Search results

Search for "water" in Full Text gives 1463 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Introducing third-generation periodic table descriptors for nano-qRASTR modeling of zebrafish toxicity of metal oxide nanoparticles

  • Supratik Kar and
  • Siyun Yang

Beilstein J. Nanotechnol. 2024, 15, 1142–1152, doi:10.3762/bjnano.15.93

Graphical Abstract
  • amendments. However, it is concerning that the environment is affected because of the enormous production and inadvertent use of nanomaterials. Nanoparticles have been identified in wastewater streams, drinking water sources, and tap water in amounts ranging from nanograms to micrograms per liter [10]. Also
  • of safer nanomedicines. MONPs are also being utilized in environmental remediation efforts to remove pollutants from water and soil. The insights gained from this study can help in selecting nanoparticles that are effective in remediation without posing significant risks to aquatic life and
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2024

Photocatalytic methane oxidation over a TiO2/SiNWs p–n junction catalyst at room temperature

  • Qui Thanh Hoai Ta,
  • Luan Minh Nguyen,
  • Ngoc Hoi Nguyen,
  • Phan Khanh Thinh Nguyen and
  • Dai Hai Nguyen

Beilstein J. Nanotechnol. 2024, 15, 1132–1141, doi:10.3762/bjnano.15.92

Graphical Abstract
  • formed at the interface have emerged, which effectively force charge carriers to move in opposite directions and hinder recombination [31][32][33]. Very recently, Cu2O/BiVO4, Ag2O/Bi12O17Cl2 and CuFe2O4/Bi4Ti3O12 composite powders have shown improved efficiencies in water treatment based on p–n
  • surface interaction with gases during photocatalytic oxidative coupling can be analyzed using water contact angle analysis (as shown in Supporting Information File 1, Figure S2). The wettability of pure p-Si and the p-Si NW array are illustrated in Figure S3 (Supporting Information File 1). Pure p-Si had
  • a water contact angle of 50.24°. Because of the nanowire array morphology, the p-Si NWs were more hydrophilic nature with a water contact angle of 3.36°, which manifests superior photocatalytic oxidative coupling. Raman spectra were conducted to confirm the surface composition of the synthesized
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2024

Direct electron beam writing of silver using a β-diketonate precursor: first insights

  • Katja Höflich,
  • Krzysztof Maćkosz,
  • Chinmai S. Jureddy,
  • Aleksei Tsarapkin and
  • Ivo Utke

Beilstein J. Nanotechnol. 2024, 15, 1117–1124, doi:10.3762/bjnano.15.90

Graphical Abstract
  • sequence of sonification in acetone, ethanol, and rinsed water, and dry-blowing with nitrogen. In our deposition experiments, faint deposits were visible starting at a GIS temperature of 50 °C for spots of 5 min dwell time, turning into clearly visible deposits starting from about 60 °C. From 80 °C onwards
  • density of silver particles with a transition to continuous silver towards the bottom. Similar non-uniform deposit structures were observed earlier. For pillar deposition of gold using Me2Au(acac) in a water atmosphere at about 1 Pa pressure, a solid metallic core surrounded by a carbon-rich shell was
  • obtained [34]. For planar deposits, similar microstructures were obtained during platinum deposition using Pt(η5-CpMe)Me3 [35] and ruthenium deposition using (EtCp)2Ru [36], both in combination with post-deposition purification employing electron beam irradiation in a water atmosphere. For the case of
PDF
Album
Supp Info
Letter
Published 26 Aug 2024

Recent updates in applications of nanomedicine for the treatment of hepatic fibrosis

  • Damai Ria Setyawati,
  • Fransiska Christydira Sekaringtyas,
  • Riyona Desvy Pratiwi,
  • A’liyatur Rosyidah,
  • Rohimmahtunnissa Azhar,
  • Nunik Gustini,
  • Gita Syahputra,
  • Idah Rosidah,
  • Etik Mardliyati,
  • Tarwadi and
  • Sjaikhurrizal El Muttaqien

Beilstein J. Nanotechnol. 2024, 15, 1105–1116, doi:10.3762/bjnano.15.89

Graphical Abstract
  • of nanoparticulates researched regarding liver fibrosis treatment. These nanocarriers allow for efficient containment of the antifibrotic compounds, particularly those with poor water solubility and low bioavailability. In addition, they protect the drug from unwanted metabolism and may facilitate
  • dissolve a broad range of poorly water-soluble drugs. As this polymeric platform could deliver substantial amounts of curcumin to the liver, a significant reduction in in vivo CCl4-induced hepatocellular injury could be observed. The toxicity data also shows that NanoCurc™ essentially exhibits no toxicity
PDF
Album
Review
Published 23 Aug 2024

Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications

  • Shakhzodjon Uzokboev,
  • Khojimukhammad Akhmadbekov,
  • Ra’no Nuritdinova,
  • Salah M. Tawfik and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2024, 15, 1077–1104, doi:10.3762/bjnano.15.88

Graphical Abstract
  • , biocompatibility, biodegradability, and water solubility of alginate have expanded opportunities in material and biomedical sciences. Recently, research on alginate-based nanoparticles and their applications has begun. These materials are gaining popularity because of their wide usage potential in the biomedical
  • body, as they are antimicrobial, biodegradable, and non-toxic [22]. Biopolymeric nanoparticles are a very effective material for producing biosensors. In today’s world, people need sensors to monitor various types of pollution. Food contamination with infectious microorganisms or air and water
  • indicates that it belongs to the hydrogel family and is insoluble in water. Sodium alginate is an odorless, tasteless powder that can be white or yellowish. Alginate is a linear polymer composed of ᴅ-mannuronic acid (M) and ʟ-guluronic acid (G) residues [28]. Alginate can be an effective absorbent and
PDF
Album
Review
Published 22 Aug 2024

Effect of wavelength and liquid on formation of Ag, Au, Ag/Au nanoparticles via picosecond laser ablation and SERS-based detection of DMMP

  • Sree Satya Bharati Moram,
  • Chandu Byram and
  • Venugopal Rao Soma

Beilstein J. Nanotechnol. 2024, 15, 1054–1069, doi:10.3762/bjnano.15.86

Graphical Abstract
  • Abstract The present study investigates the effects of input wavelength (1064, 532, and 355 nm) and surrounding liquid environment (distilled water and aqueous NaCl solution) on the picosecond laser ablation on silver (Ag), gold (Au), and Ag/Au alloy targets. The efficacy of the laser ablation technique
  • decomposition of the metal surface. This results in an explosive ejection of vapor and liquid from the surface. The metal plume cannot freely expand in water and is slowed down, forming a hot metal layer at the water interface. The hot metal layer heats the water to a supercritical state, mixing metal atoms
  • with water. The expanding metal/water mixture promotes rapid nucleation and growth of small metal NPs and contributes to forming a cavitation bubble. The hot metal layer also breaks into larger droplets due to instabilities, creating NPs of different sizes within a few nanoseconds of laser exposure [6
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2024

Bolometric IR photoresponse based on a 3D micro-nano integrated CNT architecture

  • Yasameen Al-Mafrachi,
  • Sandeep Yadav,
  • Sascha Preu,
  • Jörg J. Schneider and
  • Oktay Yilmazoglu

Beilstein J. Nanotechnol. 2024, 15, 1030–1040, doi:10.3762/bjnano.15.84

Graphical Abstract
  • nanoparticles at ≈750 °C. Finally, the samples were synthesized by water-assisted chemical vapor deposition (CVD) at 800 °C, similar to the CVD process presented in [13][14], to achieve a crystalline graphitic nature of the carbon nanotubes. Argon was used as the carrier gas and ethylene as the carbon source. A
  • stream of water vapor acted as a catalyst activator. The height of the CNT bundles (30–60 μm) depended on the CVD growth time. CNT bundles with a height of ≈40 μm were grown in ca. 1 min as shown in Figure 2a. The resulting M-shaped VACNTs have an initial pixel dimension of 20 × 20 μm2 with a ≈1 μm thick
  • VACNTs (water-assisted CVD on silicon substrates with ethylene as the carbon source) has been investigated by [3]. They showed that vertically aligned SWCNTs can absorb light almost perfectly with a reflectance of 0.01–0.02 over a very wide spectral range (0.2–200 μm). The UV-to-mid-IR absorption
PDF
Album
Supp Info
Full Research Paper
Published 15 Aug 2024

Atomistic insights into the morphological dynamics of gold and platinum nanoparticles: MD simulations in vacuum and aqueous media

  • Evangelos Voyiatzis,
  • Eugenia Valsami-Jones and
  • Antreas Afantitis

Beilstein J. Nanotechnol. 2024, 15, 995–1009, doi:10.3762/bjnano.15.81

Graphical Abstract
  • information regarding the toxicity and reactivity of these NPs by monitoring the behaviour of nano-descriptors commonly employed in quantitative structure–activity relationship (QSAR) models and by measuring the water–NP energetic interactions. The extracted information from our simulations complements
  • ] nanostructures. We also simulated Au and Pt NPs in aqueous solutions at 300 K, that is, close to room temperature. The interactions among the water molecules are described by the SPC/E model [66]. The interactions among the water molecules and the Au (Pt) atoms are calculated by the force field of Merabia et al
  • . [67] (Brunello et al. [68]). The initial configuration of a hydrated NP is obtained by placing the NP inside a pre-equilibrated water configuration and removing all water molecules that are closer than 0.5 nm from any Au (Pt) atom. The resulting system is equilibrated for 10 ns in the NPT ensemble at
PDF
Album
Supp Info
Full Research Paper
Published 07 Aug 2024

Recent progress on field-effect transistor-based biosensors: device perspective

  • Billel Smaani,
  • Fares Nafa,
  • Mohamed Salah Benlatrech,
  • Ismahan Mahdi,
  • Hamza Akroum,
  • Mohamed walid Azizi,
  • Khaled Harrar and
  • Sayan Kanungo

Beilstein J. Nanotechnol. 2024, 15, 977–994, doi:10.3762/bjnano.15.80

Graphical Abstract
  • water bodies. Therefore, the detection of harmful pollutants in the environment is a critical issue. Numerous works have reported on the application of biosensors for environmental monitoring, especially those based on optical or electrochemical transduction platforms [10][11][12][13]. Moreover
PDF
Album
Review
Published 06 Aug 2024

Beyond biomimicry – next generation applications of bioinspired adhesives from microfluidics to composites

  • Dan Sameoto

Beilstein J. Nanotechnol. 2024, 15, 965–976, doi:10.3762/bjnano.15.79

Graphical Abstract
  • modification of the biomimetic fibers created a continuous gasket capable of containing fluids [35] (Figure 4). In addition to generating adhesion, these fibers were sufficient to confine fluids, such as oil and water, and gases within microfluidic channels at pressures up to approximately 90 psi. This
  • traditional microfluidics liquids like oil and water, another student in 2017 demonstrated its utility for integrating liquid metal electronics. Mersedeh Zandvakili showed in 2017 that eutectic gallium–indium could be injected into microfluidic channels, and the gecko pillars not only provided adhesion for
  • non-planar surfaces, bonded to microelectromechanical systems (MEMS), and their use in droplet generation with oil and water. Laplace barriers within geckofluidic channels have directed room-temperature liquid metals (eutectic gallium–indium) with extremely high surface tension to properly fill
PDF
Album
Supp Info
Perspective
Published 05 Aug 2024

Therapeutic effect of F127-folate@PLGA/CHL/IR780 nanoparticles on folate receptor-expressing cancer cells

  • Thi Ngoc Han Pham,
  • Phuong-Thao Dang-Luong,
  • Hong-Phuc Nguyen,
  • Loc Le-Tuan,
  • Xuan Thang Cao,
  • Thanh-Danh Nguyen,
  • Vy Tran Anh and
  • Hieu Vu_Quang

Beilstein J. Nanotechnol. 2024, 15, 954–964, doi:10.3762/bjnano.15.78

Graphical Abstract
  • emulsion, or nanoprecipitation [1][4], in which copolymers are dissolved in an organic solvent, called the organic phase, and then are put into an immiscible aqueous solution, called the water phase, to form the nanoparticles. Various surfactants, including poly(vinyl alcohol) (PVA), sodium cholate, or
  • pluronic F127 (F127), can be used in the water phase to lower the surface tension of the organic phase and to produce the nanoemulsion during the homogenization process [5][6][7]. F127 is a copolymer made up of blocks of poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide), PEO100–PPO65–PEO100
  • discovered to have exceptional inherent tumor-targeting characteristics without any modification, and it is a fluorophore enabling near-infrared imaging. However, IR780 iodide has low water stability and photostability [23] and shows acute toxicity at high doses [24], which limits its clinical application
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2024

Electrospun nanofibers: building blocks for the repair of bone tissue

  • Tuğrul Mert Serim,
  • Gülin Amasya,
  • Tuğba Eren-Böncü,
  • Ceyda Tuba Şengel-Türk and
  • Ayşe Nurten Özdemir

Beilstein J. Nanotechnol. 2024, 15, 941–953, doi:10.3762/bjnano.15.77

Graphical Abstract
  • matrix, 20–30% inorganic components, and 10–15% water [13][18]. The organic matrix is responsible for the elasticity of the bone, while the inorganic matrix provides hardness. This means that the organic matrix gives bone its tensile strength, and the inorganic matrix improves the compressive strength of
  • high, water may accumulate on the fiber surfaces, and if the humidity is too low, the solvent may evaporate too quickly [73][82]. Also, relative humidity makes nanofibers thicker or thinner depending on the chemical structure of the polymer [82]. Drug release from electrospun nanofibers The rate and
  • is dissolved in the polymer, Higuchi homogeneous matrix kinetics is observed, and the active substance passes through the matrix by diffusion. Higuchi heterogeneous matrix kinetics also plays an active role in the release when an excess of active substance is present in the polymer. Water-soluble
PDF
Album
Review
Published 25 Jul 2024

Identification of structural features of surface modifiers in engineered nanostructured metal oxides regarding cell uptake through ML-based classification

  • Indrasis Dasgupta,
  • Totan Das,
  • Biplab Das and
  • Shovanlal Gayen

Beilstein J. Nanotechnol. 2024, 15, 909–924, doi:10.3762/bjnano.15.75

Graphical Abstract
  • descriptors were collected, including molecular weight (MW), n-octanol/water partition coefficient (ALogP), number of aromatic rings (nAR), number of rings (nR), number of rotatable bonds (nBonds), number of hydrogen bond donors (nHBDs), and the number of hydrogen bond acceptors (nHBAs) [36]. Extended
PDF
Album
Supp Info
Full Research Paper
Published 22 Jul 2024

Facile synthesis of Fe-based metal–organic frameworks from Fe2O3 nanoparticles and their application for CO2/N2 separation

  • Van Nhieu Le,
  • Hoai Duc Tran,
  • Minh Tien Nguyen,
  • Hai Bang Truong,
  • Toan Minh Pham and
  • Jinsoo Kim

Beilstein J. Nanotechnol. 2024, 15, 897–908, doi:10.3762/bjnano.15.74

Graphical Abstract
  • (DUT), and others. Among them, the Fe-based MIL-100(Fe) material stands out as an exceptional member of the MIL family because of its distinct properties [7][8]. MIL-100(Fe) offers a substantial number of unsaturated metal sites. These sites act as Lewis acid sites once ligands (–OH and water) are
  • (H3BTC, 95%) were supplied from Sigma-Aldrich. Anhydrous ethanol (EtOH, 99.5%) was acquired from Daejung Chemicals (Korea). Deionized (DI) water was generated using the Aqua Max ultra 360 system from Young-Lin (Korea). No further purification was performed on the chemicals before use. Preparation of M
  • ]. Typically, 0.9 g Fe2O3 and different amounts of H3BTC, alongside 45 mL of DI water, were introduced into a Teflon beaker and gently stirred for 15 min at room temperature. The mixture was then carefully sealed inside an autoclave made of stainless steel before being placed inside an electrically heated oven
PDF
Album
Supp Info
Full Research Paper
Published 19 Jul 2024

Water-assisted purification during electron beam-induced deposition of platinum and gold

  • Cristiano Glessi,
  • Fabian A. Polman and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 884–896, doi:10.3762/bjnano.15.73

Graphical Abstract
  • beam-induced deposition (FEBID). It was recently achieved for gold deposits by the co-injection of a water precursor and the gold precursor Au(tfac)Me2. In this work results are reported, using the same approach, on a different gold precursor, Au(acac)Me2, as well as the frequently used platinum
  • precursor MeCpPtMe3. As a water precursor MgSO4·7H2O was used. The purification during deposition led to a decrease of the carbon-to-gold ratio (in atom %) from 2.8 to 0.5 and a decrease of the carbon-to-platinum ratio (in atom %) from 6–7 to 0.2. The purification was done in a regular scanning electron
  • pure gold structures in a single process step using the co-injection of the precursor Au(tfac)Me2 and water. This inspired the present work, in which we aim for the direct deposition of high-purity Au and Pt nanostructures achieved through the co-injection of water and the precursors Au(acac)Me2 and
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2024

The effect of age on the attachment ability of stick insects (Phasmatodea)

  • Marie Grote,
  • Stanislav N. Gorb and
  • Thies H. Büscher

Beilstein J. Nanotechnol. 2024, 15, 867–883, doi:10.3762/bjnano.15.72

Graphical Abstract
  • resulting actual contact area leads to lower attachment performance [72][73][74]. Most flexible cuticle consists at least partially of resilin [50][75][76], which needs water as a plasticizer to retain its extraordinary mechanical properties [70]. As the water evaporates, resilin becomes brittle and less
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2024

A review on the structural characterization of nanomaterials for nano-QSAR models

  • Salvador Moncho,
  • Eva Serrano-Candelas,
  • Jesús Vicente de Julián-Ortiz and
  • Rafael Gozalbes

Beilstein J. Nanotechnol. 2024, 15, 854–866, doi:10.3762/bjnano.15.71

Graphical Abstract
  • nominal values found in the vendor's documentation. Some authors have reported the TEM diameter as primary size, but included also values for the hydrodynamic diameter measured by DLS [23][62][63], even in some cases in different media such as ultrapure water and a different medium (i.e. buffered [64] or
  • measured in a test medium or in different media, such as water at a specific pH or purity level [15][64][77]. A further step, proposed as an example of combining preexisting structure–activity predictive models in networks, is the prediction of the zeta potential in the relevant medium using a model that
  • uses the measurement in pure water (first layer) and another one that allows for estimating the value of the zeta potential in the ionized medium (second layer) using the output of the first layer [78]. Although the zeta potential is most often included as a numerical value, it can be also used to
PDF
Album
Supp Info
Review
Published 11 Jul 2024

When nanomedicines meet tropical diseases

  • Eder Lilia Romero,
  • Katrien Van Bocxlaer and
  • Fabio Rocha Formiga

Beilstein J. Nanotechnol. 2024, 15, 830–832, doi:10.3762/bjnano.15.69

Graphical Abstract
  • to call the attention of everyone, including health authorities, leaders, and communities to unite, act, and eradicate neglected tropical diseases (NTDs). According to the WHO, NTDs primarily affect the most vulnerable populations, where clean water availability, sanitation, and access to health care
PDF
Editorial
Published 08 Jul 2024

Intermixing of MoS2 and WS2 photocatalysts toward methylene blue photodegradation

  • Maryam Al Qaydi,
  • Nitul S. Rajput,
  • Michael Lejeune,
  • Abdellatif Bouchalkha,
  • Mimoun El Marssi,
  • Steevy Cordette,
  • Chaouki Kasmi and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2024, 15, 817–829, doi:10.3762/bjnano.15.68

Graphical Abstract
  • ; photodegradation; transition-metal dichalcogenides; Introduction Water contamination has become a pressing global concern, threatening ecosystems, agriculture, and human well-being [1][2]. The massive industrialization has dramatically contributed to water pollution, which has prompted policymakers to put in
  • place corrective actions for the development of efficient strategies for water treatment [3]. Following these measures, various technologies have proven their efficacy for water depollution, including adsorption and photocatalysis, and are often utilized for heavy metals, pharmaceuticals, pesticide
  • removal, or synthetic dye degradation [4][5][6]. For instance, methylene blue (MB), which is considered one of the most used synthetic organic dyes in various industrial and medical applications, poses serious risks as a pollutant to water resources [7]. Indeed, MB is a potential carcinogen and mutagen
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2024

Electrospun polysuccinimide scaffolds containing different salts as potential wound dressing material

  • Veronika Pálos,
  • Krisztina S. Nagy,
  • Rita Pázmány,
  • Krisztina Juriga-Tóth,
  • Bálint Budavári,
  • Judit Domokos,
  • Dóra Szabó,
  • Ákos Zsembery and
  • Angela Jedlovszky-Hajdu

Beilstein J. Nanotechnol. 2024, 15, 781–796, doi:10.3762/bjnano.15.65

Graphical Abstract
  • [29][30][31][32]. Based on the special requirements to fulfill as a wound dressing material, such as biocompatibility, biodegradability, good gas permeability, and water retention capacity, polysuccinimide (PSI) was used for the preparation of electrostatic fibers. Polysuccinimide is a nontoxic [33
  • , USA); trypsin/EDTA solution (Sigma-Aldrich, USA); cell proliferation reagent WST-1 (Roche, Switzerland); and ultra-purified water (Zineer Power I Water Purification System). All reagents were used without any further purification. Polysuccinimide synthesis The PSI was produced by thermal
  • changed from room temperature to 180 °C, and the pressure was gradually reduced to 3 mbar. The synthesis lasted 8 h. The DMF was added to the synthesized polymer, stirred at 80 rpm, and left to dissolve for 60 min. The solution was dripped into distilled water, precipitating the PSI as a pellet. The
PDF
Album
Supp Info
Full Research Paper
Published 02 Jul 2024

Exploring surface charge dynamics: implications for AFM height measurements in 2D materials

  • Mario Navarro-Rodriguez,
  • Andres M. Somoza and
  • Elisa Palacios-Lidon

Beilstein J. Nanotechnol. 2024, 15, 767–780, doi:10.3762/bjnano.15.64

Graphical Abstract
  • and/or rGO in Milli-Q type-I water (MQ water) were utilized. A drop of these dispersions was cast onto highly doped p-type silicon (1–10 Ω·cm, Siltronix) with a 300 nm SiO2 layer thermally grown on top. Before deposition, the substrate underwent a thorough cleaning process, which involved rinsing with
  • ethanol and MQ water. Subsequently, the substrate was exposed to UV/ozone for 15 min to eliminate organic contaminants and promote the hydrophilicity of the SiO2 surface. GO (Graphenea), was employed without further treatment, while rGO was obtained through chemical reduction using hydrazine hydrate (50
  • –60%, Sigma-Aldrich). After deposition, we heated the sample for a minimum of 3 h at 60 °C on a hot plate to remove some of the physisorbed water. While still hot, it was transferred to the AFM and left to cool down in a nitrogen atmosphere. Before starting measurements under controlled humidity, we
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2024

Green synthesis of biomass-derived carbon quantum dots for photocatalytic degradation of methylene blue

  • Dalia Chávez-García,
  • Mario Guzman,
  • Viridiana Sanchez and
  • Rubén D. Cadena-Nava

Beilstein J. Nanotechnol. 2024, 15, 755–766, doi:10.3762/bjnano.15.63

Graphical Abstract
  • , Mexico 10.3762/bjnano.15.63 Abstract Water pollution, significantly influenced by the discharge of synthetic dyes from industries, such as textiles, poses a persistent global threat to human health. Among these dyes, methylene blue, particularly prevalent in the textile sector, exacerbates this issue
  • . This study introduces an innovative approach to mitigate water pollution through the synthesis of nanomaterials using biomass-derived carbon quantum dots (CQDs) from grape pomace and watermelon peel. Utilizing the hydrothermal method at temperatures between 80 and 160 °C over periods ranging from 1 to
  • ; photoluminiscence; Introduction The textile industry is known for its high consumption of water, energy, and chemical reagents. For example, manufacturing a pair of indigo-dyed pants requires at least 42 L of water, plus approximately 21 L each time they are washed at home. To ensure product quality, textile dyes
PDF
Album
Full Research Paper
Published 25 Jun 2024

Effect of repeating hydrothermal growth processes and rapid thermal annealing on CuO thin film properties

  • Monika Ozga,
  • Eunika Zielony,
  • Aleksandra Wierzbicka,
  • Anna Wolska,
  • Marcin Klepka,
  • Marek Godlewski,
  • Bogdan J. Kowalski and
  • Bartłomiej S. Witkowski

Beilstein J. Nanotechnol. 2024, 15, 743–754, doi:10.3762/bjnano.15.62

Graphical Abstract
  • performed under ambient conditions, which may have introduced surface states or absorbed water molecules on the surface of the investigated samples. Consequently, the obtained VCPD values and the resulting work function values are susceptible to additional errors, including those arising from the screening
PDF
Album
Full Research Paper
Published 24 Jun 2024

Simultaneous electrochemical determination of uric acid and hypoxanthine at a TiO2/graphene quantum dot-modified electrode

  • Vu Ngoc Hoang,
  • Dang Thi Ngoc Hoa,
  • Nguyen Quang Man,
  • Le Vu Truong Son,
  • Le Van Thanh Son,
  • Vo Thang Nguyen,
  • Le Thi Hong Phong,
  • Ly Hoang Diem,
  • Kieu Chan Ly,
  • Ho Sy Thang and
  • Dinh Quang Khieu

Beilstein J. Nanotechnol. 2024, 15, 719–732, doi:10.3762/bjnano.15.60

Graphical Abstract
  • , titanium alkoxides and halides are extensively used as precursors [20][21]. Because of their high reactivity, a complicate control over the reaction conditions is critical to achieve the desired crystalline structures and morphology [22]. Recently, a synthesis using stable water-soluble titanium complexes
  • has been developed to overcome the disadvantages of these precursors and to easily obtain fine titania particles with a controlled shape [23]. The synthesis of TiO2/GQDs from water-soluble titanium complexes is expected to form a homogeneous suspension that is convenient for developing modified
  • with 0.1 M HCl and distilled water until a supernatant with neutral pH was obtained. The solid was dried at 80 °C for 2 h. This product was then mixed with 30 mL of H2O2 (35%, d = 1.11 g·cm3) at 90 °C under magnetic stirring for 1 h to obtain a clear yellow solution of peroxo titanium complexes. The
PDF
Album
Supp Info
Full Research Paper
Published 20 Jun 2024

Elastic modulus of β-Ga2O3 nanowires measured by resonance and three-point bending techniques

  • Annamarija Trausa,
  • Sven Oras,
  • Sergei Vlassov,
  • Mikk Antsov,
  • Tauno Tiirats,
  • Andreas Kyritsakis,
  • Boris Polyakov and
  • Edgars Butanovs

Beilstein J. Nanotechnol. 2024, 15, 704–712, doi:10.3762/bjnano.15.58

Graphical Abstract
  • with Au nanoparticles (NPs, 100 nm of diameter, water suspension, Alfa Aesar) were positioned in a lower-temperature region 10 cm away from the furnace centre. Au NPs served as catalysts for the vapour–liquid–solid (VLS) growth mechanism. The reactor was heated to 1010 °C (high-temperature zone) under
PDF
Album
Supp Info
Full Research Paper
Published 18 Jun 2024
Other Beilstein-Institut Open Science Activities