modeling methodology and the conducted studies make it possible to analyze the regularities determining the magnetic properties of thin films, which will further make it
PDF
Album
Full Research Paper
Published 08 Sep 2025

Transient electronics for sustainability: Emerging technologies and future directions

  • Jae-Young Bae,
  • Myung-Kyun Choi and
  • Seung-Kyun Kang

Beilstein J. Nanotechnol. 2025, 16, 1545–1556, doi:10.3762/bjnano.16.109

Graphical Abstract
  • but also of electrical and mechanical performance. For instance, Mg-3Zn, which suffers from phase separation in bulk form, can be synthesized as a uniform alloy in thin films, offering improved corrosion resistance [61]. Moreover, bioresorbable amorphous metal (metallic glass) films have demonstrated
PDF
Album
Perspective
Published 04 Sep 2025

Cross-reactivities in conjugation reactions involving iron oxide nanoparticles

  • Shoronia N. Cross,
  • Katalin V. Korpany,
  • Hanine Zakaria and
  • Amy Szuchmacher Blum

Beilstein J. Nanotechnol. 2025, 16, 1504–1521, doi:10.3762/bjnano.16.106

Graphical Abstract
  • , Figure S1.i), we see that both samples show significant broadening, and a change in the relative intensities of the two peaks. Similar broadening and lineshapes (relative intensities) were observed for Cy5-hexafluorophosphate thin films, and attributed to H-aggregate formation [59]. With the FTIR results
PDF
Album
Supp Info
Full Research Paper
Published 29 Aug 2025

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications

  • Akshana Parameswaran Sreekala,
  • Pooja Raveendran Nair,
  • Jithin Kundalam Kadavath,
  • Bindu Krishnan,
  • David Avellaneda Avellaneda,
  • M. R. Anantharaman and
  • Sadasivan Shaji

Beilstein J. Nanotechnol. 2025, 16, 1428–1498, doi:10.3762/bjnano.16.104

Graphical Abstract
  • ; nanocolloids to thin films; photocatalysis; photovoltaics and photodetection; surface-enhanced Raman spectroscopy (SERS); Review 1 Introduction This section provides a brief introduction to the fundamental laser processing techniques used in liquids, including ablation, fragmentation, melting, irradiation; it
  • method for developing advanced functional materials. This section of the discussion focuses on the fabrication of thin films using laser-processed nanocolloids by various techniques such as electrophoretic deposition (EPD), spin-dip coating, spin coating, drop-casting, and spray deposition. The choice of
  • convective outflow and solvent evaporation, highlighting the formation of a solid “skin” at the surface, which could lead to defects if convective flow ceases too late [101]. By 2009, spin coating had become the dominant technique for producing uniform thin films of photosensitive organic materials, with
PDF
Album
Review
Published 27 Aug 2025

Enhancing the photoelectrochemical performance of BiOI-derived BiVO4 films by controlled-intensity current electrodeposition

  • Huu Phuc Dang,
  • Khanh Quang Nguyen,
  • Nguyen Thi Mai Tho and
  • Tran Le

Beilstein J. Nanotechnol. 2025, 16, 1289–1301, doi:10.3762/bjnano.16.94

Graphical Abstract
  • produce BiVO4 thin films at high deposition rates; however, this method resulted in irregular grain structures and significant material defects, limiting the PEC performance improvements. Electrodeposition has emerged as a promising low-cost and scalable technique for BiVO4 film fabrication, offering
PDF
Album
Full Research Paper
Published 07 Aug 2025

Influence of ion beam current on the structural, optical, and mechanical properties of TiO2 coatings: ion beam-assisted vs conventional electron beam evaporation

  • Agata Obstarczyk and
  • Urszula Wawrzaszek

Beilstein J. Nanotechnol. 2025, 16, 1097–1112, doi:10.3762/bjnano.16.81

Graphical Abstract
  • analysis of surface morphology and cross sections revealed that the TiO2 films prepared by IBAD had smaller, rounded grains and were denser compared to those deposited by EBE. Optical properties showed high transparency of 77–83% in the visible wavelength range for all as-prepared thin films. However
  • advantages including low manufacturing cost, high deposition rate, and the possibility to coat large surface areas [3][5][6]. However, the quality of the deposited coatings is relatively poor compared to, for example, magnetron sputtering, which guarantees the production of thin films with good coating
  • become one of the methods for producing high-quality optical thin film coatings. According to [13][14], IBAD support of the electron beam evaporation process affects the properties thin films like formation of new phases, modification of residual stress, elimination of the columnar-like character of the
PDF
Album
Full Research Paper
Published 14 Jul 2025

Soft materials nanoarchitectonics: liquid crystals, polymers, gels, biomaterials, and others

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2025, 16, 1025–1067, doi:10.3762/bjnano.16.77

Graphical Abstract
  • . Additionally, they can be employed as precursors to produce CaFe2O4 thin films upon calcination. The resulting transparent solution is coated and subjected to calcination/annealing to form mesoporous thin films. The mesoporous films display excellent performance in the oxygen evolution reaction. It would be
  • between benzoquinone and hydroquinone is precisely controlled by pH, in accordance with the Nernst equation. In order to compensate for the charge carriers in the semiconductor, dopant ions must be supplied through the redox reaction. The efficient doping of polymeric organic semiconductor thin films is
  • achieved through the synergistic reaction of the proton coupling electron transfer reaction and the insertion of hydrophobic ions. This process has enabled the efficient doping of crystalline organic semiconductor thin films at room temperature. By examining the conditions, it is possible to achieve strong
PDF
Album
Review
Published 04 Jul 2025

Time-resolved probing of laser-induced nanostructuring processes in liquids

  • Maximilian Spellauge,
  • David Redka,
  • Mianzhen Mo,
  • Changyong Song,
  • Heinz Paul Huber and
  • Anton Plech

Beilstein J. Nanotechnol. 2025, 16, 968–1002, doi:10.3762/bjnano.16.74

Graphical Abstract
PDF
Album
Review
Published 02 Jul 2025

Tendency in tip polarity changes in non-contact atomic force microscopy imaging on a fluorite surface

  • Bob Kyeyune,
  • Philipp Rahe and
  • Michael Reichling

Beilstein J. Nanotechnol. 2025, 16, 944–950, doi:10.3762/bjnano.16.72

Graphical Abstract
  • fast (horizontal) and slow (vertical) scan directions. The surface directions for the bulk crystal exposing the (111) surface can be determined by cleaving the crystal along another surface from the {111} family [31]. For CaF2 thin films grown on Si(111) surfaces, it has been established that the film
PDF
Album
Full Research Paper
Published 26 Jun 2025

Characterization of ion track-etched conical nanopores in thermal and PECVD SiO2 using small angle X-ray scattering

  • Shankar Dutt,
  • Rudradeep Chakraborty,
  • Christian Notthoff,
  • Pablo Mota-Santiago,
  • Christina Trautmann and
  • Patrick Kluth

Beilstein J. Nanotechnol. 2025, 16, 899–909, doi:10.3762/bjnano.16.68

Graphical Abstract
  • Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt, Germany Technische Universtät Darmstadt, 64289 Darmtadt, Germany 10.3762/bjnano.16.68 Abstract Conical nanopores in amorphous SiO2 thin films fabricated using the ion track etching technique show promising potential for filtration, sensing
  • calculations for PECVD SiO2 thin films used values for the density and composition from our previous study [47]. In both layers, the projected ranges when irradiated with 185 and 89 MeV Au ions were ≈20 μm and ≈14 μm, respectively, whereas the projected ranges for thermal and PECVD SiO2 irradiated with 1.6 GeV
  • PECVD SiO2 thin films were irradiated with 1.6 GeV Au ions and subsequently etched in 3% HF for 8.5 min and 6 min respectively. The irradiation fluence was 5 × 108 ions/cm2. The fluence was verified by counting nanopores in multiple SEM images, closely matching the expected values. The top-view images
PDF
Album
Full Research Paper
Published 12 Jun 2025

Heat-induced transformation of nickel-coated polycrystalline diamond film studied in situ by XPS and NEXAFS

  • Olga V. Sedelnikova,
  • Yuliya V. Fedoseeva,
  • Dmitriy V. Gorodetskiy,
  • Yuri N. Palyanov,
  • Elena V. Shlyakhova,
  • Eugene A. Maksimovskiy,
  • Anna A. Makarova,
  • Lyubov G. Bulusheva and
  • Aleksandr V. Okotrub

Beilstein J. Nanotechnol. 2025, 16, 887–898, doi:10.3762/bjnano.16.67

Graphical Abstract
  • °C. An exception is smaller diamond crystallites, whose surfaces partially transform into amorphous sp2-like carbon. The presence of a nickel layer promotes the conversion of the diamond surface into graphitic-like thin films with high concentration of structural defects. Although the morphology of
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2025

Insights into the electronic and atomic structures of cerium oxide-based ultrathin films and nanostructures using high-brilliance light sources

  • Paola Luches and
  • Federico Boscherini

Beilstein J. Nanotechnol. 2025, 16, 860–871, doi:10.3762/bjnano.16.65

Graphical Abstract
  • applications, examining the application of high-brilliance light sources on model systems such as supported thin films and epitaxial nanostructures. We review selected studies exploiting the high energy resolution and sensitivity of synchrotron radiation-based X-ray photoelectron spectroscopy and X-ray
  • perspectives offered by the ultrahigh brilliance and ultrashort free-electron laser pulses for dynamic studies of the processes that take place upon photoexcitation are discussed. Keywords: cerium oxide; free-electron lasers; thin films; X-ray absorption spectroscopy; X-ray photoelectron spectroscopy
  • ; Introduction Transition metal oxides in the form of thin films or nanostructures find extensive use in sustainable energy technologies [1][2]. They serve as active materials or supports for catalysts for various chemical reactions, essential to energy conversion, sensing, and environmental remediation [3][4
PDF
Album
Review
Published 10 Jun 2025

Synchrotron X-ray photoelectron spectroscopy study of sodium adsorption on vertically arranged MoS2 layers coated with pyrolytic carbon

  • Alexander V. Okotrub,
  • Anastasiya D. Fedorenko,
  • Anna A. Makarova,
  • Veronica S. Sulyaeva,
  • Yuliya V. Fedoseeva and
  • Lyubov G. Bulusheva

Beilstein J. Nanotechnol. 2025, 16, 847–859, doi:10.3762/bjnano.16.64

Graphical Abstract
  • determination of the surface composition of the films. At 830 eV, the probing depth is about 3 nm, which corresponds to almost the entire volume of the thin films under study. The S/Mo ratio in the MoS2 film is 6 on the surface and 3.1 in the bulk (Figure 4a,b). Excess sulfur in the MoS2 film is associated with
  • sodium during the charge–discharge of SIBs. Conclusion Synchrotron XPS tool is invoked to study sodium adsorption/desorption in thin films of graphitic PyC, vertically aligned MoS2 layers, and PyC-MoS2. The MoS2 film with a thickness of about 4 nm was synthesized by sulfurization of a molybdenum layer
PDF
Album
Supp Info
Full Research Paper
Published 10 Jun 2025

Facile one-step radio frequency magnetron sputtering of Ni/NiO on stainless steel for an efficient electrode for hydrogen evolution reaction

  • Ha Huu Do,
  • Khac Binh Nguyen,
  • Phuong N. Nguyen and
  • Hoai Phuong Pham

Beilstein J. Nanotechnol. 2025, 16, 837–846, doi:10.3762/bjnano.16.63

Graphical Abstract
  • synthesizing electrode materials in recent years because they offer a cleaner pathway than solution-based synthetic processes [20][21][22]. Among vacuum deposition methods, magnetron sputtering has been widely applied in industrial applications for fabricating thin films because of its advantages, such as good
  • with a thickness of 1 mm was used as a substrate for catalyst growth. Fabrication of the Ni/NiO/SS samples Grade 304 SS was cut into pieces of 60 mm × 25 mm, washed with soap, and then sonicated in a mixture of acetone and ethanol to remove the impurities left on the SS template. After that, thin films
  • distribution in materials were studied using EDX. The Raman spectra were studied using a LabRAM-HR Evolution Raman microscope with a laser wavelength of 532 nm. The composition of the thin films was investigated using XPS on a Thermo Scientific K-Alpha XPS system. Electrochemical measurements The HER catalytic
PDF
Album
Supp Info
Full Research Paper
Published 06 Jun 2025

Supramolecular hydration structure of graphene-based hydrogels: density functional theory, green chemistry and interface application

  • Hon Nhien Le,
  • Duy Khanh Nguyen,
  • Minh Triet Dang,
  • Huyen Trinh Nguyen,
  • Thi Bang Tam Dao,
  • Trung Do Nguyen,
  • Chi Nhan Ha Thuc and
  • Van Hieu Le

Beilstein J. Nanotechnol. 2025, 16, 806–822, doi:10.3762/bjnano.16.61

Graphical Abstract
  • compression at 190 °C. As a result, thin and transparent PLA films were made with the average thickness of 0.2 mm. In the next stage, the GO-SG-ZH nanocomposite in hydrogel form (≈95% water) was used as an aqueous paint for brush coating on PLA thin films. After brush coating, the coated films were left to
  • air dry for 3 h and were mildly dried using a hair dryer. The obtained coated films were denoted as GO-SG-ZH/PLA. Besides, the as-synthesized SG hydrogel (≈95% water) was also suitable for direct brush coating on PLA films. A similar procedure of brush coating was applied to produce PLA thin films
  • of GO-SG-ZH hydrogel. (a) A blank polylactide film (PLA). (b) A polylactide film coated with nanosilica (SG/PLA). (c) A polylactide film coated with graphene oxide–nanosilica–zinc hydroxide (GO-SG-ZH/PLA). (d) Light transmittance spectroscopy of thin films of PLA, SG/PLA, and GO-SG-ZH/PLA. (a, b, c
PDF
Album
Supp Info
Full Research Paper
Published 04 Jun 2025

Morphology and properties of pyrite nanoparticles obtained by pulsed laser ablation in liquid and thin films for photodetection

  • Akshana Parameswaran Sreekala,
  • Bindu Krishnan,
  • Rene Fabian Cienfuegos Pelaes,
  • David Avellaneda Avellaneda,
  • Josué Amílcar Aguilar-Martínez and
  • Sadasivan Shaji

Beilstein J. Nanotechnol. 2025, 16, 785–805, doi:10.3762/bjnano.16.60

Graphical Abstract
  • nanocolloids. The structural, morphological and electrical characterizations of the films are also presented. By sulfurization of the films, phase-pure pyrite thin films are obtained. The photodetection range was up to 785 nm photocurrent in the order of 10−6 to 10−4 A for different annealing conditions and a
  • . reported the synthesis of single-phase FeS2 thin films using a combination of electrochemical and hydrothermal techniques. The electrodeposition was performed in a nonaqueous electrolytic bath consisting of diethylene glycol [24]. Among the deposition techniques, electrophoretic deposition (EPD) is a cost
  • ][27][28]. In previous reports on pyrite thin films produced by EPD, Duan et al. deposited pyrite powder created using the sol–gel hydrothermal technique onto ITO substrates [29]. There are no other reports on the deposition of pyrite films using electrophoretic deposition. Spin coating is another thin
PDF
Album
Supp Info
Full Research Paper
Published 03 Jun 2025

High-temperature epitaxial growth of tantalum nitride thin films on MgO: structural evolution and potential for SQUID applications

  • Michelle Cedillo Rosillo,
  • Oscar Contreras López,
  • Jesús Antonio Díaz,
  • Agustín Conde Gallardo and
  • Harvi A. Castillo Cuero

Beilstein J. Nanotechnol. 2025, 16, 690–699, doi:10.3762/bjnano.16.53

Graphical Abstract
  • Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Apdo. Postal 14-740, México D.F. 07360, México 10.3762/bjnano.16.53 Abstract The growth of superconducting tantalum nitride (TaN) thin films on magnesium oxide (MgO) substrates has been studied
  • superconducting films. Keywords: epitaxial growth; SQUID; structural evolution; superconductivity; TaN thin films; Introduction Superconductivity is a quantum mechanical phenomenon characterized by the complete absence of electrical resistance in certain materials when cooled below a critical superconducting
  • nitride system TaNx can be an insulator, semiconductor, or superconductor and also can exhibit a variety of crystallographic phases [8][9]. For example, Nie and collaborators mentioned that Ta2N thin films presented a high-temperature coefficient of resistance, and resistors using this material as a
PDF
Album
Full Research Paper
Published 22 May 2025

Retrieval of B1 phase from high-pressure B2 phase for CdO nanoparticles by electronic excitations in CdxZn1−xO composite thin films

  • Arkaprava Das,
  • Marcin Zając and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2025, 16, 551–560, doi:10.3762/bjnano.16.43

Graphical Abstract
  • Abstract This study investigates the recovery of the B1 phase from the high-pressure B2 phase, at atmospheric pressure, in cadmium oxide (CdO) nanoparticles incorporated within sol–gel synthesized CdxZn1−xO (x = 0.40) composite thin films. The recovery process is investigated using electronic excitations
  • ; Introduction Zinc oxide (ZnO)-based thin films are of significant interest due to their wide bandgap value (3.37 eV at room temperature), transparent electrical conduction, and large excitonic binding energy (60 meV) [1]. In contrast, cadmium oxide (CdO) exhibits a lower bandgap of 2.2 eV, along with high
  • electron mobility (>100 cm2/V/s) and high electrical conductivity (>1014 S/cm), demonstrating its potential for optoelectronic applications [2][3][4]. The incorporation of cadmium into ZnO effectively reduces the bandgap, rendering the thin films suitable for applications in the visible region of the
PDF
Album
Full Research Paper
Published 17 Apr 2025

N2+-implantation-induced tailoring of structural, morphological, optical, and electrical characteristics of sputtered molybdenum thin films

  • Usha Rani,
  • Kafi Devi,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 495–509, doi:10.3762/bjnano.16.38

Graphical Abstract
  • Usha Rani Kafi Devi Divya Gupta Sanjeev Aggarwal Ion Beam Centre, Department of Physics, Kurukshetra University, Kurukshetra-136119, India 10.3762/bjnano.16.38 Abstract Molybdenum (Mo) thin films have extensive applications in energy storage devices and photovoltaic solar cells because of their
  • remarkable thermal stability, high melting point, and chemical inertness. In the present study, Mo thin films of different thicknesses (150, 200, 250, and 300 nm) have been deposited on Si(100) substrates via radio frequency sputtering in an argon atmosphere at room temperature. Some of these films have been
  • implanted with 1 × 1017 N2+·cm−2 at 30 keV using a current density of 4 µA·cm−2. Surface morphology and structural, optical, and electrical properties of the as-deposited and implanted Mo thin films have been systematically investigated. The crystallinity of Mo thin films is enhanced with increasing
PDF
Album
Full Research Paper
Published 01 Apr 2025

Impact of adsorbate–substrate interaction on nanostructured thin films growth during low-pressure condensation

  • Alina V. Dvornichenko,
  • Vasyl O. Kharchenko and
  • Dmitrii O. Kharchenko

Beilstein J. Nanotechnol. 2025, 16, 473–483, doi:10.3762/bjnano.16.36

Graphical Abstract
  • elastic adsorbate–substrate interactions in processes of nanostructuring of thin films during low-pressure condensation in the framework of theoretical approaches and numerical simulations. It will be shown that an increase in the elastic interaction strength induces first-order transitions and pattern
  • multicomponent substrates leads to the formation of a stationary surface morphology with an elevated number of adsorbate islands of smaller size, compared to one-component substrates. This study provides a deep insight into the peculiarities of nanostructured thin films’ growth in low-pressure systems with
  • different adsorbate–substrate bonding. Keywords: adsorbate–substrate interaction; adsorptive systems; numerical simulations; pattern formation; Introduction Innovative nanostructured thin films are widely exploited in ground-breaking developments regarding transistors [1][2], energy harvesting [3][4
PDF
Album
Full Research Paper
Published 28 Mar 2025

Tailoring of physical properties of RF-sputtered ZnTe films: role of substrate temperature

  • Kafi Devi,
  • Usha Rani,
  • Arun Kumar,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 333–348, doi:10.3762/bjnano.16.25

Graphical Abstract
  • out using EDS, and the obtained spectra are shown in Figure 4a1–e1. The existence of zinc and tellurium peaks indicates the formation of ZnTe thin films. The silicon and oxygen peaks are from the quartz substrate. The atomic percentages of Zn and Te are listed in Table 4. The film deposited at room
  • thin films with varying thickness [35]. However, the changes we observed for direct bandgaps (1.47–3.11 eV) and indirect bandgaps (0.98–2.63 eV) are more significant. The existence of both direct and indirect bandgaps in a material has implications regarding the efficiency of solar cells. The
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2025
Other Beilstein-Institut Open Science Activities