Decarboxylative 1,3-dipolar cycloaddition of amino acids for the synthesis of heterocyclic compounds

  1. 1,2 ORCID Logo ,
  2. 3 ORCID Logo and
  3. 1 ORCID Logo
1Center for Green Chemistry and Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA
2Department of Medicinal Chemistry, Cerevel Therapeutics, 222 Jacobs St Suite 200, Cambridge, MA 02141, USA
3School of Pharmacy, Changzhou University, Changzhou 213164, China
  1. Corresponding author email
Guest Editor: S. Tsogoeva
Beilstein J. Org. Chem. 2023, 19, 1677–1693. https://doi.org/10.3762/bjoc.19.123
Received 14 Aug 2023, Accepted 25 Oct 2023, Published 06 Nov 2023
Perspective
cc by logo
Album

Abstract

The [3 + 2] cycloadditions of stabilized azomethine ylides (AMYs) derived from amino esters are well-established. However, the reactions of semi-stabilized AMYs generated from decarboxylative condensation of α-amino acids with arylaldehydes are much less explored. The [3 + 2] adducts of α-amino acids could be used for a second [3 + 2] cycloaddition as well as for other post-condensation modifications. This article highlights our recent work on the development of α-amino acid-based [3 + 2] cycloaddition reactions of N–H-type AMYs in multicomponent, one-pot, and stepwise reactions for the synthesis of diverse heterocycles related to some bioactive compounds and natural products.

Introduction

The 1,3-dipolar cycloaddition of azomethine ylides (AMYs) [1-6] is a powerful method for the synthesis of bioactive pyrrolidine-containing compounds and natural product analogs [7-15]. AMYs generated from the reaction of aldehydes and α-amino esters (via dehydration) or α-amino acids (via decarboxylation) could be classified based on the substitution groups on the N atom to: 1) N-substituted (N–R type), 2) hydrogen containing (N–H type), and 3) metal complexes (N–M type) (Figure 1) [16,17]. These AMYs could also be classified as stabilized (A1A4) which contain an electron-withdrawing group (EWG), semi-stabilized (B1B4) which have an aryl (Ar) substituent, and non-stabilized (C1 and C2) which have neither an Ar group nor an EWG on the α-carbon atoms.

[1860-5397-19-123-1]

Figure 1: Classification of AMYs.

The routes to access AMYs of different classes are shown in Scheme 1: A1-type AMYs can be generated from the condensation of aldehydes with α- and N-dialkylglycine esters, A2-type AMYs are derived from α-alkylglycine esters, A3-type AMYs are derived from N-alkylglycine esters, and A4-type AMYs are derived from glycine esters. Stabilized zwitterions A1A4 have the anionic charge on the α-carbon connecting to the EWG. They are popular AMYs for 1,3-diploar [3 + 2] cycloaddition reactions with alkenes to generate pyrrolidines 1ad with high regio- and stereoselectivities. They have been reported in a huge number (1,000+) of publications [18-28]. It is worth noting that among the products 1ad, only compound 1d has hydrogen atoms on both the nitrogen and α-carbon atoms, which makes it suitable to be used for a second cycloaddition to form double [3 + 2] cycloaddition products 2 [29,30].

[1860-5397-19-123-i1]

Scheme 1: Aminoester- and amino acid-based AMYs for single and double [3+2] cycloadditions.

The N–R-type AMYs B1 and B2 bearing an Ar group on the α-carbon atom are semi-stabilized (Scheme 1) [16]. The B1-type AMYs can be generated from the decarboxylative condensation of aldehydes with α- and N-dialkylglycines or from cyclic amino acids (such as proline) [31-33], while AMYs of type B2 are accessible through the decarboxylative condensation of N-dialkylglycines [34-51]. The N–H-type semi-stabilized AMYs B3 are generated through decarboxylative condensation of arylaldehydes with α-alkylglycines, while B4-type AMYs are derived from the reaction of glycine [52-58]. The [3 + 2] cycloadditions of AMYs B1B4 with alkenes lead to the formation of cycloaddition products 3ad with attenuated regio- and stereoselectivity, since the Ar group is not strong enough to fully localize the negative charge on the carbon connecting to Ar in the 1,3-dipoles. Both products 3c and 3d can be used for a second cycloaddition to form products 4a and 4b. The non-stabilized AMYs C1 and C2 have neither an EWG nor an Ar group to localize the negative charge. The 1,3-dipolar cycloadditions of C-type AMYs lead to the formation of [3 + 2] adducts 5 or 6 with low regio- and stereoselectivity which limits the synthetic utility of non-stabilized AMYs of type C.

There are over 300 papers on the amino acid-based decarboxylative [3 + 2] cycloadditions of N–R-type AMYs B1 (such as that derived from proline) and B2 [31-51]. However, to the best of our knowledge, there are only few examples on the reactions of N–H-type semi-stabilized AMYs B3 or B4 which were either derived from special carbonyl compounds (such as isatin) [52-55] or the AMYs were reacted with uncommon alkenes as the 1,3-dipolarophiles (such as C60/C70 fullerenes) [56-58].

Other than amino esters and amino acids shown in Scheme 1, cyclic amines can also react with arylaldehydes to form B1-type semi-stabilized AMYs. In this context, the Seidel group reported the reactions of pyrrolidines 5 with arylaldehydes for the formation of AMYs B1 which then were reacted with nucleophiles to form C–H-functionalized pyrrolidines or subjected to the 1,3-dipolar cycloaddition with olefins to afford bicyclic compounds (Scheme 2A and B) [59,60]. We employed cyclic amines for the synthesis of spirooxindole-pyrrolidines 7a or 7b in good stereoselectivity (Scheme 3) [61,62].

[1860-5397-19-123-i2]

Scheme 2: Formation of semi-stabilized AMYs B1 from pyrrolidines.

[1860-5397-19-123-i3]

Scheme 3: Cyclic amine-based AMYs A3 and B1 for [3 + 2] cycloadditions.

From the results shown in Scheme 2 and Scheme 3, we envisioned that pyrrolidines 3c or 3d generated from the cycloaddition of AMYs B3 or B4 could undergo a second cycloaddition to form double cycloaddition products 4a or 4b (Scheme 4). The double cycloaddition process involves two kinds of AMYs, with the first ones (N-H-type B3 or B4) derived from amino acids, while the second ones (N-R-type B1) derived from pyrrolidines 3c or 3d. It is worth noting that the double cycloaddition reaction is a pseudo-five-component reaction of amino acids with two equivalents each of aldehydes and alkenes. The first cycloaddition products 3c or 3d can also be used as intermediates for other transformations to synthesize novel heterocyclic rings via multicomponent, one-pot, and stepwise synthesis [63,64].

[1860-5397-19-123-i4]

Scheme 4: Proposed double cycloaddition reactions involving semi-stabilized AMYs.

Presented in the following sections is our work on the development of amino acid-based decarboxylative [3 + 2] cycloadditions of N–H-type AMYs B3 and B4 for double cycloadditions. The stereochemistry of the cycloadditions and the combination of the cycloaddition with other transformations to be one-pot or stepwise reactions are also presented.

Perspective

One-step synthesis of trifluoromethylated pyrrolidines

As mentioned above, the unexpected double cycloaddition and low stereoselectivity are the major challenges for [3 + 2] cycloaddition reactions of semi- and non-stabilized AMYs derived from the condensation of amino acids with aldehydes. However, the reactions of amino acids with ketones can result in a different kind of AMYs to address the issue. The reaction of trifluoromethyl ketones with glycine or α-substituted amino acids generated stabilized AMY 8 which underwent cycloaddition with maleimides to give 2-CF3-substituted pyrrolidines 9 in 50–76% yield (Scheme 5) [65]. Both the Ar and CF3 groups can localize the negative charge and also provide steric effects to afford stereoselective cycloaddition products with 3:1 to 6:1 dr. The steric hindrance also prevents products 9 from undergoing a second cycloaddition. The control reactions of methyl ketone or benzaldehydes gave much lower yields and stereoselectivity because of the lacking CF3 group. This was the first example of synthesizing 2-CF3-substituted pyrrolidines via decarboxylative [3 + 2] cycloaddition which is more efficient than multi-step and metal-assisted syntheses reported in the literature [66,67].

[1860-5397-19-123-i5]

Scheme 5: [3 + 2] Cycloaddition for the synthesis of trifluoromethylated pyrrolidines 9.

Pseudo-five-component double cycloadditions for polycyclic pyrrolizidines

With the success of the three-component [3 + 2] cycloadditions shown in Scheme 5, we then explored the double cycloaddition reactions proposed in Scheme 4. The reaction has synthetic significance since the resulting pyrrolizidine scaffold can be found in many biologically active compounds and natural products such as 1-epiaustraline, hyacinthacine A1, (−)-isoretronecanol, and (−)-supinidine (Figure 2) [68,69].

[1860-5397-19-123-2]

Figure 2: Biologically interesting pyrrolizidines.

After the method development work, a pseudo-five-component double cycloaddition reaction of glycine with two equivalents each of arylaldehydes and N-substituted maleimides was carried out in EtOH as a protic solvent at 90 °C for 3 h to afford pyrrolizidines 10 in 73–93% yield with greater than 9:1 dr (Scheme 6). The scope of the reaction could be readily extended for α-substituted amino acids, such as alanine, leucine, serine, and norvaline to give products 11af in 53–88% yields with greater than 8.5 dr (Scheme 7). The reactions with leucine and phenylglycine (R2 = iPr and Ph) as amino acids gave mainly mono-cycloaddition products and very little double cycloaddition products 11g and 11h due to the steric hindrance of the R2 group.

[1860-5397-19-123-i6]

Scheme 6: Double cycloadditions with glycine for the synthesis of products 10 (dr > 9:1).

[1860-5397-19-123-i7]

Scheme 7: Double cycloadditions with α-substituted amino acids leading to products 11 (≈8.5:1 dr).

The stereochemistry of products 10 and 11 was confirmed by X-ray crystal structure and the 1H NMR analysis of both the major and minor diastereomers [69]. The first cycloaddition gives adducts 12 and 12’ as a diastereomeric mixture. At the second cycloaddition, both major and minor adducts from the first cycloaddition generate the same products 10 or 11 (Scheme 8).

[1860-5397-19-123-i8]

Scheme 8: Stereochemistry for the formation of products 10 or 11.

We also evaluated the double cycloadditions in two operational steps by using two different sets of aldehydes and maleimides to afford products 13ad in 45–60% yields with 2:1 to 3:1 dr (Scheme 9). The low diastereoselectivity is caused by the different R2/R2’ and R3/R3’groups which no longer have the same stereochemistry as that shown in Scheme 8.

[1860-5397-19-123-i9]

Scheme 9: One-pot and stepwise double cycloadditions. Conditions: i) MeCN (0.02 M), 90 °C, 6 h; ii) then AcOH (0.5 equiv), 125 °C, 12 h.

Double cycloadditions for bis[spirooxindole-pyrrolizidine] compounds

After completing the pseudo-five-component double cycloaddition reactions leading to polycyclic pyrrolizidines shown in Scheme 6 and Scheme 7, we then conducted similar reactions in order to synthesize spirooxindole-pyrrolidines. This unique ring skeleton exists in some natural products and biologically active compounds such as (−)-horsfiline, (+)-alstonisine, pteropodine and spirotryprostatin A (Figure 3) [70].

[1860-5397-19-123-3]

Figure 3: Biologically interesting spirooxindole-pyrrolizidines.

We expected that using olefinic oxindoles 14 as alkenes for the [3 + 2] cycloaddition could afford spirooxindole-pyrrolizidines. The method development revealed that recyclable zeolite HY acid is a good catalyst for the cycloaddition [70]. Thus, the zeolite HY-catalyzed reaction of glycine with two equiv each of arylaldehydes and olefinic oxindoles 14 in EtOH at 90 °C for 6 h gave bis[spirooxindole-pyrrolizidine] compounds 15ag in 60–73% yields with up to 6:1 dr (Scheme 10). It is worth noting that this pseudo-five-component reaction gives butterfly-shaped molecules which have a plane of symmetry. The stereochemistry of the products was confirmed by X-ray crystal structure and NMR analysis. The reaction mechanism shown in Scheme 11 suggests that a semi-stabilized AMY 16 generated from the reaction of glycine and arylaldehydes undergoes a [3 + 2] cycloaddition with 14a via the favorable endo-transition state A to give spirooxindole-pyrrolizidine 17 which spontaneously reacts with another equiv of arylaldehyde to form ylide 18 in the presence of zeolite HY. The second [3 + 2] cycloaddition of 18 with 14a affords product 15a as a major product through an endo-cycloaddition and 15a’ as a minor diastereomeric product through an exo-cycloaddition.

[1860-5397-19-123-i10]

Scheme 10: Double cycloadditions for the synthesis of bis[spirooxindole-pyrrolizidine]s.

[1860-5397-19-123-i11]

Scheme 11: Mechanism for the diastereoselective synthesis of bis[spirooxindole-pyrrolizidine]s.

One-pot synthesis of triazolobenzodiazepines

Other than the multicomponent double cycloaddition reactions shown in the last section, we also utilized the first cycloaddition products for post-condensation reactions to generate new heterocyclic scaffolds. α-Substituted amino acids, such as 2-aminoisobutyric acid, could be used to block the second cycloaddition. Shown in Scheme 12 is a method development for the stepwise synthesis of triazolobenzodiazepines. The reaction of 2-azidobenzaldehyde, 2-aminoisobutyric acid and N-ethylmaleimide in MeCN under the catalysis of AcOH at 110 °C for 6 h afforded the monocycloaddition product 19a in 93% LC yield [71]. The isolated compound 19a was used for an N-propargylation to produce compound 20a in 94% LC yield. The following Cu-catalyzed click reaction afforded triazolobenzodiazepine 21a in 88% LC yield (Scheme 12).

[1860-5397-19-123-i12]

Scheme 12: Stepwise synthesis of triazolobenzodiazepine 21a.

Our next goal was to convert the stepwise reaction process into a one-pot synthesis. After optimizing the reaction conditions, a one-pot two-step reaction was developed by the reaction of 2-azidobenzaldehydes, 2-substituted amino acids and maleimides with AcOH as a catalyst in MeCN at 110 °C for 6 h to afford the monocycloaddition compounds. Without isolation, the reaction mixtures were then used for the N-propargylation in the presence of K2CO3 under microwave heating at 110 °C for 1 h to give triazolobenzodiazepines 21af in 35–65% yields with 2:1 to 7:1 dr (Scheme 13). Other than 2-aminoisobutyric acid, phenylglycine and valine with Ph or iPr groups could also be used for the synthesis of the monocycloaddition products for the post-condensation reactions. It is worth noting that in the one-pot synthesis involving an intramolecular click reaction, no Cu catalyst was used. A similar reaction sequence using stabilized AMYs was also reported from our lab [72]. The triazolobenzodiazepines obtained through this highly efficient one-pot synthesis have structure similarity with some drug molecules shown in Figure 4 [71].

[1860-5397-19-123-i13]

Scheme 13: One-pot synthesis of triazolobenzodiazepines.

[1860-5397-19-123-4]

Figure 4: Bioactive triazolobenzodiazepine derivatives.

One-pot synthesis of pyrroloquinazolines and pyrrolobenzodiazepines

We developed a 2-azidobenzladehyde-based reaction sequence including a one-pot [3 + 2] cycloaddition, N-acylation and Staudinger/aza-Wittig reactions for the construction of pyrroloquinazolines and pyrrolobenzodiazepines [73]. The AcOH-catalyzed reaction of 2-azidobenzaldehydes, α-substituted amino acids and maleimides in MeCN at 110 °C for 6 h afforded the corresponding monocycloaddition compounds followed by acylation to yield intermediates 22. The subsequent sequential Staudinger/aza-Wittig reaction of intermediates 22 gave products 23a–g in 48–75% yields with 5:1 to 6:1 dr (Scheme 14). This one-pot reaction could also be applied for the synthesis of pyrrolobenzodiazepines when using 2-bromoketones instead of the acid chlorides affording products 24a–g in 59–77% yields with 3:1 to 6:1 dr (Scheme 15). The pyrroloquinazolines and pyrrolobenzodiazepines made by this route have structure similarity with bioactive compounds and natural products such as PB1-5 [74], lixivaptan, and (+)-anthramycin (Figure 5) [73].

[1860-5397-19-123-i14]

Scheme 14: One-pot synthesis of tetrahydropyrroloquinazolines.

[1860-5397-19-123-i15]

Scheme 15: One-pot synthesis of tetrahydropyrrolobenzodiazepines.

[1860-5397-19-123-5]

Figure 5: Bioactive pyrroloquinazolines and pyrrolobenzodiazepines.

Stepwise synthesis of pyrrolo[2,1-a]isoquinolines

A stepwise synthesis involving [3 + 2] cycloaddition, N-allylation and Heck reactions has been developed for the synthesis of pyrrolo[2,1-a]isoquinolines. The reaction of 2-bromobenzaldehydes, 2-aminoisobutyric acid, and maleimides in MeCN under the catalysis of AcOH at 110 °C for 6 h afforded the cycloaddition products 26. The purified intermediates were used for the one-pot N-allylation with allyl bromide to afford intermediate 25 followed by a Pd-catalyzed Heck reaction to give products 26 in 65–78% yields (Scheme 16) [75]. The pyrrolo[2,1-a]isoquinoline core installed by this route can be found in some natural products and synthetic compounds with antitumor, antibacterial, antiviral, antioxidizing, and other biological activities (Figure 6) [75].

[1860-5397-19-123-i16]

Scheme 16: Stepwise synthesis of pyrrolo[2,1-a]isoquinolines.

[1860-5397-19-123-6]

Figure 6: Bioactive pyrrolo[2,1-a]isoquinolines and hexahydropyrrolo[2,1-a]isoquinolines.

One-pot double annulations for the synthesis of tetrahydropyrrolothiazoles

The unique tetrahydropyrrolothiazole and spiro[indole-tetrahydropyrrolothiazole] scaffolds are found in bioactive compounds such as those shown in Figure 7 [76,77]. Using cysteine as a key reactant, we developed a pseudo-four-component reaction for the synthesis of tetrahydropyrrolothiazole derivatives. The reaction of cysteine with two equiv of arylaldehydes and one equiv of maleimides in EtOH at 90 °C for 12 h afforded tetrahydropyrrolothiazoles 29 in 66–79% yields with up to 7:1 dr (Scheme 17) [76]. Using olefinic oxindoles to replace maleimides, the reactions gave spiro[indoline-tetrahydropyrrolothiazole] products 30 in 55–70% with greater than 4:1 dr [76]. The reaction mechanism suggests that the reaction of cysteine with arylaldehydes gives N,S-acetals 27 which convert to AMYs 28 after decarboxlyation. Cycloaddition of 28 with maleimides or olefinic oxindoles gives products 29 and 30, respectively. The reactions could be carried out as a two-step synthesis using two different arylaldehydes to give products 31 in 43–72% yields with greater than 4:1 dr (Scheme 18). A similar reaction sequence based on a [3 + 2] cycloaddition of stabilized AMYs has been reported by our lab [78].

[1860-5397-19-123-7]

Figure 7: Bioactive tetrahydropyrrolothiazoles.

[1860-5397-19-123-i17]

Scheme 17: Pseudo-four-component reaction for the synthesis of tetrahydropyrrolothiazoles 29 and 30 (>4:1 dr).

[1860-5397-19-123-i18]

Scheme 18: One-pot two-step synthesis of spirooxindole-pyrrolothiazoles 31 (>4:1 dr).

Conclusion

The amino acid-based decarboxylative [3 + 2] cycloaddition reactions developed from our lab are summarized in this paper. The semi-stabilized N–H-type azomethine ylides derived from amino acids could be used for multicomponent, one-pot, and multistep reactions in the synthesis of heterocyclic compounds. The methods have advantages of using readily available starting materials, performing streamlined reactions, producing diverse product structures, and having high pot, atom, and step economy (PASE) [79-81] for the diversity-oriented synthesis (DOS) [82-88]. The work presented in this paper may also be helpful to understand the reaction mechanism and stereoselectivity of semi-stabilized N–H-type AMYs. We hope the new development for 1,3-dipolar cycloaddition chemistry can be used for the synthesis of bioactive heterocyclic compounds in medicinal and drug discovery programs.

Acknowledgements

We would like to thank all our co-workers who worked on the research projects highlighted in this paper, and the Centre for Green Chemistry at the University of Massachusetts Boston.

References

  1. Baunach, M.; Hertweck, C. Angew. Chem., Int. Ed. 2015, 54, 12550–12552. doi:10.1002/anie.201507120
    Return to citation in text: [1]
  2. Coldham, I.; Hufton, R. Chem. Rev. 2005, 105, 2765–2810. doi:10.1021/cr040004c
    Return to citation in text: [1]
  3. Otero-Fraga, J.; Montesinos-Magraner, M.; Mendoza, A. Synthesis 2017, 49, 802–809. doi:10.1055/s-0036-1588662
    Return to citation in text: [1]
  4. Wu, S.; Zhu, G.; Wei, S.; Chen, H.; Qu, J.; Wang, B. Org. Biomol. Chem. 2018, 16, 807–815. doi:10.1039/c7ob03051g
    Return to citation in text: [1]
  5. Cayuelas, A.; Larrañaga, O.; Selva, V.; Nájera, C.; Akiyama, T.; Sansano, J. M.; de Cózar, A.; Miranda, J. I.; Cossío, F. P. Chem. – Eur. J. 2018, 24, 8092–8097. doi:10.1002/chem.201801433
    Return to citation in text: [1]
  6. Zhang, C.; Das, D.; Seidel, D. Chem. Sci. 2011, 2, 233–236. doi:10.1039/c0sc00432d
    Return to citation in text: [1]
  7. Snider, B. B.; Ahn, Y.; O'Hare, S. M. Org. Lett. 2001, 3, 4217–4220. doi:10.1021/ol016884o
    Return to citation in text: [1]
  8. Vidadala, S. R.; Golz, C.; Strohmann, C.; Daniliuc, C.-G.; Waldmann, H. Angew. Chem., Int. Ed. 2015, 54, 651–655. doi:10.1002/anie.201409942
    Return to citation in text: [1]
  9. Gollner, A.; Weinstabl, H.; Fuchs, J. E.; Rudolph, D.; Garavel, G.; Hofbauer, K. S.; Karolyi‐Oezguer, J.; Gmaschitz, G.; Hela, W.; Kerres, N.; Grondal, E.; Werni, P.; Ramharter, J.; Broeker, J.; McConnell, D. B. ChemMedChem 2019, 14, 88–93. doi:10.1002/cmdc.201800617
    Return to citation in text: [1]
  10. Narayan, R.; Potowski, M.; Jia, Z.-J.; Antonchick, A. P.; Waldmann, H. Acc. Chem. Res. 2014, 47, 1296–1310. doi:10.1021/ar400286b
    Return to citation in text: [1]
  11. Pearson, W. H.; Lovering, F. E. J. Org. Chem. 1998, 63, 3607–3617. doi:10.1021/jo972255+
    Return to citation in text: [1]
  12. Narayan, R.; Bauer, J. O.; Strohmann, C.; Antonchick, A. P.; Waldmann, H. Angew. Chem., Int. Ed. 2013, 52, 12892–12896. doi:10.1002/anie.201307392
    Return to citation in text: [1]
  13. Pearson, W. H.; Postich, M. J. J. Org. Chem. 1994, 59, 5662–5671. doi:10.1021/jo00098a026
    Return to citation in text: [1]
  14. Bhat, C.; Tilve, S. G. RSC Adv. 2014, 4, 5405–5452. doi:10.1039/c3ra44193h
    Return to citation in text: [1]
  15. Milen, M.; Abranyi-Balogh, P.; Keglevich, G. Curr. Org. Synth. 2014, 11, 889–901. doi:10.2174/1570179411666140818210247
    Return to citation in text: [1]
  16. Tang, S.; Zhang, X.; Sun, J.; Niu, D.; Chruma, J. J. Chem. Rev. 2018, 118, 10393–10457. doi:10.1021/acs.chemrev.8b00349
    Return to citation in text: [1] [2]
  17. Banks, H. D. Org. Biomol. Chem. 2011, 9, 6335–6342. doi:10.1039/c1ob05588g
    Return to citation in text: [1]
  18. Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863–910. doi:10.1021/cr970324e
    Return to citation in text: [1]
  19. Hashimoto, T.; Maruoka, K. Chem. Rev. 2015, 115, 5366–5412. doi:10.1021/cr5007182
    Return to citation in text: [1]
  20. Pandey, G.; Banerjee, P.; Gadre, S. R. Chem. Rev. 2006, 106, 4484–4517. doi:10.1021/cr050011g
    Return to citation in text: [1]
  21. Chogii, I.; Njardarson, J. T. Angew. Chem., Int. Ed. 2015, 54, 13706–13710. doi:10.1002/anie.201506559
    Return to citation in text: [1]
  22. Peng, L.; Wang, H.; Guo, C. J. Am. Chem. Soc. 2021, 143, 6376–6381. doi:10.1021/jacs.1c02697
    Return to citation in text: [1]
  23. Adrio, J.; Carretero, J. C. Chem. Commun. 2014, 50, 12434–12446. doi:10.1039/c4cc04381b
    Return to citation in text: [1]
  24. Najera, C.; de Garcia Retamosa, M.; Sansano, J. M. Angew. Chem., Int. Ed. 2008, 47, 6055–6058. doi:10.1002/anie.200801690
    Return to citation in text: [1]
  25. Potowski, M.; Schürmann, M.; Preut, H.; Antonchick, A. P.; Waldmann, H. Nat. Chem. Biol. 2012, 8, 428–430. doi:10.1038/nchembio.901
    Return to citation in text: [1]
  26. Esteban, F.; Cieślik, W.; Arpa, E. M.; Guerrero-Corella, A.; Díaz-Tendero, S.; Perles, J.; Fernández-Salas, J. A.; Fraile, A.; Alemán, J. ACS Catal. 2018, 8, 1884–1890. doi:10.1021/acscatal.7b03553
    Return to citation in text: [1]
  27. Zhang, W. Chem. Lett. 2013, 42, 676–681. doi:10.1246/cl.130504
    Return to citation in text: [1]
  28. Zhang, X.; Zhang, W. Curr. Opin. Green Sustainable Chem. 2018, 11, 65–69. doi:10.1016/j.cogsc.2018.04.005
    Return to citation in text: [1]
  29. Lu, Q.; Song, G.; Jasinski, J. P.; Keeley, A. C.; Zhang, W. Green Chem. 2012, 14, 3010–3012. doi:10.1039/c2gc36066g
    Return to citation in text: [1]
  30. Zhang, W.; Lu, Y.; Geib, S. Org. Lett. 2005, 7, 2269–2272. doi:10.1021/ol0507773
    Return to citation in text: [1]
  31. Gayen, B.; Banerji, A.; Dhara, K. Synth. Commun. 2016, 46, 293–308. doi:10.1080/00397911.2015.1135954
    Return to citation in text: [1] [2]
  32. Madhavan, S.; Okamoto, S. ChemCatChem 2018, 10, 2014–2018. doi:10.1002/cctc.201702035
    Return to citation in text: [1] [2]
  33. Malatesti, N.; Boa, A. N.; Clark, S.; Westwood, R. Tetrahedron Lett. 2006, 47, 5139–5142. doi:10.1016/j.tetlet.2006.05.064
    Return to citation in text: [1] [2]
  34. De Luca, L.; Chiminazzo, A.; Sperni, L.; Strukul, G.; Scarso, A. Chem. – Eur. J. 2017, 23, 3474–3478. doi:10.1002/chem.201605878
    Return to citation in text: [1] [2]
  35. Bolognesi, M. L.; Bartolini, M.; Cavalli, A.; Andrisano, V.; Rosini, M.; Minarini, A.; Melchiorre, C. J. Med. Chem. 2004, 47, 5945–5952. doi:10.1021/jm049782n
    Return to citation in text: [1] [2]
  36. Higashino, T.; Yamada, T.; Yamamoto, M.; Furube, A.; Tkachenko, N. V.; Miura, T.; Kobori, Y.; Jono, R.; Yamashita, K.; Imahori, H. Angew. Chem., Int. Ed. 2016, 55, 629–633. doi:10.1002/anie.201509067
    Return to citation in text: [1] [2]
  37. Takano, Y.; Herranz, M. Á.; Martín, N.; Radhakrishnan, S. G.; Guldi, D. M.; Tsuchiya, T.; Nagase, S.; Akasaka, T. J. Am. Chem. Soc. 2010, 132, 8048–8055. doi:10.1021/ja100665q
    Return to citation in text: [1] [2]
  38. Guldi, D. M.; Swartz, A.; Luo, C.; Gómez, R.; Segura, J. L.; Martín, N. J. Am. Chem. Soc. 2002, 124, 10875–10886. doi:10.1021/ja012694x
    Return to citation in text: [1] [2]
  39. Hölzel, H.; Haines, P.; Kaur, R.; Lungerich, D.; Jux, N.; Guldi, D. M. J. Am. Chem. Soc. 2022, 144, 8977–8986. doi:10.1021/jacs.2c00456
    Return to citation in text: [1] [2]
  40. Guldi, D. M.; Spänig, F.; Kreher, D.; Perepichka, I. F.; van der Pol, C.; Bryce, M. R.; Ohkubo, K.; Fukuzumi, S. Chem. – Eur. J. 2008, 14, 250–258. doi:10.1002/chem.200700837
    Return to citation in text: [1] [2]
  41. Che, J.; Ma, C.; Lu, J.; Chen, B.; Shi, Q.; Jin, X.; Song, R.; Xu, F.; Gan, L.; Li, J.; Hu, Y.; Dong, X. Eur. J. Med. Chem. 2022, 228, 113954. doi:10.1016/j.ejmech.2021.113954
    Return to citation in text: [1] [2]
  42. Sato, S.; Takei, T.; Matsushita, Y.; Yasuda, T.; Kojima, T.; Kawano, M.; Ohnuma, M.; Tashiro, K. Inorg. Chem. 2015, 54, 11581–11583. doi:10.1021/acs.inorgchem.5b01183
    Return to citation in text: [1] [2]
  43. Wong, W. W. H.; Vak, D.; Singh, T. B.; Ren, S.; Yan, C.; Jones, D. J.; Liaw, I. I.; Lamb, R. N.; Holmes, A. B. Org. Lett. 2010, 12, 5000–5003. doi:10.1021/ol102166m
    Return to citation in text: [1] [2]
  44. Clark, R. B.; Pearson, W. H. Org. Lett. 1999, 1, 349–352. doi:10.1021/ol990677v
    Return to citation in text: [1] [2]
  45. Kanemasa, S.; Sakamoto, K.; Tsuge, O. Bull. Chem. Soc. Jpn. 1989, 62, 1960–1968. doi:10.1246/bcsj.62.1960
    Return to citation in text: [1] [2]
  46. Tsuge, O.; Kanemasa, S.; Hatada, A.; Matsuda, K. Bull. Chem. Soc. Jpn. 1986, 59, 2537–2545. doi:10.1246/bcsj.59.2537
    Return to citation in text: [1] [2]
  47. Vedejs, E.; West, F. G. Chem. Rev. 1986, 86, 941–955. doi:10.1021/cr00075a014
    Return to citation in text: [1] [2]
  48. Ardill, H.; Grigg, R.; Sridharan, V.; Surendrakumar, S. Tetrahedron 1988, 44, 4953–4966. doi:10.1016/s0040-4020(01)86199-8
    Return to citation in text: [1] [2]
  49. Pearson, W. H.; Postich, M. J. J. Org. Chem. 1992, 57, 6354–6357. doi:10.1021/jo00049a058
    Return to citation in text: [1] [2]
  50. Pearson, W. H.; Walters, M. A.; Oswell, K. D. J. Am. Chem. Soc. 1986, 108, 2769–2771. doi:10.1021/ja00270a055
    Return to citation in text: [1] [2]
  51. Tsuge, O.; Kanemasa, S.; Yamada, T.; Matsuda, K. J. Org. Chem. 1987, 52, 2523–2530. doi:10.1021/jo00388a033
    Return to citation in text: [1] [2]
  52. Gollner, A.; Rudolph, D.; Arnhof, H.; Bauer, M.; Blake, S. M.; Boehmelt, G.; Cockroft, X.-L.; Dahmann, G.; Ettmayer, P.; Gerstberger, T.; Karolyi-Oezguer, J.; Kessler, D.; Kofink, C.; Ramharter, J.; Rinnenthal, J.; Savchenko, A.; Schnitzer, R.; Weinstabl, H.; Weyer-Czernilofsky, U.; Wunberg, T.; McConnell, D. B. J. Med. Chem. 2016, 59, 10147–10162. doi:10.1021/acs.jmedchem.6b00900
    Return to citation in text: [1] [2]
  53. Rao, M. P.; Gunaga, S. S.; Zuegg, J.; Pamarthi, R.; Ganesh, M. Org. Biomol. Chem. 2019, 17, 9390–9402. doi:10.1039/c9ob01429b
    Return to citation in text: [1] [2]
  54. Dong, H.; Song, S.; Li, J.; Xu, C.; Zhang, H.; Ouyang, L. Bioorg. Med. Chem. Lett. 2015, 25, 3585–3591. doi:10.1016/j.bmcl.2015.06.076
    Return to citation in text: [1] [2]
  55. Rehn, S.; Bergman, J.; Stensland, B. Eur. J. Org. Chem. 2004, 413–418. doi:10.1002/ejoc.200300621
    Return to citation in text: [1] [2]
  56. Wang, N.; Jiang, F.; Du, Z.; Bao, X.; Wang, T.; Yang, R. Supramol. Chem. 2012, 24, 819–825. doi:10.1080/10610278.2012.721551
    Return to citation in text: [1] [2]
  57. Andersson, C.-H.; Nyholm, L.; Grennberg, H. Dalton Trans. 2012, 41, 2374–2381. doi:10.1039/c2dt12097f
    Return to citation in text: [1] [2]
  58. Pérez, L.; Lenoble, J.; Barberá, J.; de la Cruz, P.; Deschenaux, R.; Langa, F. Chem. Commun. 2008, 4590–4592. doi:10.1039/b808730j
    Return to citation in text: [1] [2]
  59. Seidel, D. Acc. Chem. Res. 2015, 48, 317–328. doi:10.1021/ar5003768
    Return to citation in text: [1]
  60. Mantelingu, K.; Lin, Y.; Seidel, D. Org. Lett. 2014, 16, 5910–5913. doi:10.1021/ol502918g
    Return to citation in text: [1]
  61. Zhang, X.; Liu, M.; Qiu, W.; Evans, J.; Kaur, M.; Jasinski, J. P.; Zhang, W. ACS Sustainable Chem. Eng. 2018, 6, 5574–5579. doi:10.1021/acssuschemeng.8b00555
    Return to citation in text: [1]
  62. Zhang, X.; Liu, M.; Zhan, D.; Kaur, M.; Jasinski, J. P.; Zhang, W. New J. Chem. 2022, 46, 3866–3870. doi:10.1039/d1nj05538k
    Return to citation in text: [1]
  63. Ma, X.; Zhang, W. iScience 2022, 25, 105005. doi:10.1016/j.isci.2022.105005
    Return to citation in text: [1]
  64. Zhang, W.; Yi, W. B. Pot, Atom, and Step Economy (PASE) Synthesis; Springer Nature Switzerland: Cham, Switzerland, 2019. doi:10.1007/978-3-030-22596-4
    Return to citation in text: [1]
  65. Zhang, X.; Liu, M.; Zhang, W.; Legris, M.; Zhang, W. J. Fluorine Chem. 2017, 204, 18–22. doi:10.1016/j.jfluchem.2017.10.003
    Return to citation in text: [1]
  66. Hao, J.; Milcent, T.; Retailleau, P.; Soloshonok, V. A.; Ongeri, S.; Crousse, B. Eur. J. Org. Chem. 2018, 3688–3692. doi:10.1002/ejoc.201800255
    Return to citation in text: [1]
  67. Corbett, M. T.; Xu, Q.; Johnson, J. S. Org. Lett. 2014, 16, 2362–2365. doi:10.1021/ol500679w
    Return to citation in text: [1]
  68. Donohoe, T. J.; Sintim, H. O. Org. Lett. 2004, 6, 2003–2006. doi:10.1021/ol049397s
    Return to citation in text: [1]
  69. Zhang, X.; Qiu, W.; Evans, J.; Kaur, M.; Jasinski, J. P.; Zhang, W. Org. Lett. 2019, 21, 2176–2179. doi:10.1021/acs.orglett.9b00487
    Return to citation in text: [1] [2]
  70. Zhang, X.; Qiu, W.; Murray, S. A.; Zhan, D.; Evans, J.; Jasinski, J. P.; Wang, X.; Zhang, W. J. Org. Chem. 2021, 86, 17395–17403. doi:10.1021/acs.joc.1c01797
    Return to citation in text: [1] [2]
  71. Ma, X.; Zhang, X.; Qiu, W.; Zhang, W.; Wan, B.; Evans, J.; Zhang, W. Molecules 2019, 24, 601. doi:10.3390/molecules24030601
    Return to citation in text: [1] [2]
  72. Zhang, X.; Zhi, S.; Wang, W.; Liu, S.; Jasinski, J. P.; Zhang, W. Green Chem. 2016, 18, 2642–2646. doi:10.1039/c6gc00497k
    Return to citation in text: [1]
  73. Ma, X.; Zhang, X.; Awad, J. M.; Xie, G.; Qiu, W.; Muriph, R. E.; Zhang, W. Tetrahedron Lett. 2020, 61, 151392. doi:10.1016/j.tetlet.2019.151392
    Return to citation in text: [1] [2]
  74. Sutherell, C. L.; Tallant, C.; Monteiro, O. P.; Yapp, C.; Fuchs, J. E.; Fedorov, O.; Siejka, P.; Müller, S.; Knapp, S.; Brenton, J. D.; Brennan, P. E.; Ley, S. V. J. Med. Chem. 2016, 59, 5095–5101. doi:10.1021/acs.jmedchem.5b01997
    Return to citation in text: [1]
  75. Ma, X.; Meng, S.; Zhang, X.; Zhang, Q.; Yan, S.; Zhang, Y.; Zhang, W. Beilstein J. Org. Chem. 2020, 16, 1225–1233. doi:10.3762/bjoc.16.106
    Return to citation in text: [1] [2]
  76. Ma, X.; Qiu, W.; Liu, L.; Zhang, X.; Awad, J.; Evans, J.; Zhang, W. Green Synth. Catal. 2021, 2, 74–77. doi:10.1016/j.gresc.2020.11.001
    Return to citation in text: [1] [2] [3]
  77. Lu, J.; Yao, B.; Zhan, D.; Sun, Z.; Ji, Y.; Zhang, X. Beilstein J. Org. Chem. 2022, 18, 1607–1616. doi:10.3762/bjoc.18.171
    Return to citation in text: [1]
  78. Zhang, X.; Ma, X.; Qiu, W.; Awad, J.; Zhang, W. Green Process. Synth. 2022, 11, 1128–1135. doi:10.1515/gps-2022-0088
    Return to citation in text: [1]
  79. Hayashi, Y. Chem. Sci. 2016, 7, 866–880. doi:10.1039/c5sc02913a
    Return to citation in text: [1]
  80. Sydnes, M. O. Curr. Green Chem. 2014, 1, 216–226. doi:10.2174/2213346101666140221225404
    Return to citation in text: [1]
  81. Clarke, P. A.; Santos, S.; Martin, W. H. C. Green Chem. 2007, 9, 438–440. doi:10.1039/b700923b
    Return to citation in text: [1]
  82. O' Connor, C. J.; Beckmann, H. S. G.; Spring, D. R. Chem. Soc. Rev. 2012, 41, 4444–4456. doi:10.1039/c2cs35023h
    Return to citation in text: [1]
  83. Comer, E.; Duvall, J. R.; duPont Lee, M., IV. Future Med. Chem. 2014, 6, 1927–1942. doi:10.4155/fmc.14.111
    Return to citation in text: [1]
  84. Dandapani, S.; Marcaurelle, L. A. Curr. Opin. Chem. Biol. 2010, 14, 362–370. doi:10.1016/j.cbpa.2010.03.018
    Return to citation in text: [1]
  85. Galloway, W. R. J. D.; Isidro-Llobet, A.; Spring, D. R. Nat. Commun. 2010, 1, 80. doi:10.1038/ncomms1081
    Return to citation in text: [1]
  86. Gerry, C. J.; Schreiber, S. L. Curr. Opin. Chem. Biol. 2020, 56, 1–9. doi:10.1016/j.cbpa.2019.08.008
    Return to citation in text: [1]
  87. Mortensen, K. T.; Osberger, T. J.; King, T. A.; Sore, H. F.; Spring, D. R. Chem. Rev. 2019, 119, 10288–10317. doi:10.1021/acs.chemrev.9b00084
    Return to citation in text: [1]
  88. Schreiber, S. L. Science 2000, 287, 1964–1969. doi:10.1126/science.287.5460.1964
    Return to citation in text: [1]
Other Beilstein-Institut Open Science Activities