Enantioselective dioxytosylation of styrenes using lactate-based chiral hypervalent iodine(III)

  1. Morifumi FujitaORCID Logo,
  2. Koki Miura and
  3. Takashi Sugimura

Graduate School of Material Science, University of Hyogo, Kohto, Kamigori, Hyogo 678-1297, Japan

  1. Corresponding author email

This article is part of the Thematic Series "Hypervalent iodine chemistry in organic synthesis".

Guest Editor: T. Wirth
Beilstein J. Org. Chem. 2018, 14, 659–663. doi:10.3762/bjoc.14.53
Received 25 Dec 2017, Accepted 06 Mar 2018, Published 20 Mar 2018

Abstract

A series of optically active hypervalent iodine(III) reagents prepared from the corresponding (R)-2-(2-iodophenoxy)propanoate derivative was employed for the asymmetric dioxytosylation of styrene and its derivatives. The electrophilic addition of the hypervalent iodine(III) compound toward styrene proceeded with high enantioface selectivity to give 1-aryl-1,2-di(tosyloxy)ethane with an enantiomeric excess of 70–96% of the (S)-isomer.

Keywords: 1,2-difunctionalization of alkenes; enantioselective synthesis; hypervalent iodine; oxidation

Findings

Hypervalent aryl-λ3-iodanes have been widely used for metal-free oxidation with high selectivity in organic synthesis [1-3]. The reactivity of an aryl-λ3-iodane is controlled by the electronic and steric properties of the aryl group and the heteroatomic ligand coordinated to the iodine atom. Optically active hypervalent iodine compounds contain chiral ligands or chiral aryl groups. Several types of optically active hypervalent iodine reagents and catalysts have been developed for highly stereocontrolled oxidative transformations [4-14]. The enantioselective vicinal difunctionalization of alkenes constitutes one type of attractive transformation achieved by chiral hypervalent iodine compounds. As a seminal example in this field, Wirth et al. [15-17] reported the dioxytosylation of styrene (1a, Scheme 1). Chiral hypervalent iodine reagents 2 bearing a 1-methoxyethyl side chain were used for enantiocontrol of the dioxytosylation, and the maximum enantiomeric excess (ee) of the product 3a reached 65%. Despite recent rapid progress in the field of asymmetric oxidation achieved by chiral hypervalent iodine compounds, there has been no subsequent examination of dioxytosylation, which can be used as a standard reaction for comparing the enantiocontrolling ability of chiral hypervalent iodine reagents.

[1860-5397-14-53-i1]

Scheme 1: Enantioselective dioxytosylation of styrene as a seminal example.

The design of chiral hypervalent iodine reagents using a lactate motif has been employed for several types of oxidation reaction since we first reported this procedure [18]. Enantioselective oxidative transformations include the dearomatization of phenols [19-24], α-functionalization of carbonyl compounds [25-29], and vicinal difunctionalization of alkenes [18,30-50]. Here, the efficiency of the lactate-based chiral hypervalent iodine reagents 4a–e (Figure 1) was assessed using the dioxytosylation of styrenes as a reference reaction.

[1860-5397-14-53-1]

Figure 1: Series of lactate-based hypervalent iodine reagents.

A series of lactate-derived aryl-λ3-iodanes 4ae was used for the oxidation of styrenes 1 in the presence of p-toluenesulfonic acid (TsOH) in dichloromethane. The reaction proceeded at −50 °C to give the 1,2-dioxytosylated product 3 and the rearranged product 5. The yields of 3 and 5 were determined by 1H NMR using an internal standard. The ee of 3 was determined by chiral HPLC analysis. The results for the yields and ee are summarized in Table 1.

Table 1: Enantioselective dioxytosylation of styrenes 1 using aryl-λ3-iodanes 4.a

[Graphic 1]
      Yield (%)b  
Entry Substrate Reagent 3 5 ee of 3 (%)c,d
1 1a (X = H) 4a 53 15 70 (S)
2 1a (X = H) 4b 49 16 80 (S)
3 1a (X = H) 4c 41 14 78 (S)
4 1a (X = H) 4d 41 22 70 (S)
5 1a (X = H) 4e 80 20 92 (S)
6 1b (X = p-Cl)e 4a 63 6 70
7 1b (X = p-Cl)e 4b 46 5 76
8 1b (X = p-Cl)e 4e 79 5 90
9 1c (X = o-Me) 4a 7 34 79
10 1c (X = o-Me) 4e 10 35 96

aThe reaction was carried out at −50 °C in dichloromethane containing 4 (47 mM), TsOH (86 mM), and 1 (43 mM) for 4 h. bThe yield was determined by 1H NMR using an internal standard. cThe ee was determined by chiral HPLC using a Daicel CHIRALPAK AD column (ø 4.6 mm × 250 mm). dPreferential configuration of product 3. The absolute stereochemistry of 3b and 3c was not determined. eThe reaction was carried out for 20 h.

The reaction of styrene (1a) with 4a gave the 1,2-dioxytosylated product 3a with 70% ee of the (S)-isomer (Table 1, entry 1). An ee of equal to or greater than 70% was also achieved in the reactions with the other lactate-based reagents 4be (Table 1, entries 2–5). The reaction with the 2,6-bis(lactate)aryl reagent 4e provided a high ee of 92%. The reactions of p-chlorostyrene (1b) gave 3b with a similar ee, and the ratios of 3 to 5 (3b to 5b) were higher than those in the reaction of 1a (Table 1, entries 6–8). In the reactions of o-methylstyrene (1c), the ee of the 1,2-dioxytosylated product 3c was slightly higher than those of 3a and 3b, but the regioselectivity for 3c over 5c was poor (Table 1, entries 9 and 10).

Scheme 2 illustrates possible reaction pathways that lead to 3 and the achiral byproduct 5. The treatment of (diacetoxyiodo)benzene with TsOH readily gives Koser’s reagent [PhI(OH)OTs] [51], which has a higher electrophilicity toward the carbon–carbon double bond in 1. The dioxytosylation of alkenes with Koser’s reagent was found to proceed via an SN2 reaction of a cyclic intermediate such as I1, judging from the syn selectivity of the dioxytosylation [52,53]. The attack of the tosylate ion on I1 possibly takes place at the benzylic position or at the methylene carbon atom. The positive charge of I1 may be stabilized by the aryl group and localized at the benzylic position. This may allow the preferential formation of I3 from I1. If I2 was the major intermediate in the pathway leading to 3, the stereochemical purity of 3 would have decreased owing to the facile elimination of the iodonium group [54] at the benzylic position of I2 (SN1). The high enantiomeric ratio of 3 can be rationalized via a preference for the I1I33 pathway over the I1I23 pathway. The product ratio of 3 to 5 was affected by the ring substituent in styrenes 1: the electron-withdrawing chloro substituent in 1b increased the amount of 3, whereas the electron-donating methyl substituent in 1c decreased the amount of 3. An electron-donating aryl group increases the rate of participation of the aryl group (I3I4). In other words, a reaction pathway that bifurcates from I3 to 3 and 5 agrees well with the regioselectivity for 3 over 5 observed for the substituted styrenes. The phenonium cation intermediate I4 contains two reaction sites on the ethylene bridge. Electron donation due to the lone pair on the oxygen atom of the internal tosyloxy group may weaken the bond between the tosyloxy-bonded carbon and the quaternary carbon in I4.

[1860-5397-14-53-i2]

Scheme 2: Plausible pathways in dioxytosylation of styrenes.

The reaction of styrene with 4ae preferentially gave (S)-3, which forms via an electrophilic addition of the iodane toward the Si face of styrene, followed by an SN2 reaction with the tosylate ion. If an SN1 mechanism were involved in the oxytosylation of I1, the enantiomeric ratio of 3 would decrease owing to the planar structure of the benzylic cation. Thus, the tosylate ion may act as an effective nucleophile for the SN2 reaction of I1. The stereoface-differentiation in the dioxytosylation reaction using the lactate-derived aryl-λ3-iodanes is similar to that in preceding reactions [14], which include the diacetoxylation [38,39,50] and diamination [30,49] of styrene.

In summary, the reaction of styrenes with lactate-derived aryl-λ3-iodanes gave the dioxytosylated product with an ee of 70–96%.

Supporting Information

Supporting Information File 1: Experimental procedures, characterization data, and copies of 1H and 13C NMR spectra are available.
Format: PDF Size: 1.1 MB Download

Acknowledgements

Financial support from University of Hyogo is gratefully acknowledged.

References

  1. Zhdankin, V. V. Hypervalent Iodine Chemistry; John Wiley & Sons: Chichester, U.K., 2014.
    Return to citation in text: [1]
  2. Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328–3435. doi:10.1021/acs.chemrev.5b00547
    Return to citation in text: [1]
  3. Wirth, T., Ed. Hypervalent Iodine Chemistry; Springer: Basel, Switzerland, 2016. doi:10.1007/978-3-319-33733-3
    Return to citation in text: [1]
  4. Ngatimin, M.; Lupton, D. W. Aust. J. Chem. 2010, 63, 653–658. doi:10.1071/CH09625
    Return to citation in text: [1]
  5. Liang, H.; Ciufolini, M. A. Angew. Chem., Int. Ed. 2011, 50, 11849–11851. doi:10.1002/anie.201106127
    Angew. Chem. 2011, 123, 12051–12053. doi:10.1002/ange.201106127
    Return to citation in text: [1]
  6. Uyanik, M.; Ishihara, K. J. Synth. Org. Chem., Jpn. 2012, 70, 1116–1122. doi:10.5059/yukigoseikyokaishi.70.1116
    Return to citation in text: [1]
  7. Parra, A.; Reboredo, S. Chem. – Eur. J. 2013, 19, 17244–17260. doi:10.1002/chem.201302220
    Return to citation in text: [1]
  8. Singh, F. V.; Wirth, T. Chem. – Asian J. 2014, 9, 950–971. doi:10.1002/asia.201301582
    Return to citation in text: [1]
  9. Romero, R. M.; Wöste, T. H.; Muñiz, K. Chem. – Asian J. 2014, 9, 972–983. doi:10.1002/asia.201301637
    Return to citation in text: [1]
  10. Harned, A. M. Tetrahedron Lett. 2014, 55, 4681–4689. doi:10.1016/j.tetlet.2014.06.051
    Return to citation in text: [1]
  11. Zheng, Z. S.; Zhang-Negrerie, D.; Du, Y. F.; Zhao, K. Sci. China: Chem. 2014, 57, 189–214. doi:10.1007/s11426-013-5043-1
    Return to citation in text: [1]
  12. Berthiol, F. Synthesis 2015, 47, 587–603. doi:10.1055/s-0034-1379892
    Return to citation in text: [1]
  13. Basdevant, B.; Guilbault, A.-A.; Beaulieu, S.; Lauriers, A. J.-D.; Legault, C. Y. Pure Appl. Chem. 2017, 89, 781–789. doi:10.1515/pac-2016-1212
    Return to citation in text: [1]
  14. Fujita, M. Tetrahedron Lett. 2017, 58, 4409–4419. doi:10.1016/j.tetlet.2017.10.019
    Return to citation in text: [1] [2]
  15. Wirth, T.; Hirt, U. H. Tetrahedron: Asymmetry 1997, 8, 23–26. doi:10.1016/S0957-4166(96)00469-7
    Return to citation in text: [1]
  16. Hirt, U. H.; Spingler, B.; Wirth, T. J. Org. Chem. 1998, 63, 7674–7679. doi:10.1021/jo980475x
    Return to citation in text: [1]
  17. Hirt, U. H.; Schuster, M. F. H.; French, A. N.; Wiest, O. G.; Wirth, T. Eur. J. Org. Chem. 2001, 1569–1579. doi:10.1002/1099-0690(200104)2001:8<1569::AID-EJOC1569>3.0.CO;2-T
    Return to citation in text: [1]
  18. Fujita, M.; Okuno, S.; Lee, H. J.; Sugimura, T.; Okuyama, T. Tetrahedron Lett. 2007, 48, 8691–8694. doi:10.1016/j.tetlet.2007.10.015
    Return to citation in text: [1] [2]
  19. Uyanik, M.; Yasui, T.; Ishihara, K. Angew. Chem., Int. Ed. 2010, 49, 2175–2177. doi:10.1002/anie.200907352
    Angew. Chem. 2010, 122, 2221–2223. doi:10.1002/ange.200907352
    Return to citation in text: [1]
  20. Uyanik, M.; Yasui, T.; Ishihara, K. Angew. Chem., Int. Ed. 2013, 52, 9215–9218. doi:10.1002/anie.201303559
    Angew. Chem. 2013, 125, 9385–9388. doi:10.1002/ange.201303559
    Return to citation in text: [1]
  21. Zhang, D.-Y.; Xu, L.; Wu, H.; Gong, L.-Z. Chem. – Eur. J. 2015, 21, 10314–10317. doi:10.1002/chem.201501583
    Return to citation in text: [1]
  22. Yoshida, Y.; Magara, A.; Mino, T.; Sakamoto, M. Tetrahedron Lett. 2016, 57, 5103–5107. doi:10.1016/j.tetlet.2016.10.016
    Return to citation in text: [1]
  23. Uyanik, M.; Sasakura, N.; Mizuno, M.; Ishihara, K. ACS Catal. 2017, 7, 872–876. doi:10.1021/acscatal.6b03380
    Return to citation in text: [1]
  24. Jain, N.; Xu, S.; Ciufolini, M. A. Chem. – Eur. J. 2017, 23, 4542–4546. doi:10.1002/chem.201700667
    Return to citation in text: [1]
  25. Mizar, P.; Wirth, T. Angew. Chem., Int. Ed. 2014, 53, 5993–5997. doi:10.1002/anie.201400405
    Angew. Chem. 2014, 126, 6103–6107. doi:10.1002/ange.201400405
    Return to citation in text: [1]
  26. Wu, H.; He, Y.-P.; Xu, L.; Zhang, D.-Y.; Gong, L.-Z. Angew. Chem., Int. Ed. 2014, 53, 3466–3469. doi:10.1002/anie.201309967
    Angew. Chem. 2014, 126, 3534–3537. doi:10.1002/ange.201309967
    Return to citation in text: [1]
  27. Basdevant, B.; Legault, C. Y. Org. Lett. 2015, 17, 4918–4921. doi:10.1021/acs.orglett.5b02501
    Return to citation in text: [1]
  28. Feng, Y.; Huang, R.; Hu, L.; Xiong, Y.; Coeffard, V. Synthesis 2016, 48, 2637–2644. doi:10.1055/s-0035-1561442
    Return to citation in text: [1]
  29. Cao, Y.; Zhang, X.; Lin, G.; Zhang-Negrerie, D.; Du, Y. Org. Lett. 2016, 18, 5580–5583. doi:10.1021/acs.orglett.6b02816
    Return to citation in text: [1]
  30. Muñiz, K.; Barreiro, L.; Romero, R. M.; Martínez, C. J. Am. Chem. Soc. 2017, 139, 4354–4357. doi:10.1021/jacs.7b01443
    Return to citation in text: [1] [2]
  31. Gelis, C.; Dumoulin, A.; Bekkaye, M.; Neuville, L.; Masson, G. Org. Lett. 2017, 19, 278–281. doi:10.1021/acs.orglett.6b03631
    Return to citation in text: [1]
  32. Qurban, J.; Elsherbini, M.; Wirth, T. J. Org. Chem. 2017, 82, 11872–11876. doi:10.1021/acs.joc.7b01571
    Return to citation in text: [1]
  33. Shimogaki, M.; Fujita, M.; Sugimura, T. J. Org. Chem. 2017, 82, 11836–11840. doi:10.1021/acs.joc.7b01141
    Return to citation in text: [1]
  34. Banik, S. M.; Medley, J. W.; Jacobsen, E. N. Science 2016, 353, 51–54. doi:10.1126/science.aaf8078
    Return to citation in text: [1]
  35. Banik, S. M.; Medley, J. W.; Jacobsen, E. N. J. Am. Chem. Soc. 2016, 138, 5000–5003. doi:10.1021/jacs.6b02391
    Return to citation in text: [1]
  36. Woerly, E.; Banik, S. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2016, 138, 13858–13861. doi:10.1021/jacs.6b09499
    Return to citation in text: [1]
  37. Ahmad, A.; Silva, L. F., Jr. J. Org. Chem. 2016, 81, 2174–2181. doi:10.1021/acs.joc.5b02803
    Return to citation in text: [1]
  38. Haubenreisser, S.; Wöste, T. H.; Martínez, C.; Ishihara, K.; Muñiz, K. Angew. Chem., Int. Ed. 2016, 55, 413–417. doi:10.1002/anie.201507180
    Angew. Chem. 2016, 128, 422–426. doi:10.1002/ange.201507180
    Return to citation in text: [1] [2]
  39. Wöste, T. H.; Muñiz, K. Synthesis 2016, 48, 816–827. doi:10.1055/s-0035-1561313
    Return to citation in text: [1] [2]
  40. Mizar, P.; Niebuhr, R.; Hutchings, M.; Farooq, U.; Wirth, T. Chem. – Eur. J. 2016, 22, 1614–1617. doi:10.1002/chem.201504636
    Return to citation in text: [1]
  41. Brown, M.; Kumar, R.; Rehbein, J.; Wirth, T. Chem. – Eur. J. 2016, 22, 4030–4035. doi:10.1002/chem.201504844
    Return to citation in text: [1]
  42. Shimogaki, M.; Fujita, M.; Sugimura, T. Angew. Chem., Int. Ed. 2016, 55, 15797–15801. doi:10.1002/anie.201609110
    Angew. Chem. 2016, 128, 16029–16033. doi:10.1002/ange.201609110
    Return to citation in text: [1]
  43. Alhalib, A.; Kamouka, S.; Moran, W. J. Org. Lett. 2015, 17, 1453–1456. doi:10.1021/acs.orglett.5b00333
    Return to citation in text: [1]
  44. Takesue, T.; Fujita, M.; Sugimura, T.; Akutsu, H. Org. Lett. 2014, 16, 4634–4637. doi:10.1021/ol502225p
    Return to citation in text: [1]
  45. Kong, W.; Feige, P.; de Haro, T.; Nevado, C. Angew. Chem., Int. Ed. 2013, 52, 2469–2473. doi:10.1002/anie.201208471
    Angew. Chem. 2013, 125, 2529–2533. doi:10.1002/ange.201208471
    Return to citation in text: [1]
  46. Farid, U.; Malmedy, F.; Claveau, R.; Albers, L.; Wirth, T. Angew. Chem., Int. Ed. 2013, 52, 7018–7022. doi:10.1002/anie.201302358
    Angew. Chem. 2013, 125, 7156–7160. doi:10.1002/ange.201302358
    Return to citation in text: [1]
  47. Fujita, M.; Mori, K.; Shimogaki, M.; Sugimura, T. RSC Adv. 2013, 3, 17717–17725. doi:10.1039/c3ra43230k
    Return to citation in text: [1]
  48. Farid, U.; Wirth, T. Angew. Chem., Int. Ed. 2012, 51, 3462–3465. doi:10.1002/anie.201107703
    Angew. Chem. 2012, 124, 3518–3522. doi:10.1002/ange.201107703
    Return to citation in text: [1]
  49. Röben, C.; Souto, J. A.; González, Y.; Lishchynskyi, A.; Muñiz, K. Angew. Chem., Int. Ed. 2011, 50, 9478–9482. doi:10.1002/anie.201103077
    Angew. Chem. 2011, 123, 9650–9654. doi:10.1002/ange.201103077
    Return to citation in text: [1] [2]
  50. Fujita, M.; Wakita, M.; Sugimura, T. Chem. Commun. 2011, 47, 3983–3985. doi:10.1039/c1cc10129c
    Return to citation in text: [1] [2]
  51. Koser, G. F.; Wettach, R. H. J. Org. Chem. 1977, 42, 1476–1478. doi:10.1021/jo00428a052
    Return to citation in text: [1]
  52. Koser, G. F.; Rebrovic, L.; Wettach, R. H. J. Org. Chem. 1981, 46, 4324–4326. doi:10.1021/jo00334a057
    Return to citation in text: [1]
  53. Rebrovic, L.; Koser, G. F. J. Org. Chem. 1984, 49, 2462–2472. doi:10.1021/jo00187a032
    Return to citation in text: [1]
  54. Okuyama, T.; Takino, T.; Sueda, T.; Ochiai, M. J. Am. Chem. Soc. 1995, 117, 3360–3367. doi:10.1021/ja00117a006
    Return to citation in text: [1]

© 2018 Fujita et al.; licensee Beilstein-Institut.
This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: (https://www.beilstein-journals.org/bjoc)

 
Back to Article List