Search results

Search for "twinning" in Full Text gives 22 result(s) in Beilstein Journal of Nanotechnology.

Sodium doping in brookite TiO2 enhances its photocatalytic activity

  • Boxiang Zhuang,
  • Honglong Shi,
  • Honglei Zhang and
  • Zeqian Zhang

Beilstein J. Nanotechnol. 2022, 13, 599–609, doi:10.3762/bjnano.13.52

Graphical Abstract
  • , the brookite NaxTi1−xO2 transforms into Na2Ti6O13 by a twinning process with the orientation relationship of [1−2−3]Matrix//[1−23]Twins and (−2−10)Matrix//(1−1−1)Twins. The differences in the ionic radius and the electronegativity between Na and Ti destroy the local atomic arrangement of the brookite
  • brookite crystallite reaches ≈100 nm beside a twin boundary. The twining structure is formed by atoms in the plane which successively displaced 1/4 units along the direction. The mismatch of the twinning structure is ≈1.35% because the d-spacing of the plane is approximately equal to the plane whose
  • interplanar spacing values are 3.5092 and 3.4619 Å, respectively. Thus, the orientation relationship between the matrix and twins is // and // The twinning effect in the brookite structure may be the major driven force of the phase transformation from the brookite NaxTi1−xO2 to Na2Ti6O13. Such transformation
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022

Is the Ne operation of the helium ion microscope suitable for electron backscatter diffraction sample preparation?

  • Annalena Wolff

Beilstein J. Nanotechnol. 2021, 12, 965–983, doi:10.3762/bjnano.12.73

Graphical Abstract
  • shown in Figure 6. The TEM measurements of the lowest dose (2247 ions/nm2) irradiated area, see Figure 6k, show a higher defect concentration in comparison to the control sample. A significant amount of twinning can be observed at the grain boundaries. The corresponding SAED pattern for the lowest ion
PDF
Album
Supp Info
Full Research Paper
Published 31 Aug 2021

In situ transport characterization of magnetic states in Nb/Co superconductor/ferromagnet heterostructures

  • Olena M. Kapran,
  • Roman Morari,
  • Taras Golod,
  • Evgenii A. Borodianskyi,
  • Vladimir Boian,
  • Andrei Prepelita,
  • Nikolay Klenov,
  • Anatoli S. Sidorenko and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2021, 12, 913–923, doi:10.3762/bjnano.12.68

Graphical Abstract
  • Schegolev, Yury Khaydukov, Mikhail Kupriyanov, and Alexander Golubov for stimulating discussions. Funding The work was partially supported by the European Union H2020-WIDESPREAD-05-2017-Twinning project “SPINTECH” under grant agreement Nr. 810144 (samples preparation), the Russian Science Foundation grant
PDF
Album
Full Research Paper
Published 17 Aug 2021

Controlling the proximity effect in a Co/Nb multilayer: the properties of electronic transport

  • Sergey Bakurskiy,
  • Mikhail Kupriyanov,
  • Nikolay V. Klenov,
  • Igor Soloviev,
  • Andrey Schegolev,
  • Roman Morari,
  • Yury Khaydukov and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1336–1345, doi:10.3762/bjnano.11.118

Graphical Abstract
  • within the program 5top100. A. Sidorenko would like to thank the support from the European Union H2020-WIDESPREAD-05-2017-Twinning program (“SPINTECH” project under the grant agreement Nr. 810144).
PDF
Album
Full Research Paper
Published 07 Sep 2020

Proximity effect in [Nb(1.5 nm)/Fe(x)]10/Nb(50 nm) superconductor/ferromagnet heterostructures

  • Yury Khaydukov,
  • Sabine Pütter,
  • Laura Guasco,
  • Roman Morari,
  • Gideok Kim,
  • Thomas Keller,
  • Anatolie Sidorenko and
  • Bernhard Keimer

Beilstein J. Nanotechnol. 2020, 11, 1254–1263, doi:10.3762/bjnano.11.109

Graphical Abstract
  • TWINNING program (2018-2020).
PDF
Album
Full Research Paper
Published 21 Aug 2020

Formation of metal/semiconductor Cu–Si composite nanostructures

  • Natalya V. Yumozhapova,
  • Andrey V. Nomoev,
  • Vyacheslav V. Syzrantsev and
  • Erzhena C. Khartaeva

Beilstein J. Nanotechnol. 2019, 10, 2497–2504, doi:10.3762/bjnano.10.240

Graphical Abstract
  • is formed in 30% of the clusters. In the obtained cluster structures, twinning prevails as a mixture of the icosahedral (IR) and dodecahedral (DK) phase (Figure 3a). With a decrease in the cooling rate to 1 K/ps, the probability of the formation of the Janus-like structure increases to 50%. In
PDF
Album
Full Research Paper
Published 13 Dec 2019

Fabrication and characterization of Si1−xGex nanocrystals in as-grown and annealed structures: a comparative study

  • Muhammad Taha Sultan,
  • Adrian Valentin Maraloiu,
  • Ionel Stavarache,
  • Jón Tómas Gudmundsson,
  • Andrei Manolescu,
  • Valentin Serban Teodorescu,
  • Magdalena Lidia Ciurea and
  • Halldór Gudfinnur Svavarsson

Beilstein J. Nanotechnol. 2019, 10, 1873–1882, doi:10.3762/bjnano.10.182

Graphical Abstract
  • (related also to the {111} family of planes) are reduced in size, as emphasized in the TEM images in Figure 6. A detailed microstructural TEM analysis of a similar structure has been carried out by Zhang and co-workers [43]. Their analysis revealed that the defects in NCs and twinning in structures is
PDF
Album
Full Research Paper
Published 17 Sep 2019

Periodic Co/Nb pseudo spin valve for cryogenic memory

  • Nikolay Klenov,
  • Yury Khaydukov,
  • Sergey Bakurskiy,
  • Roman Morari,
  • Igor Soloviev,
  • Vladimir Boian,
  • Thomas Keller,
  • Mikhail Kupriyanov,
  • Anatoli Sidorenko and
  • Bernhard Keimer

Beilstein J. Nanotechnol. 2019, 10, 833–839, doi:10.3762/bjnano.10.83

Graphical Abstract
  • -2020 TWINNING program (2018-2020). YK, TK and BK would like to acknowledge the DFG collaborative research center TRR 80. This work is based on experiments performed at the NREX instrument operated by the Max-Planck Society at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany. The initial
PDF
Album
Letter
Published 09 Apr 2019

Site-specific growth of oriented ZnO nanocrystal arrays

  • Rekha Bai,
  • Dinesh K. Pandya,
  • Sujeet Chaudhary,
  • Veer Dhaka,
  • Vladislav Khayrudinov,
  • Jori Lemettinen,
  • Christoffer Kauppinen and
  • Harri Lipsanen

Beilstein J. Nanotechnol. 2019, 10, 274–280, doi:10.3762/bjnano.10.26

Graphical Abstract
  • ; growth kinetics; nanocrystals; nucleation; twinning; zinc oxide; Introduction Metal oxide semiconductor nanostructures are quite interesting not only in terms of the basic growth mechanism involved in their fabrication, but also due to the large number of applications based on them in the field of
  • the solution. Furthermore, from the current reported work it is quite difficult to conclude about the nature of twinning, that is, whether twinning appears by joining two NCs or if a single nanocrystal gives rise to the twinned crystal. However, in the electrodeposition technique, since the growth
  • . The crystals are well separated from each other and are oriented randomly on the substrate. This exhibits a central grain boundary (GB) perpendicular to the elongation direction (marked with dotted line in Figure 2b,c) that is generally assigned to twinning. These crystals with well-defined hexagonal
PDF
Album
Full Research Paper
Published 24 Jan 2019

Comparative biological effects of spherical noble metal nanoparticles (Rh, Pd, Ag, Pt, Au) with 4–8 nm diameter

  • Alexander Rostek,
  • Marina Breisch,
  • Kevin Pappert,
  • Kateryna Loza,
  • Marc Heggen,
  • Manfred Köller,
  • Christina Sengstock and
  • Matthias Epple

Beilstein J. Nanotechnol. 2018, 9, 2763–2774, doi:10.3762/bjnano.9.258

Graphical Abstract
  • results from DLS and DCS (Figure 3). The branched structures in the case of platinum indicate an aggregation of smaller particles during the synthesis. Whereas gold shows multiple twinning of crystals, silver appears to be single crystalline with only a few intrinsic stacking faults. The specific
  • properties of nanomaterials originate from the large surface-to-volume ratio and the local configuration of atoms [69]. The morphology of nanoparticles is defined by the contributions of the cohesive energy, the surface energy, the twinning energy, and the strain energy [88]. Based on the Wulff construction
PDF
Album
Full Research Paper
Published 29 Oct 2018

Formation and shape-control of hierarchical cobalt nanostructures using quaternary ammonium salts in aqueous media

  • Ruchi Deshmukh,
  • Anurag Mehra and
  • Rochish Thaokar

Beilstein J. Nanotechnol. 2017, 8, 494–505, doi:10.3762/bjnano.8.53

Graphical Abstract
  • nanostructures; (v) we identify the importance of crystal twinning and various forces necessary for the formation of anisotropies. This is made possible by a detailed study of a cobalt–tetramethylammonium hydroxide (TMAH) system that forms nanoplates under ambient conditions. The understanding of this system is
  • temperature. A detailed analysis of the growth regime is presented in the following to clearly explain various aspects such as twinning, size reduction of particles, lattice parameters, and time scales of growth encountered in the growth process. Growth and morphology The growth of nanoplates obtained under
  • ambient conditions and under zero shear is discussed first. The critical steps for the formation of nanoplates are the twinning of seed crystals, the size reduction of particles and their controlled assembly to form two-dimensional nanoplates. The cobalt seeds are small spherical nanoparticles of ca. 30
PDF
Album
Supp Info
Full Research Paper
Published 23 Feb 2017

Annealing-induced recovery of indents in thin Au(Fe) bilayer films

  • Anna Kosinova,
  • Ruth Schwaiger,
  • Leonid Klinger and
  • Eugen Rabkin

Beilstein J. Nanotechnol. 2016, 7, 2088–2099, doi:10.3762/bjnano.7.199

Graphical Abstract
  • of structural defects in the film and improves its thermal stability. The Au layer exhibited a strong [111] out-of-plane texture and two twinning-related in-plane orientations related by a 60° rotation around the surface normal. The Fe underlayer exhibited a strong [110] out-of-plane texture with
PDF
Album
Full Research Paper
Published 28 Dec 2016

Antitumor magnetic hyperthermia induced by RGD-functionalized Fe3O4 nanoparticles, in an experimental model of colorectal liver metastases

  • Oihane K. Arriortua,
  • Eneko Garaio,
  • Borja Herrero de la Parte,
  • Maite Insausti,
  • Luis Lezama,
  • Fernando Plazaola,
  • Jose Angel García,
  • Jesús M. Aizpurua,
  • Maialen Sagartzazu,
  • Mireia Irazola,
  • Nestor Etxebarria,
  • Ignacio García-Alonso,
  • Alberto Saiz-López and
  • José Javier Echevarria-Uraga

Beilstein J. Nanotechnol. 2016, 7, 1532–1542, doi:10.3762/bjnano.7.147

Graphical Abstract
  • this data and confirm that these nanoparticles are single crystals, discarding the appearance of twinning effects (Figure 1). The size distribution fits to a Gaussian profile with a mean size of 19 ± 2 nm for the magnetic nuclei, which do not undergo changes when coating with PMAO polymer (Figure 1b
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2016

Effect of triple junctions on deformation twinning in a nanostructured Cu–Zn alloy: A statistical study using transmission Kikuchi diffraction

  • Silu Liu,
  • Xiaolong Ma,
  • Lingzhen Li,
  • Liwen Zhang,
  • Patrick W. Trimby,
  • Xiaozhou Liao,
  • Yusheng Li,
  • Yonghao Zhao and
  • Yuntian Zhu

Beilstein J. Nanotechnol. 2016, 7, 1501–1506, doi:10.3762/bjnano.7.143

Graphical Abstract
  • ]. However, research in this area has met the paradox of strength and ductility tradeoff, especially when materials are refined to ultrafine-grained or nanostructured range [4][5][6][7][8]. They are usually either strong or ductile, but rarely both at the same time. Deformation twinning is one of a few
  • mechanisms that can simultaneously improve both strength and ductility [5][6][9][10][11]. Consequently, deformation twinning in nanostructured metals has received extensive attention in recent years [10]. Among all of the twinning mechanisms in nanocrystalline materials, partial mission from grain boundaries
  • studies revealed that triple junctions were energetically more active than grain boundaries [18] and they were able to emit and absorb free volumes upon deformation, which promotes partial emission [12]. Therefore, one may reasonably hypothesize that triple junctions may promote deformation twinning in
PDF
Album
Full Research Paper
Published 24 Oct 2016

In situ observation of deformation processes in nanocrystalline face-centered cubic metals

  • Aaron Kobler,
  • Christian Brandl,
  • Horst Hahn and
  • Christian Kübel

Beilstein J. Nanotechnol. 2016, 7, 572–580, doi:10.3762/bjnano.7.50

Graphical Abstract
  • deformation mechanisms in NC metals during mechanical deformation. X-ray diffraction (XRD) is one of the experimental methods [4][11][26][30]. However, XRD cannot directly image and spatially resolve deformation processes (e.g., grain growth or twinning); it measures the global structural signatures of the
  • , creating a triple line with a Σ9 boundary. Generalized, the observed Σ9 boundary in the NC system is a signature of subsequent or multiple twinning in a grain (as shown in Figure 4d, middle and lower schematic), and the nucleation as well as migration of Σ9 boundaries is a result of two different sets of
  • activity does not reveal any statistically significant crystallite size dependence within the grain size distribution of the samples. This is a contradiction to previous observations on a grain size dependence of twinning in NC fcc metals [20]. Changing the alloy content and the sputter parameter can also
PDF
Album
Supp Info
Full Research Paper
Published 19 Apr 2016

Structure and mechanism of the formation of core–shell nanoparticles obtained through a one-step gas-phase synthesis by electron beam evaporation

  • Andrey V. Nomoev,
  • Sergey P. Bardakhanov,
  • Makoto Schreiber,
  • Dashima G. Bazarova,
  • Nikolai A. Romanov,
  • Boris B. Baldanov,
  • Bair R. Radnaev and
  • Viacheslav V. Syzrantsev

Beilstein J. Nanotechnol. 2015, 6, 874–880, doi:10.3762/bjnano.6.89

Graphical Abstract
  • File 1, Figure S1. Some particle cores, when observed with the correct focus and electron beam strength exhibited ring structures indicative of multiple contact twinning as shown clearly in Figure 2 (also seem in one particle in Figure 1a). This reveals that the core structure consists of domains of
  • shell for the core. The core was confirmed to be crystalline Ag with no intermixing of Si and the shell was still amorphous Si. In some Ag@Si particles, interesting patterns were observed but they were not as regular as on the Cu@silica particles and were not thought to be due to twinning defects. The
PDF
Album
Supp Info
Full Research Paper
Published 31 Mar 2015

Influence of size, shape and core–shell interface on surface plasmon resonance in Ag and Ag@MgO nanoparticle films deposited on Si/SiOx

  • Sergio D’Addato,
  • Daniele Pinotti,
  • Maria Chiara Spadaro,
  • Guido Paolicelli,
  • Vincenzo Grillo,
  • Sergio Valeri,
  • Luca Pasquali,
  • Luca Bergamini and
  • Stefano Corni

Beilstein J. Nanotechnol. 2015, 6, 404–413, doi:10.3762/bjnano.6.40

Graphical Abstract
  • also Supporting Information File 1). Areas with different crystal domains were observed and are evidently caused by crystal twinning, which occurs during the NP growth process [28] or by formation of NP agglomerates with different crystal orientations after deposition and diffusion on the substrate [29
PDF
Album
Supp Info
Full Research Paper
Published 09 Feb 2015

Room temperature, ppb-level NO2 gas sensing of multiple-networked ZnSe nanowire sensors under UV illumination

  • Sunghoon Park,
  • Soohyun Kim,
  • Wan In Lee,
  • Kyoung-Kook Kim and
  • Chongmu Lee

Beilstein J. Nanotechnol. 2014, 5, 1836–1841, doi:10.3762/bjnano.5.194

Graphical Abstract
  • approximately 80 nm. The HRTEM image in Figure 2b confirmed that the core region of the nanowire was perfectly crystalline, whereas the edge region showed twinning along the axis of the nanowire. Fringes with spacings of 0.346 and 0.331 nm corresponding to the interplanar distances of the {100} and {002
PDF
Album
Full Research Paper
Published 22 Oct 2014

On the structure of grain/interphase boundaries and interfaces

  • K. Anantha Padmanabhan and
  • Herbert Gleiter

Beilstein J. Nanotechnol. 2014, 5, 1603–1615, doi:10.3762/bjnano.5.172

Graphical Abstract
  • accurately. However, the Brandon criterion [42] is by far the most popular. Two more points may be noted: (a) There is little support for the general usefulness of purely geometrical models in determining grain boundary energies [41]. (b) The demonstration that for specific twinning operations (i.e., 180
  • ° rotations) along rational indices [hkl], a 3D coincidence site lattice, having Σ = h2 + k2 + l2 and a boundary (i.e., twinning) plane {hkl} is generated in cubic crystals [47] follows directly from Euler’s transformation rules, i.e., the mathematics is correct, but well-known. Very recently, Raabe and
PDF
Album
Review
Published 22 Sep 2014

Deformation-induced grain growth and twinning in nanocrystalline palladium thin films

  • Aaron Kobler,
  • Jochen Lohmiller,
  • Jonathan Schäfer,
  • Michael Kerber,
  • Anna Castrup,
  • Ankush Kashiwar,
  • Patric A. Gruber,
  • Karsten Albe,
  • Horst Hahn and
  • Christian Kübel

Beilstein J. Nanotechnol. 2013, 4, 554–566, doi:10.3762/bjnano.4.64

Graphical Abstract
  • electron microscope (TEM), identifying grain growth and twinning/detwinning resulting from dislocation activity as two of the mechanisms contributing to the macroscopic deformation. Depending on the initial twin density, the samples behaved differently. For low initial twin densities, an increasing twin
  • twinning/detwinning processes, stress-driven grain boundary migration and the formation of shear bands [4][5][6][7]. When studying the mechanical properties of nc metals and the associated deformation mechanisms, it is important to consider the preparation technique for the corresponding bulk nc metal
  • -ray diffraction (CXRD) after straining to different deformation levels. The evaluation presented in this paper concentrates on grain growth and twinning due to straining. The findings from the ex-situ investigations were compared to results obtained during in-situ deformation experiments using
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2013
Graphical Abstract
  • by using PC templates [74]. Figure 7c shows the TEM image of a twinned region, as frequently found in single-crystalline Cu wires. Twinning is a crystal defect characterized by the partial displacement relative to the matrix of a considerable number of neighbouring crystallographic planes [75][76
  • defects such as twinning or slips are expected to influence the electrical and thermal transport properties, as well as the mechanical stability of nanowires. 2.2 Gold nanowires Numerous theoretical predictions and experiments have demonstrated that Au nanoparticles and nanowires are promising elements
  • . In the case of Cu (Figure 11c), the caps often exhibit a five-fold symmetry. Such morphology is ascribed to multiple twinned crystals consisting of five deformed tetrahedral subunits. The morphology of the facetted Bi caps (Figure 11d) also reveals twinning. 3 Nanowire morphology The morphology of
PDF
Album
Review
Published 17 Dec 2012

Structural and magnetic properties of ternary Fe1–xMnxPt nanoalloys from first principles

  • Markus E. Gruner and
  • Peter Entel

Beilstein J. Nanotechnol. 2011, 2, 162–172, doi:10.3762/bjnano.2.20

Graphical Abstract
  • with a larger fraction of higher coordinated surfaces (and thus lower surface energy) due to twinning may become competitive with single-crystalline structures, which lack (energetically unfavorable) internal interfaces and strain in the volume part. This has been studied in depth for empirical models
PDF
Album
Full Research Paper
Published 16 Mar 2011
Other Beilstein-Institut Open Science Activities