Thiocarbonyl-enabled ferrocene C–H nitrogenation by cobalt(III) catalysis: thermal and mechanochemical

  1. Santhivardhana Reddy Yetra,
  2. Zhigao Shen,
  3. Hui Wang and
  4. Lutz Ackermann§ORCID Logo

Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany

  1. Corresponding author email
  2. ‡ Equal contributors

§ http://www.org.chemie.uni-goettingen.de/ackermann/

This article is part of the thematic issue "Cobalt catalysis".

Guest Editor: S. Matsunaga
Beilstein J. Org. Chem. 2018, 14, 1546–1553. doi:10.3762/bjoc.14.131
Received 14 May 2018, Accepted 15 Jun 2018, Published 25 Jun 2018

Abstract

Versatile C–H amidations of synthetically useful ferrocenes were accomplished by weakly-coordinating thiocarbonyl-assisted cobalt catalysis. Thus, carboxylates enabled ferrocene C–H nitrogenations with dioxazolones, featuring ample substrate scope and robust functional group tolerance. Mechanistic studies provided strong support for a facile organometallic C–H activation manifold.

Keywords: amidation; C–H activation; cobalt; ferrocene; mechanochemistry

Introduction

C–H activation has surfaced as a transformative tool in molecular sciences [1-9]. While major advances have been accomplished with precious 4d transition metals, recent focus has shifted towards more sustainable base metals [10-17], with considerable progress by earth-abundant cobalt catalysts [18-22]. In this context, well-defined cyclopentadienyl-derived cobalt(III) complexes have proven instrumental for enabling a wealth of C–H transformations [23-41], prominently featuring transformative C–H nitrogenations [42,43] in an atom- and step-economical fashion [44-59]. Within our program on cobalt-catalyzed C–H activation [60-68], we have now devised C–H nitrogenations assisted by weakly-coordinating [69] thiocarbonyls [70,71], allowing the direct C–H activation on substituted ferrocenes [72-93] – key structural motifs of powerful transition metal catalyst ligands and organocatalysts (Figure 1) [94-97]. During the preparation of this article, the use of strongly-coordinating, difficult to remove directing groups has been reported [70,71]. In sharp contrast, notable features of our approach include (i) cobalt-catalyzed C–H amidations of thiocarbonylferrocenes by weak coordination, (ii) thermal and mechanochemical [98-100] cobalt-catalyzed ferrocene C–H nitrogenations, (iii) versatile access to synthetically useful aminoketones, and (iv) key mechanistic insights on facile C–H cobaltation.

[1860-5397-14-131-1]

Figure 1: Selected ferrocene-based ligands and organocatalysts.

Results and Discussion

We initiated our studies by probing various reaction conditions for the envisioned C–H amidation of ferrocene 1a (Table 1). Among a variety of ligands, N-heterocyclic carbenes and phosphines provided unsatisfactory results (Table 1, entries 1–3), while the product 3aa was formed when using amino acid derivatives, albeit as of yet in a racemic fashion (Table 1, entries 4–7). Yet, optimal catalytic performance was realized with 1-AdCO2H (Table 1, entries 8 and 9) [101-104], particularly when using DCE as the solvent (Table 1, entries 9–12). A control experiment verified the essential nature of the cobalt catalyst (Table 1, entry 13). In contrast to the thiocarbonyl-assisted C–H amidation, the corresponding ketone failed thus far to deliver the desired product, under otherwise identical reaction conditions.

Table 1: Thiocarbonyl-assisted C−H nitrogenation of ferrocene 1a.a

[Graphic 1]
Entry Solvent Ligand Yield (%)
1 DCE
2 DCE IMes·HCl
3 DCE PPh3
4 DCE Boc-Leu-OH 40
5 DCE Boc-Val-OH 55
6 DCE Boc-Pro-OH 30
7 DCE Boc-Ala-OH 62
8 DCE MesCO2H 80
9 DCE 1-AdCO2H 84
10 1,4-dioxane 1-AdCO2H 75
11 toluene 1-AdCO2H 79
12 GVL 1-AdCO2H 35
13 DCE 1-AdCO2H b

aReaction conditions: 1a (0.13 mmol), 2a (0.15 mmol), ligand (30 mol %), [Co] (5.0 mol %), solvent (1.0 mL). bReaction performed in the absence of [Cp*Co(CH3CN)3][SbF6]2. Yields of isolated product.

With the optimized reaction conditions in hand, we explored the robustness of the cobalt-catalyzed ferrocene C–H amidation with a variety of 1,4,2-dioxazol-5-ones 2 (Scheme 1). Hence, the chemoselectivity of the cobalt catalyst was reflected by fully tolerating sensitive electrophilic functional groups, including amido, chloro, bromo and nitro substituents in the para-, meta- and even the more congested ortho-position.

[1860-5397-14-131-i1]

Scheme 1: Scope of substituted dioxazolones 2.

The versatile cobalt-catalyzed C–H amidation was not limited to mono-substituted ferrocenes 1 (Scheme 2). Indeed, the arylated ferrocenes 1bd were identified as viable substrates likewise.

[1860-5397-14-131-i2]

Scheme 2: C–H Amidation of arylated ferrocenes 1.

Moreover, differently substituted thiocarbonyls 1 were found to be amenable within the cobalt-catalyzed C–H amidation manifold by weak-coordination (Scheme 3).

[1860-5397-14-131-i3]

Scheme 3: Thiocarbonyl-assisted C–H amidation.

Given the versatility of the cobalt-catalyzed C–H nitrogenation, we became intrigued to delineating its mode of action. To this end, C–H amidations in the presence of isotopically labelled co-solvents led to a significant H/D scrambling in proximity to the thiocarbonyl group. These findings are indicative of a reversible, thus facile organometallic C–H cobaltation regime (Scheme 4).

[1860-5397-14-131-i4]

Scheme 4: H/D Exchange reactions.

Next, intermolecular competition experiments revealed that electron-rich arylated thiocarbonylferrocene 1 reacted preferentially, which can be rationalized with a base-assisted internal electrophilic substitution (BIES) [24,105] C–H cobaltation mechanism. In addition, the electron-rich amidating reagent 2c was found to be inherently more reactive (Scheme 5).

[1860-5397-14-131-i5]

Scheme 5: Intermolecular competition experiments.

As to further late-stage manipulation of the thus-obtained products, the amidated thiocarbonylferrocene 3aa could be easily transformed into the corresponding synthetically useful aminoketone 4aa (Scheme 6), illustrating the unique synthetic utility of our strategy.

[1860-5397-14-131-i6]

Scheme 6: Synthesis of aminoketone 4aa.

Mechanochemical molecular synthesis has attracted recent renewed attention as an attractive alternative for facilitating sustainable organic syntheses [106]. Thus, we were delighted to observe that the mechanochemical C–H nitrogenations proved likewise viable by thiocarbonyl assistance in an effective manner (Scheme 7).

[1860-5397-14-131-i7]

Scheme 7: Mechanochemical ferrocene C–H nitrogenation.

Conclusion

In conclusion, we have reported on the unprecedented cobalt-catalyzed C–H nitrogenation of ferrocenes by weakly-coordinating thiocarbonyls. The carboxylate-assisted cobalt catalysis was characterized by high functional group tolerance and ample substrate scope. Mechanistic studies provided evidence for a facile C–H activation. The C–H amidation was achieved in a thermal fashion as well as by means of mechanochemistry, providing access to synthetically meaningful aminoketones.

Supporting Information

Supporting Information File 1: Experimental procedures, characterization data, and NMR spectra for new compounds.
Format: PDF Size: 2.8 MB Download

Acknowledgements

Generous support by the DFG (Gottfried Wilhelm Leibniz prize), and the CSC (fellowships to Z.S. and H.W.) is gratefully acknowledged.

References

  1. Gandeepan, P.; Ackermann, L. Chem 2018, 4, 199–222. doi:10.1016/j.chempr.2017.11.002
    Return to citation in text: [1]
  2. Wei, Y.; Hu, P.; Zhang, M.; Su, W. Chem. Rev. 2017, 117, 8864–8907. doi:10.1021/acs.chemrev.6b00516
    Return to citation in text: [1]
  3. Ma, W.; Gandeepan, P.; Li, J.; Ackermann, L. Org. Chem. Front. 2017, 4, 1435–1467. doi:10.1039/C7QO00134G
    Return to citation in text: [1]
  4. He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Chem. Rev. 2017, 117, 8754–8786. doi:10.1021/acs.chemrev.6b00622
    Return to citation in text: [1]
  5. Zheng, Q.-Z.; Jiao, N. Chem. Soc. Rev. 2016, 45, 4590–4627. doi:10.1039/C6CS00107F
    Return to citation in text: [1]
  6. Borie, C.; Ackermann, L.; Nechab, M. Chem. Soc. Rev. 2016, 45, 1368–1386. doi:10.1039/C5CS00622H
    Return to citation in text: [1]
  7. Ye, B.; Cramer, N. Acc. Chem. Res. 2015, 48, 1308–1318. doi:10.1021/acs.accounts.5b00092
    Return to citation in text: [1]
  8. Satoh, T.; Miura, M. Chem. – Eur. J. 2010, 16, 11212–11222. doi:10.1002/chem.201001363
    Return to citation in text: [1]
  9. Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed. 2009, 121, 9976–10011. doi:10.1002/ange.200902996
    Return to citation in text: [1]
  10. Hu, Y.; Zhou, B.; Wang, C. Acc. Chem. Res. 2018, 51, 816–827. doi:10.1021/acs.accounts.8b00028
    Return to citation in text: [1]
  11. Liu, W.; Ackermann, L. ACS Catal. 2016, 6, 3743–3752. doi:10.1021/acscatal.6b00993
    Return to citation in text: [1]
  12. Cera, G.; Ackermann, L. Top. Curr. Chem. 2016, 374, 191–224. doi:10.1007/s41061-016-0059-6
    Return to citation in text: [1]
  13. Nakao, Y. Chem. Rec. 2011, 11, 242–251. doi:10.1002/tcr.201100023
    Return to citation in text: [1]
  14. Castro, L. C. M.; Chatani, N. Chem. Lett. 2015, 44, 410–421. doi:10.1246/cl.150024
    Return to citation in text: [1]
  15. Hirano, K.; Miura, M. Chem. Lett. 2015, 44, 868–873. doi:10.1246/cl.150354
    Return to citation in text: [1]
  16. Yamaguchi, J.; Muto, K.; Itami, K. Eur. J. Org. Chem. 2013, 19–30. doi:10.1002/ejoc.201200914
    Return to citation in text: [1]
  17. Kulkarni, A. A.; Daugulis, O. Synthesis 2009, 4087–4109. doi:10.1055/s-0029-1217131
    Return to citation in text: [1]
  18. Yoshino, T.; Matsunaga, S. Adv. Synth. Catal. 2017, 359, 1245–1262. doi:10.1002/adsc.201700042
    Return to citation in text: [1]
  19. Wei, D.; Zhu, X.; Niu, J.-L.; Song, M.-P. ChemCatChem 2016, 8, 1242–1263. doi:10.1002/cctc.201600040
    Return to citation in text: [1]
  20. Moselage, M.; Li, J.; Ackermann, L. ACS Catal. 2016, 6, 498–525. doi:10.1021/acscatal.5b02344
    Return to citation in text: [1]
  21. Gao, K.; Yoshikai, N. Acc. Chem. Res. 2014, 47, 1208–1219. doi:10.1021/ar400270x
    Return to citation in text: [1]
  22. Ackermann, L. J. Org. Chem. 2014, 79, 8948–8954. doi:10.1021/jo501361k
    Return to citation in text: [1]
  23. Zell, D.; Müller, V.; Dhawa, U.; Bursch, M.; Presa, R. R.; Grimme, S.; Ackermann, L. Chem. – Eur. J. 2017, 23, 12145–12148. doi:10.1002/chem.201702528
    Return to citation in text: [1]
  24. Zell, D.; Bursch, M.; Müller, V.; Grimme, S.; Ackermann, L. Angew. Chem., Int. Ed. 2017, 56, 10378–10382. doi:10.1002/anie.201704196
    Return to citation in text: [1] [2]
  25. Ikemoto, H.; Tanaka, R.; Sakata, K.; Kanai, M.; Yoshino, T.; Matsunaga, S. Angew. Chem., Int. Ed. 2017, 56, 7156–7160. doi:10.1002/anie.201703193
    Return to citation in text: [1]
  26. Yan, Q.; Chen, Z.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2016, 3, 678–682. doi:10.1039/C6QO00059B
    Return to citation in text: [1]
  27. Lu, Q.; Vásquez-Céspedes, S.; Gensch, T.; Glorius, F. ACS Catal. 2016, 6, 2352–2356. doi:10.1021/acscatal.6b00367
    Return to citation in text: [1]
  28. Kong, L.; Yu, S.; Zhou, X.; Li, X. Org. Lett. 2016, 18, 588–591. doi:10.1021/acs.orglett.5b03629
    Return to citation in text: [1]
  29. Kalsi, D.; Laskar, R. A.; Barsu, N.; Premkumar, J. R.; Sundararaju, B. Org. Lett. 2016, 18, 4198–4201. doi:10.1021/acs.orglett.6b01845
    Return to citation in text: [1]
  30. Bunno, Y.; Murakami, N.; Suzuki, Y.; Kanai, M.; Yoshino, T.; Matsunaga, S. Org. Lett. 2016, 18, 2216–2219. doi:10.1021/acs.orglett.6b00846
    Return to citation in text: [1]
  31. Boerth, J. A.; Hummel, J. R.; Ellman, J. A. Angew. Chem., Int. Ed. 2016, 55, 12650–12654. doi:10.1002/anie.201603831
    Return to citation in text: [1]
  32. Hummel, J. R.; Ellman, J. A. J. Am. Chem. Soc. 2015, 137, 490–498. doi:10.1021/ja5116452
    Return to citation in text: [1]
  33. Wang, H.; Koeller, J.; Liu, W.; Ackermann, L. Chem. – Eur. J. 2015, 21, 15525–15528. doi:10.1002/chem.201503624
    Return to citation in text: [1]
  34. Suzuki, Y.; Sun, B.; Sakata, K.; Yoshino, T.; Matsunaga, S.; Kanai, M. Angew. Chem., Int. Ed. 2015, 54, 9944–9947. doi:10.1002/anie.201503704
    Return to citation in text: [1]
  35. Sen, M.; Kalsi, D.; Sundararaju, B. Chem. – Eur. J. 2015, 21, 15529–15533. doi:10.1002/chem.201503643
    Return to citation in text: [1]
  36. Sauermann, N.; González, M. J.; Ackermann, L. Org. Lett. 2015, 17, 5316–5319. doi:10.1021/acs.orglett.5b02678
    Return to citation in text: [1]
  37. Ma, W.; Ackermann, L. ACS Catal. 2015, 5, 2822–2825. doi:10.1021/acscatal.5b00322
    Return to citation in text: [1]
  38. Li, J.; Ackermann, L. Angew. Chem., Int. Ed. 2015, 54, 3635–3638. doi:10.1002/anie.201409247
    Return to citation in text: [1]
  39. Li, J.; Ackermann, L. Angew. Chem., Int. Ed. 2015, 54, 8551–8554. doi:10.1002/anie.201501926
    Return to citation in text: [1]
  40. Ikemoto, H.; Yoshino, T.; Sakata, K.; Matsunaga, S.; Kanai, M. J. Am. Chem. Soc. 2014, 136, 5424–5431. doi:10.1021/ja5008432
    Return to citation in text: [1]
  41. Yoshino, T.; Ikemoto, H.; Matsunaga, S.; Kanai, M. Angew. Chem., Int. Ed. 2013, 52, 2207–2211. doi:10.1002/anie.201209226
    Return to citation in text: [1]
  42. Park, Y.; Kim, Y.; Chang, S. Chem. Rev. 2017, 117, 9247–9301. doi:10.1021/acs.chemrev.6b00644
    Return to citation in text: [1]
  43. Jiao, J.; Murakami, K.; Itami, K. ACS Catal. 2016, 6, 610–633. doi:10.1021/acscatal.5b02417
    Return to citation in text: [1]
  44. Borah, G.; Borah, P.; Patel, P. Org. Biomol. Chem. 2017, 15, 3854–3859. doi:10.1039/C7OB00540G
    Return to citation in text: [1]
  45. Zhang, W.; Deng, H.; Li, H. Org. Chem. Front. 2017, 4, 2202–2206. doi:10.1039/C7QO00542C
    Return to citation in text: [1]
  46. Xia, J.; Yang, X.; Li, Y.; Li, X. Org. Lett. 2017, 19, 3243–3246. doi:10.1021/acs.orglett.7b01356
    Return to citation in text: [1]
  47. Huang, J.; Huang, Y.; Wang, T.; Huang, Q.; Wang, Z.; Chen, Z. Org. Lett. 2017, 19, 1128–1131. doi:10.1021/acs.orglett.7b00120
    Return to citation in text: [1]
  48. Barsu, N.; Bolli, S. K.; Sundararaju, B. Chem. Sci. 2017, 8, 2431–2435. doi:10.1039/C6SC05026C
    Return to citation in text: [1]
  49. Wang, X.; Lerchen, A.; Glorius, F. Org. Lett. 2016, 18, 2090–2093. doi:10.1021/acs.orglett.6b00716
    Return to citation in text: [1]
  50. Wu, F.; Zhao, Y.; Chen, W. Tetrahedron 2016, 72, 8004–8008. doi:10.1016/j.tet.2016.10.032
    Return to citation in text: [1]
  51. Wang, J.; Zha, S.; Chen, K.; Zhang, F.; Song, C.; Zhu, J. Org. Lett. 2016, 18, 2062–2065. doi:10.1021/acs.orglett.6b00691
    Return to citation in text: [1]
  52. Wang, H.; Lorion, M. M.; Ackermann, L. Angew. Chem., Int. Ed. 2016, 55, 10386–10390. doi:10.1002/anie.201603260
    Return to citation in text: [1]
  53. Park, Y.; Park, K. T.; Kim, J. G.; Chang, S. J. Am. Chem. Soc. 2015, 137, 4534–4542. doi:10.1021/jacs.5b01324
    Return to citation in text: [1]
  54. Jeon, B.; Yeon, U.; Son, J.-Y.; Lee, P. H. Org. Lett. 2016, 18, 4610–4613. doi:10.1021/acs.orglett.6b02250
    Return to citation in text: [1]
  55. Park, Y.; Jee, S.; Kim, J. G.; Chang, S. Org. Process Res. Dev. 2015, 19, 1024–1029. doi:10.1021/acs.oprd.5b00164
    Return to citation in text: [1]
  56. Park, J.; Lee, J.; Chang, S. Angew. Chem., Int. Ed. 2017, 56, 4256–4260. doi:10.1002/anie.201701138
    Return to citation in text: [1]
  57. Park, J.; Chang, S. Angew. Chem., Int. Ed. 2015, 54, 14103–14107. doi:10.1002/anie.201505820
    Return to citation in text: [1]
  58. Mei, R.; Loup, J.; Ackermann, L. ACS Catal. 2016, 6, 793–797. doi:10.1021/acscatal.5b02661
    Return to citation in text: [1]
  59. Liang, Y.; Liang, Y.-F.; Tang, C.; Yuan, Y.; Jiao, N. Chem. – Eur. J. 2015, 21, 16395–16399. doi:10.1002/chem.201503533
    Return to citation in text: [1]
  60. Sauermann, N.; Mei, R.; Ackermann, L. Angew. Chem., Int. Ed. 2018, 57, 5090–5094. doi:10.1002/anie.201802206
    Return to citation in text: [1]
  61. Tian, C.; Massignan, L.; Meyer, T. H.; Ackermann, L. Angew. Chem., Int. Ed. 2018, 57, 2383–2387. doi:10.1002/anie.201712647
    Return to citation in text: [1]
  62. Sauermann, N.; Meyer, T. H.; Tian, C.; Ackermann, L. J. Am. Chem. Soc. 2017, 139, 18452–18455. doi:10.1021/jacs.7b11025
    Return to citation in text: [1]
  63. Sauermann, N.; Loup, J.; Kootz, D.; Yatham, V. R.; Berkessel, A.; Ackermann, L. Synthesis 2017, 49, 3476–3484. doi:10.1055/s-0036-1590471
    Return to citation in text: [1]
  64. Mei, R.; Ackermann, L. Adv. Synth. Catal. 2016, 358, 2443–2448. doi:10.1002/adsc.201600384
    Return to citation in text: [1]
  65. Moselage, M.; Sauermann, N.; Richter, S. C.; Ackermann, L. Angew. Chem., Int. Ed. 2015, 54, 6352–6355. doi:10.1002/anie.201412319
    Return to citation in text: [1]
  66. Li, J.; Ackermann, L. Chem. – Eur. J. 2015, 21, 5718–5722. doi:10.1002/chem.201500552
    Return to citation in text: [1]
  67. Punji, B.; Song, W.; Shevchenko, G. A.; Ackermann, L. Chem. – Eur. J. 2013, 19, 10605–10610. doi:10.1002/chem.201301409
    Return to citation in text: [1]
  68. Song, W.; Ackermann, L. Angew. Chem., Int. Ed. 2012, 51, 8251–8254. doi:10.1002/anie.201202466
    Return to citation in text: [1]
  69. Sarkar, S. D.; Liu, W.; Kozhushkov, S. I.; Ackermann, L. Adv. Synth. Catal. 2014, 356, 1461–1479. doi:10.1002/adsc.201400110
    Return to citation in text: [1]
  70. Cheng, H.; Hernández, J. G.; Bolm, C. Adv. Synth. Catal. 2018, 360, 1800–1804. doi:10.1002/adsc.201800161
    Return to citation in text: [1] [2]
  71. Wang, S.-B.; Gu, Q.; You, S.-L. J. Catal. 2018, 361, 393–397. doi:10.1016/j.jcat.2018.03.007
    Return to citation in text: [1] [2]
  72. Cai, Z.-J.; Liu, C.-X.; Gu, Q.; You, S.-L. Angew. Chem., Int. Ed. 2018, 57, 1296–1299. doi:10.1002/anie.201711451
    Return to citation in text: [1]
  73. Xu, J.; Liu, Y.; Zhang, J.; Xu, X.; Jin, Z. Chem. Commun. 2018, 54, 689–692. doi:10.1039/C7CC09273C
    Return to citation in text: [1]
  74. Gao, D.-W.; Gu, Q.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2017, 50, 351–365. doi:10.1021/acs.accounts.6b00573
    Return to citation in text: [1]
  75. Schmiel, D.; Butenschön, H. Eur. J. Org. Chem. 2017, 3041–3048. doi:10.1002/ejoc.201700358
    Return to citation in text: [1]
  76. Schmiel, D.; Butenschön, H. Organometallics 2017, 36, 4979–4989. doi:10.1021/acs.organomet.7b00799
    Return to citation in text: [1]
  77. Wang, S.-B.; Gu, Q.; You, S.-L. J. Org. Chem. 2017, 82, 11829–11835. doi:10.1021/acs.joc.7b00775
    Return to citation in text: [1]
  78. Wang, S.-B.; Gu, Q.; You, S.-L. Organometallics 2017, 36, 4359–4362. doi:10.1021/acs.organomet.7b00691
    Return to citation in text: [1]
  79. Cera, G.; Haven, T.; Ackermann, L. Angew. Chem., Int. Ed. 2016, 55, 1484–1488. doi:10.1002/anie.201509603
    Return to citation in text: [1]
  80. Gao, D.-W.; Gu, Q.; You, S.-L. J. Am. Chem. Soc. 2016, 138, 2544–2547. doi:10.1021/jacs.6b00127
    Return to citation in text: [1]
  81. Shibata, T.; Uno, N.; Sasaki, T.; Kanyiva, K. S. J. Org. Chem. 2016, 81, 6266–6272. doi:10.1021/acs.joc.6b00825
    Return to citation in text: [1]
  82. Urbano, A.; Hernández-Torres, G.; del Hoyo, A. M.; Martínez-Carrión, A.; Carmen Carreño, M. Chem. Commun. 2016, 52, 6419–6422. doi:10.1039/C6CC02624A
    Return to citation in text: [1]
  83. Wang, S.-B.; Zheng, J.; You, S.-L. Organometallics 2016, 35, 1420–1425. doi:10.1021/acs.organomet.6b00020
    Return to citation in text: [1]
  84. Zhu, D.-Y.; Chen, P.; Xia, J.-B. ChemCatChem 2016, 8, 68–73. doi:10.1002/cctc.201500895
    Return to citation in text: [1]
  85. Arae, S.; Ogasawara, M. Tetrahedron Lett. 2015, 56, 1751–1761. doi:10.1016/j.tetlet.2015.01.130
    Return to citation in text: [1]
  86. López, L. A.; López, E. Dalton Trans. 2015, 44, 10128–10135. doi:10.1039/C5DT01373A
    Return to citation in text: [1]
  87. Deng, R.; Huang, Y.; Ma, X.; Li, G.; Zhu, R.; Wang, B.; Kang, Y.-B.; Gu, Z. J. Am. Chem. Soc. 2014, 136, 4472–4475. doi:10.1021/ja500699x
    Return to citation in text: [1]
  88. Gao, D.-W.; Yin, Q.; Gu, Q.; You, S.-L. J. Am. Chem. Soc. 2014, 136, 4841–4844. doi:10.1021/ja500444v
    Return to citation in text: [1]
  89. Liu, L.; Zhang, A.-A.; Zhao, R.-J.; Li, F.; Meng, T.-J.; Ishida, N.; Murakami, M.; Zhao, W.-X. Org. Lett. 2014, 16, 5336–5338. doi:10.1021/ol502520b
    Return to citation in text: [1]
  90. Pi, C.; Cui, X.; Liu, X.; Guo, M.; Zhang, H.; Wu, Y. Org. Lett. 2014, 16, 5164–5167. doi:10.1021/ol502509f
    Return to citation in text: [1]
  91. Shibata, T.; Shizuno, T. Angew. Chem., Int. Ed. 2014, 53, 5410–5413. doi:10.1002/anie.201402518
    Return to citation in text: [1]
  92. Xie, W.; Li, B.; Xu, S.; Song, H.; Wang, B. Organometallics 2014, 33, 2138–2141. doi:10.1021/om5002606
    Return to citation in text: [1]
  93. Kornhaaß, C.; Kuper, C.; Ackermann, L. Adv. Synth. Catal. 2014, 356, 1619–1624. doi:10.1002/adsc.201301156
    Return to citation in text: [1]
  94. Arrayás, R. G.; Adrio, J.; Carretero, J. C. Angew. Chem., Int. Ed. 2006, 45, 7674–7715. doi:10.1002/anie.200602482
    Return to citation in text: [1]
  95. Fu, G. C. Acc. Chem. Res. 2004, 37, 542–547. doi:10.1021/ar030051b
    Return to citation in text: [1]
  96. Dai, L.-X.; Tu, T.; You, S.-L.; Deng, W.-P.; Hou, X.-L. Acc. Chem. Res. 2003, 36, 659–667. doi:10.1021/ar020153m
    Return to citation in text: [1]
  97. Fu, G. C. Acc. Chem. Res. 2000, 33, 412–420. doi:10.1021/ar990077w
    Return to citation in text: [1]
  98. Temnikov, M. N.; Anisimov, A. A.; Zhemchugov, P. V.; Kholodkov, D. N.; Goloveshkin, A. S.; Naumkin, A. V.; Chistovalov, S. M.; Katsoulis, D.; Muzafarov, A. M. Green Chem. 2018, 20, 1962–1969. doi:10.1039/C7GC03862C
    Return to citation in text: [1]
  99. Hermann, G. N.; Bolm, C. ACS Catal. 2017, 7, 4592–4596. doi:10.1021/acscatal.7b00582
    Return to citation in text: [1]
  100. Cheng, H.; Hernández, J. G.; Bolm, C. Org. Lett. 2017, 19, 6284–6287. doi:10.1021/acs.orglett.7b02973
    Return to citation in text: [1]
  101. Ackermann, L. Acc. Chem. Res. 2014, 47, 281–295. doi:10.1021/ar3002798
    Return to citation in text: [1]
  102. Ackermann, L. Chem. Rev. 2011, 111, 1315–1345. doi:10.1021/cr100412j
    Return to citation in text: [1]
  103. Lapointe, D.; Fagnou, K. Chem. Lett. 2010, 39, 1118–1126. doi:10.1246/cl.2010.1118
    Return to citation in text: [1]
  104. Ackermann, L.; Novák, P.; Vicente, R.; Hofmann, N. Angew. Chem., Int. Ed. 2009, 48, 6045–6048. doi:10.1002/anie.200902458
    Return to citation in text: [1]
  105. Ma, W.; Mei, R.; Tenti, G.; Ackermann, L. Chem. – Eur. J. 2014, 20, 15248–15251. doi:10.1002/chem.201404604
    Return to citation in text: [1]
  106. Hernández, J. G. Chem. – Eur. J. 2017, 23, 17157–17165. doi:10.1002/chem.201703605
    Return to citation in text: [1]

© 2018 Yetra et al.; licensee Beilstein-Institut.
This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: (https://www.beilstein-journals.org/bjoc)

 
Back to Article List