Cross-coupling of dissimilar ketone enolates via enolonium species to afford non-symmetrical 1,4-diketones

Keshaba N. Parida, Gulab K. Pathe, Shimon Maksymenko and Alex M. Szpilman
Beilstein J. Org. Chem. 2018, 14, 992–997. https://doi.org/10.3762/bjoc.14.84

Supporting Information

Supporting Information File 1: Experimental, characterization data and copies of NMR spectra.
Format: PDF Size: 2.5 MB Download

Cite the Following Article

Cross-coupling of dissimilar ketone enolates via enolonium species to afford non-symmetrical 1,4-diketones
Keshaba N. Parida, Gulab K. Pathe, Shimon Maksymenko and Alex M. Szpilman
Beilstein J. Org. Chem. 2018, 14, 992–997. https://doi.org/10.3762/bjoc.14.84

How to Cite

Parida, K. N.; Pathe, G. K.; Maksymenko, S.; Szpilman, A. M. Beilstein J. Org. Chem. 2018, 14, 992–997. doi:10.3762/bjoc.14.84

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 128.9 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Parida, K. N. λ3-Iodane-Mediated Umpolung of Ketone and Enolate to Enolonium. Current Organic Chemistry 2024, 28, 573–575. doi:10.2174/0113852728302831240315064301
  • Brutiu, B. R.; Iannelli, G.; Riomet, M.; Kaiser, D.; Maulide, N. Stereodivergent 1,3-difunctionalization of alkenes by charge relocation. Nature 2024, 626, 92–97. doi:10.1038/s41586-023-06938-0
  • Wu, F.; Liu, S.; Lv, X.; Pan, M.; Liu, X.; Zhang, J.; Rong, L. Electrochemical Radical Reaction Construction of C-C Bonds: Access to 1,4-Dicarbonyl Compounds from Enol Acetates and 1,3-Diketones. The Journal of organic chemistry 2023, 88, 13749–13759. doi:10.1021/acs.joc.3c01407
  • Parida, K. N.; Moorthy, J. N. λ3 - and λ5 -Iodanes: Substituent Effects and Pseudorotation/Hypervalent Twisting. Chemistry (Weinheim an der Bergstrasse, Germany) 2023, 29, e202203997. doi:10.1002/chem.202203997
  • Can Üsküp, H.; Yıldız, T.; Onar, H. Ç.; Hasdemir, B. Synthesis of Novel 1,4-Diketone Derivatives and Their Further Cyclization. ACS omega 2023, 8, 14047–14052. doi:10.1021/acsomega.3c00610
  • Dokai, Y.; Fujioka, A.; Saito, K.; Yamada, T. Rhenium-Catalyzed Decarboxylative Coupling of Cyclic Enol Carbonates with Silyl Enol Ethers and Ketene Silyl Acetals. Organic letters 2023, 25, 2275–2279. doi:10.1021/acs.orglett.3c00543
  • Odagi, M.; Nagasawa, K. Exploring Guanidinium Organocatalysts for Hypoiodite-Mediated Reactions. Chemical record (New York, N.Y.) 2023, 23, e202300030. doi:10.1002/tcr.202300030
  • Maity, S.; Szpilman, A. M. 2-Fluoroenones via an Umpolung Morita-Baylis-Hillman Reaction of Enones. Organic letters 2023, 25, 1218–1222. doi:10.1021/acs.orglett.3c00313
  • Ghosh, A.; Lipisa, Y. B.; Fridman, N.; Szpilman, A. M. 2-Nitro-cyclopropyl-1-carbonyl Compounds from Unsaturated Carbonyl Compounds and Nitromethane via Enolonium Species. The Journal of organic chemistry 2023, 88, 1977–1987. doi:10.1021/acs.joc.2c02125
  • Odagi, M.; Mori, I.; Sugimoto, K.; Nagasawa, K. Enantioselective Oxidative Enolate Coupling of Oxindoles Catalyzed by Chiral Guanidinium Hypoiodite. ACS Catalysis 2023, 13, 2295–2301. doi:10.1021/acscatal.2c05677
  • Sugimoto, K.; Mori, I.; Kato, T.; Yasui, K.; Xu, B.; Tan, C. H.; Odagi, M.; Nagasawa, K. Guanidinium Hypoiodite-Catalyzed Intramolecular Oxidative Coupling Reaction of Oxindoles with β-Dicarbonyls. The Journal of organic chemistry 2023, 88, 7660–7673. doi:10.1021/acs.joc.2c02500
  • Lemmerer, M.; Schupp, M.; Kaiser, D.; Maulide, N. Synthetic approaches to 1,4-dicarbonyl compounds. Nature Synthesis 2022, 1, 923–935. doi:10.1038/s44160-022-00179-1
  • Xu, L.; Liu, X.; Alvey, G. R.; Shatskiy, A.; Liu, J.-Q.; Kärkäs, M. D.; Wang, X.-S. Silver-Catalyzed Controlled Intermolecular Cross-Coupling of Silyl Enol Ethers: Scalable Access to 1,4-Diketones. Organic letters 2022, 24, 4513–4518. doi:10.1021/acs.orglett.2c01477
  • Zhang, Q.; Liang, Y.; Li, R.; Huang, Z.; Kong, L.; Du, P.; Peng, B. Sulfur(iv)-mediated umpolung α-heterofunctionalization of 2-oxazolines. Chemical science 2022, 13, 5164–5170. doi:10.1039/d2sc00476c
  • Brimble, M. A.; Pearl, E.; Fellner, D.; Söhnel, T.; Furkert, D. P. A Highly Efficient N-Mesityl Thiazolylidene for the Aliphatic Stetter Reaction: Stereoelectronic Quantification for Comparison of N‑Heterocyclic Carbene Organocatalysts. Asian Journal of Organic Chemistry 2021, 10, 2869–2875. doi:10.1002/ajoc.202100445
  • Bauer, A.; Maulide, N. Recent discoveries on the structure of iodine(III) reagents and their use in cross-nucleophile coupling. Chemical science 2021, 12, 853–864. doi:10.1039/d0sc03266b
  • Chen, W.; Liu, Q. Recent Advances in the Oxidative Coupling Reaction of Enol Derivatives. Chinese Journal of Organic Chemistry 2021, 41, 3414. doi:10.6023/cjoc202104058
  • Osafune, Y.; Jin, Y.; Hirao, T.; Tobisu, M.; Amaya, T. Oxovanadium(v)-catalyzed oxidative cross-coupling of enolates using O2 as a terminal oxidant. Chemical communications (Cambridge, England) 2020, 56, 11697–11700. doi:10.1039/d0cc04395h
  • Bauer, A.; Di Mauro, G.; Li, J.; Maulide, N. An α‐Cyclopropanation of Carbonyl Derivatives by Oxidative Umpolung. Angewandte Chemie 2020, 132, 18365–18369. doi:10.1002/ange.202007439
  • Bauer, A.; Di Mauro, G.; Li, J.; Maulide, N. An α-Cyclopropanation of Carbonyl Derivatives by Oxidative Umpolung. Angewandte Chemie (International ed. in English) 2020, 59, 18208–18212. doi:10.1002/anie.202007439
Other Beilstein-Institut Open Science Activities