Copper-catalyzed CuAAC/intramolecular C–H arylation sequence: Synthesis of annulated 1,2,3-triazoles

  1. Rajkumar Jeyachandran1,
  2. Harish Kumar Potukuchi1,2 and
  3. Lutz Ackermann1

1Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammannstrasse 2, 37077 Göttingen, Germany
2Lehrstuhl für Organische Chemie I, Lichtenbergstrasse 4, 85747 Garching, Germany

  1. Corresponding author email

This article is part of the Thematic Series "C–H Functionalization".

Guest Editor: H. M. L. Davies
Beilstein J. Org. Chem. 2012, 8, 1771–1777. https://doi.org/10.3762/bjoc.8.202
Received 04 Jul 2012, Accepted 19 Sep 2012, Published 16 Oct 2012

Abstract

Step-economical syntheses of annulated 1,2,3-triazoles were accomplished through copper-catalyzed intramolecular direct arylations in sustainable one-pot reactions. Thus, catalyzed cascade reactions involving [3 + 2]-azide–alkyne cycloadditions (CuAAC) and C–H bond functionalizations provided direct access to fully substituted 1,2,3-triazoles with excellent chemo- and regioselectivities. Likewise, the optimized catalytic system proved applicable to the direct preparation of 1,2-diarylated azoles through a one-pot C–H/N–H arylation reaction.

Keywords: cascade reaction; C–H functionalization; copper; heteroarenes; triazoles

Introduction

Transition-metal-catalyzed C–H bond functionalizations are increasingly viable tools for step-economical syntheses of various valuable bioactive compounds [1-3], which avoid the preparation and use of preactivated substrates [4-16]. This streamlining of organic synthesis has predominantly been accomplished with palladium [4-16], rhodium [17-19] or ruthenium [20-22] complexes [4-16]. However, less expensive nickel, cobalt, iron or copper catalysts bear great potential for the development of economically attractive transformations [23-50]. In this context, we previously reported on the use of cost-effective copper(I) catalysts for direct arylations of 1,2,3-triazoles. Thus, we showed that intermolecular copper-catalyzed C–H bond functionalizations could be combined with the Huisgen [51] copper(I)-catalyzed [52,53] [3 + 2]-azide–alkyne cycloaddition (CuAAC)[54], while C–H bond arylations of 1,2,3-triazoles were previously only accomplished with more expensive palladium [55-62] or ruthenium [63-66] catalysts. Notably, this strategy allowed for the atom-economical synthesis of fully substituted 1,2,3-triazoles in a highly regioselective fashion [54,67]. While the research groups of Rutjes [68] as well as Sharpless [69] elegantly devised alternative approaches exploiting 1-haloalkynes [70], we became interested in exploring a single [71-73] inexpensive copper catalyst for one-pot reaction sequences comprising a 1,3-dipolar cycloaddition along with an intramolecular C–H bond arylation; in particular, because of the notable biological activities exerted by fully substituted 1,2,3-triazoles [74-88]. As a consequence, we wish to present herein novel cascade reactions, in which cost-effective copper(I) compounds serve as the catalyst for two mechanistically distinct transformations for the synthesis of fully substituted annulated 1,2,3-triazoles as well as for twofold N–H/C–H bond arylations. Notable features of our strategy include (i) the development of a chemoselective C–H arylation-based three-component reaction, as well as (ii) the use of inexpensive CuI for the formation of up to one C–C and three C–N bonds in a site-selective fashion (Scheme 1).

[1860-5397-8-202-i1]

Scheme 1: Copper-catalyzed step-economical C–H arylation-based cascade reaction.

Results and Discussion

We initiated our studies by exploring reaction conditions for the key copper-catalyzed intramolecular direct C–H bond arylation, employing substrate 3a (Table 1). Notably, the envisioned C–H bond functionalization occurred readily with the aryl iodide 3a when catalytic amounts of CuI were used, even at a reaction temperature as low as 60 °C, with optimal yields being obtained at 80 °C (Table 1, entries 1–6). While the transformation proceeded efficiently with LiOt-Bu as the stoichiometric base, K3PO4 only led to unsatisfactory results, even when additional stabilizing ligands were used (Table 1, entries 7–10).

Table 1: Optimization studies for the intramolecular direct arylation of triazole 3a.a

[Graphic 1]
entry base ligand T [°C] isolated yield [%]
1 LiOt-Bu 140 82
2 LiOt-Bu 120 97
3 LiOt-Bu 100 91
4 LiOt-Bu 80 93
5 LiOt-Bu 60 72
6 LiOt-Bu 20 <2b
7 K3PO4 DMEDA 140 5b
8 K3PO4 N,N-dimethylglycine 140 5b
9 K3PO4 2,2-bipyridyl 140 4b
10 K3PO4 1,10-phenanthroline 140 11

aGeneral reaction conditions: 3a (1.00 mmol), CuI (10 mol %), ligand (10 mol %), DMF (3.0 mL).
bBy 1H NMR spectroscopy.

With optimized reaction conditions for the intramolecular direct arylation in hand, we tested the possibility of its implementation in a sequential synthesis of 1,4-dihydrochromeno[3,4-d][1,2,3]triazole (4b, Scheme 2). We were delighted to observe that the desired reaction sequence consisting of a copper-catalyzed 1,3-dipolar cycloaddition and an intramolecular C–H bond arylation converted alkyne 1a to the desired product 4b with high catalytic efficacy.

[1860-5397-8-202-i2]

Scheme 2: Copper-catalyzed sequential catalysis with alkyne 1a.

Subsequently, we explored the extension of this approach to the development of a chemoselective three-component one-pot reaction. Thus, we found that alkyl bromides 2 could be directly employed as user-friendly substrates for the in situ formation of the corresponding organic azides (Scheme 3). Notably, the catalytic system proved broadly applicable, and a variety of organic electrophiles 2, thereby, delivered differently decorated N-substituted 1,4-dihydrochromeno[3,4-d][1,2,3]triazoles 4.

[1860-5397-8-202-i3]

Scheme 3: Copper-catalyzed reaction sequence using alkyl bromides 2. General reaction conditions: 1 (1.00 mmol), 2 (1.00 mmol), NaN3 (1.05 mmol), CuI (10 mol %), DMF (3.0 mL), LiOt-Bu (2.00 mmol); yields of isolated product. a60 °C in the first step.

Importantly, performing the one-pot reaction in a sequential fashion was not found to be mandatory. Indeed, our strategy turned out to be viable in a nonsequential manner by directly employing equimolar amounts of the three substrates. Hence, inexpensive CuI allowed the direct assembly of aryl iodides 1, alkyl bromides 2 and NaN3 with excellent chemo- and regioselectivities (Scheme 4). Thereby, a variety of annulated 1,2,3-triazoles 4 were obtained, featuring six- or seven-membered rings as key structural motifs. It is particularly noteworthy that the copper-catalyzed transformation enabled the formation of one C–C and three C–N bonds in a chemoselective manner, and thereby provided atom- and step-economical access to annulated carbo- as well as O- and N-heterocycles.

[1860-5397-8-202-i4]

Scheme 4: Nonsequential cascade synthesis of fully substituted triazoles 4. General reaction conditions: 1 (1.00 mmol), 2 (1.00 mmol), NaN3 (1.05 mmol), CuI (10 mol %) DMF (3.0 mL), LiOt-Bu (2.00 mmol); yields of isolated product.

Finally, we found that the catalytic system also proved to be applicable to the one-pot copper-catalyzed direct arylation of various azoles 5 through N–H/C–H bond cleavages with aryl iodides 6 as the organic electrophiles (Scheme 5).

[1860-5397-8-202-i5]

Scheme 5: Copper-catalyzed one-pot twofold C–H/N–H arylation with azoles 5. aReaction performed at 120 °C.

Conclusion

In summary, we have reported on the use of inexpensive copper(I) complexes for step- and atom-economical sequential catalytic transformations involving direct C–H bond arylations. Thus, CuI enabled the synthesis of fully substituted 1,2,3-triazoles through cascade reactions consisting of copper(I)-catalyzed [3 + 2]-azide–alkyne cycloadditions (CuAAC) and intramolecular C–H bond arylations. Notably, the optimized copper catalyst accelerated two mechanistically distinct transformations, which set the stage for the formation of up to one C–C and three C–N bonds in a chemo- and regioselective fashion, and also allowed for twofold C–H/N–H bond arylations on various azoles.

Experimental

General information

Catalytic reactions were carried out under an inert atmosphere of nitrogen using predried glassware. All chemicals were used as received without further purification unless otherwise specified. DMF was dried over CaH2. Alkynes 1 [89-92] and triazoles 3 [93] were synthesized according to previously described methods. CuI (99.999%) was purchased from ABCR with the following specifications: Ag <3 ppm, Ca = 2 ppm, Fe = 1 ppm, Mg <1 ppm, Zn <1 ppm. Yields refer to isolated compounds, estimated to be >95 % pure, as determined by 1H NMR. Thin-layer chromatography (TLC) was carried out on silica gel 60 F254 aluminum plates (Merck). Chromatography: Merck silica gel 60 (40–63 μm). NMR: Spectra were recorded on Varian Unity 300, Mercury 300 or Inova 500 in the solvent indicated; chemical shifts (δ) are given in parts per million (ppm). All IR spectra were taken on a Bruker FTIR Alpha device. MS: EIMS-spectra were recorded with Finnigan MAT 95, 70 eV; high-resolution mass spectrometry (HRMS) with APEX IV 7T FTICR, Bruker Daltonic. Melting points were determined with a Stuart melting-point apparatus SMP3, Barlworld Scientific; values are uncorrected.

General procedure for the synthesis of triazoles 4

NaN3 (1.05 equiv), CuI (10 mol %), LiOt-Bu (2.00 equiv), alkyne 1 (1.00 equiv) and alkyl bromide 2 (1.00 equiv) were dissolved in DMF (3.0 mL) and stirred at 80 °C for 20 h. Then, H2O (50 mL) was added at ambient temperature, and the resulting mixture was extracted with EtOAc (3 × 50 mL). The combined organic layers were washed with saturated aq NH4Cl (50 mL), H2O (50 mL) and brine (50 mL), dried over Na2SO4, filtered and concentrated in vacuo. The remaining residue was purified by column chromatography on silica gel (n-hexane/EtOAc).

Supporting Information

Supporting Information containing all experimental details and analytical data of new compounds as well as their 1H and 13C spectra are provided.

Supporting Information File 1: Experimental procedures, characterization data, and NMR spectra for new compounds.
Format: PDF Size: 2.0 MB Download

Acknowledgements

Support by the DFG and the DAAD (fellowship to H.K.P.) is gratefully acknowledged.

References

  1. Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173–1193. doi:10.1039/b606984n
    Return to citation in text: [1]
  2. Nakao, Y. Synthesis 2011, 3209–3219. doi:10.1055/s-0030-1260212
    Return to citation in text: [1]
  3. Zhao, D.; You, J.; Hu, C. Chem.–Eur. J. 2011, 17, 5466–5492. doi:10.1002/chem.201003039
    Return to citation in text: [1]
  4. Special Issue 6 "C-H Functionalization". Acc. Chem. Res. 2012, 45. doi:10.1021/ar300096z
    Return to citation in text: [1] [2] [3]
  5. Hickman, A. J.; Sanford, M. S. Nature 2012, 484, 177–185. doi:10.1038/nature11008
    Return to citation in text: [1] [2] [3]
  6. Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215–1292. doi:10.1021/cr100280d
    Return to citation in text: [1] [2] [3]
  7. Ackermann, L. Chem. Rev. 2011, 111, 1315–1345. doi:10.1021/cr100412j
    Return to citation in text: [1] [2] [3]
  8. McMurray, L.; O'Hara, F.; Gaunt, M. J. Chem. Soc. Rev. 2011, 40, 1885–1898. doi:10.1039/c1cs15013h
    Return to citation in text: [1] [2] [3]
  9. Wencel-Delord, J.; Dröge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740–4761. doi:10.1039/c1cs15083a
    Return to citation in text: [1] [2] [3]
  10. Ackermann, L. Chem. Commun. 2010, 46, 4866–4877. doi:10.1039/c0cc00778a
    Return to citation in text: [1] [2] [3]
  11. Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Commun. 2010, 46, 677–685. doi:10.1039/b908581e
    Return to citation in text: [1] [2] [3]
  12. Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624–655. doi:10.1021/cr900005n
    Return to citation in text: [1] [2] [3]
  13. Fagnou, K. Top. Curr. Chem. 2010, 292, 35–56. doi:10.1007/128_2009_14
    Return to citation in text: [1] [2] [3]
  14. Boutadla, Y.; Davies, D. L.; Macgregor, S. A.; Poblador-Bahamonde, A. I. Dalton Trans. 2009, 5820–5831. doi:10.1039/b904967c
    Return to citation in text: [1] [2] [3]
  15. Ackermann, L.; Vicente, R.; Kapdi, A. Angew. Chem., Int. Ed. 2009, 48, 9792–9826. doi:10.1002/anie.200902996
    Return to citation in text: [1] [2] [3]
  16. Thansandote, P.; Lautens, M. Chem.–Eur. J. 2009, 15, 5874–5883. doi:10.1002/chem.200900281
    Return to citation in text: [1] [2] [3]
  17. Zhu, C.; Wang, R.; Falck, J. R. Chem.–Asian J. 2012, 7, 1502–1514. doi:10.1002/asia.201200035
    Return to citation in text: [1]
  18. Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651–3678. doi:10.1039/c2cs15281a
    Return to citation in text: [1]
  19. Satoh, T.; Miura, M. Chem.–Eur. J. 2010, 16, 11212–11222. doi:10.1002/chem.201001363
    Return to citation in text: [1]
  20. Ackermann, L. Pure Appl. Chem. 2010, 82, 1403–1413. doi:10.1351/PAC-CON-09-08-17
    Return to citation in text: [1]
  21. Ackermann, L. Isr. J. Chem. 2010, 50, 652–663. doi:10.1002/ijch.201000043
    Return to citation in text: [1]
  22. Ackermann, L.; Vicente, R. Top. Curr. Chem. 2010, 292, 211–229. doi:10.1007/128_2009_9
    Return to citation in text: [1]
  23. Nakamura, E.; Yoshikai, N. J. Org. Chem. 2010, 75, 6061–6067. doi:10.1021/jo100693m
    Return to citation in text: [1]
  24. Su, Y.; Jia, W.; Jiao, N. Synthesis 2011, 1678–1690. doi:10.1055/s-0030-1260028
    Return to citation in text: [1]
  25. Daugulis, O. Top. Curr. Chem. 2010, 292, 57–84. doi:10.1007/128_2009_10
    Return to citation in text: [1]
  26. Yoshikai, N. Synlett 2011, 1047–1051. doi:10.1055/s-0030-1259928
    Return to citation in text: [1]
  27. Kulkarni, A.; Daugulis, O. Synthesis 2009, 4087–4109. doi:10.1055/s-0029-1217131
    Return to citation in text: [1]
  28. Cao, H.; Zhan, H.; Lin, Y.; Lin, X.; Du, Z.; Jiang, H. Org. Lett. 2012, 14, 1688–1691. doi:10.1021/ol300232a
    Return to citation in text: [1]
  29. Das, B.; Reddy, G. C.; Balasubramanyam, P.; Salvanna, N. Tetrahedron 2012, 68, 300–305. doi:10.1016/j.tet.2011.10.049
    Return to citation in text: [1]
  30. Ciana, C.-L.; Phipps, R. J.; Brandt, J. R.; Meyer, F.-M.; Gaunt, M. J. Angew. Chem., Int. Ed. 2011, 50, 458–462. doi:10.1002/anie.201004703
    Return to citation in text: [1]
  31. Duong, H. A.; Gilligan, R. E.; Cooke, M. L.; Phipps, R. J.; Gaunt, M. J. Angew. Chem., Int. Ed. 2011, 50, 463–466. doi:10.1002/anie.201004704
    Return to citation in text: [1]
  32. Huang, G.; Sun, H.; Qiu, X.; Jin, C.; Lin, C.; Shen, Y.; Jiang, J.; Wang, L. Org. Lett. 2011, 13, 5224–5227. doi:10.1021/ol2021109
    Return to citation in text: [1]
  33. Popov, I.; Lindeman, S.; Daugulis, O. J. Am. Chem. Soc. 2011, 133, 9286–9289. doi:10.1021/ja2041942
    Return to citation in text: [1]
  34. Kawano, T.; Matsuyama, N.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2010, 75, 1764–1766. doi:10.1021/jo9025622
    Return to citation in text: [1]
  35. Barbero, N.; San Martin, R.; Dominguez, E. Org. Biomol. Chem. 2010, 8, 841–845. doi:10.1039/b916549e
    Return to citation in text: [1]
  36. Pacheco Berciano, B.; Lebrequier, S.; Besselievre, F.; Piguel, S. Org. Lett. 2010, 12, 4038–4041. doi:10.1021/ol1016433
    Return to citation in text: [1]
  37. Besselievre, F.; Piguel, S. Angew. Chem., Int. Ed. 2009, 48, 9553–9555. doi:10.1002/anie.200904776
    Return to citation in text: [1]
  38. Fukuzawa, S.-I.; Shimizu, E.; Ogata, K. Heterocycles 2009, 78, 645–655. doi:10.3987/COM-08-11546
    Return to citation in text: [1]
  39. Kawano, T.; Yoshizumi, T.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2009, 11, 3072–3075. doi:10.1021/ol9011212
    Return to citation in text: [1]
  40. Zhao, D.; Wang, W.; Yang, F.; Lan, J.; Yang, L.; Gao, G.; You, J. Angew. Chem., Int. Ed. 2009, 48, 3296–3300. doi:10.1002/anie.200900413
    Return to citation in text: [1]
  41. Yotphan, S.; Bergman, R. G.; Ellman, J. A. Org. Lett. 2009, 11, 1511–1514. doi:10.1021/ol900103a
    Return to citation in text: [1]
  42. Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 1128–1129. doi:10.1021/ja077862l
    Return to citation in text: [1]
  43. Yoshizumi, T.; Tsurugi, H.; Satoh, T.; Miura, M. Tetrahedron Lett. 2008, 49, 1598–1600. doi:10.1016/j.tetlet.2008.01.042
    Return to citation in text: [1]
  44. Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 12404–12405. doi:10.1021/ja075802+
    Return to citation in text: [1]
  45. Nishino, M.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2012, 51, 6993–6997. doi:10.1002/anie.201201491
    Return to citation in text: [1]
  46. Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2011, 133, 13577–13586. doi:10.1021/ja2047717
    Return to citation in text: [1]
  47. Kitahara, M.; Umeda, N.; Hirano, K.; Satoh, T.; Miura, M. J. Am. Chem. Soc. 2011, 133, 2160–2162. doi:10.1021/ja111401h
    Return to citation in text: [1]
  48. Zhu, M.; Fujita, K.-i.; Yamaguchi, R. Chem. Commun. 2011, 47, 12876–12878. doi:10.1039/c1cc15363c
    Return to citation in text: [1]
  49. Song, W.; Ackermann, L. Angew. Chem., Int. Ed. 2012, 51, 8251–8254. doi:10.1002/anie.201202466
    Return to citation in text: [1]
  50. Ackermann, L.; Punji, B.; Song, W. Adv. Synth. Catal. 2011, 353, 3325–3329. doi:10.1002/adsc.201100487
    Return to citation in text: [1]
  51. Huisgen, R. Angew. Chem. 1963, 75, 604–637. doi:10.1002/ange.19630751304
    Return to citation in text: [1]
  52. Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057–3064. doi:10.1021/jo011148j
    Return to citation in text: [1]
  53. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596–2599. doi:10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4
    Return to citation in text: [1]
  54. Ackermann, L.; Potukuchi, H. K.; Landsberg, D.; Vicente, R. Org. Lett. 2008, 10, 3081–3084. doi:10.1021/ol801078r
    Return to citation in text: [1] [2]
  55. Chuprakov, S.; Chernyak, N.; Dudnik, A. S.; Gevorgyan, V. Org. Lett. 2007, 9, 2333–2336. doi:10.1021/ol070697u
    Return to citation in text: [1]
  56. Iwasaki, M.; Yorimitsu, H.; Oshima, K. Chem.–Asian J. 2007, 2, 1430–1435. doi:10.1002/asia.200700206
    Return to citation in text: [1]
  57. Ackermann, L.; Vicente, R.; Born, R. Adv. Synth. Catal. 2008, 350, 741–748. doi:10.1002/adsc.200800016
    Return to citation in text: [1]
  58. Ackermann, L.; Althammer, A.; Fenner, S. Angew. Chem., Int. Ed. 2009, 48, 201–204. doi:10.1002/anie.200804517
    Return to citation in text: [1]
  59. Ackermann, L.; Vicente, R. Org. Lett. 2009, 11, 4922–4925. doi:10.1021/ol9020354
    Return to citation in text: [1]
  60. Lapointe, D.; Fagnou, K. Org. Lett. 2009, 11, 4160–4163. doi:10.1021/ol901689q
    Return to citation in text: [1]
  61. Schulman, J. M.; Friedman, A. A.; Panteleev, J.; Lautens, M. Chem. Commun. 2012, 48, 55–57. doi:10.1039/c1cc16110e
    Return to citation in text: [1]
  62. Ackermann, L.; Jeyachandran, R.; Potukuchi, H. K.; Novak, P.; Büttner, L. Org. Lett. 2010, 12, 2056–2059. doi:10.1021/ol1005517
    Return to citation in text: [1]
  63. Ackermann, L.; Vicente, R.; Althammer, A. Org. Lett. 2008, 10, 2299–2302. doi:10.1021/ol800773x
    Return to citation in text: [1]
  64. Ackermann, L.; Born, R.; Vicente, R. ChemSusChem 2009, 2, 546–549. doi:10.1002/cssc.200900014
    Return to citation in text: [1]
  65. Ackermann, L.; Vicente, R.; Potukuchi, H. K.; Pirovano, V. Org. Lett. 2010, 12, 5032–5035. doi:10.1021/ol102187e
    Return to citation in text: [1]
  66. Ackermann, L.; Novák, P.; Vicente, R.; Pirovano, V.; Potukuchi, H. K. Synthesis 2010, 2245–2253. doi:10.1055/s-0029-1220010
    Return to citation in text: [1]
  67. Ackermann, L.; Potukuchi, H. K. Org. Biomol. Chem. 2010, 8, 4503–4513. doi:10.1039/c0ob00212g
    Return to citation in text: [1]
  68. Kuijpers, B. H. M.; Dijkmans, G. C. T.; Groothuys, S.; Quaedflieg, P. J. L. M.; Blaauw, R. H.; van Delft, F. L.; Rutjes, F. P. J. T. Synlett 2005, 3059–3062. doi:10.1055/s-2005-921919
    Return to citation in text: [1]
  69. Hein, J. E.; Tripp, J. C.; Krasnova, L. B.; Sharpless, K. B.; Fokin, V. V. Angew. Chem., Int. Ed. 2009, 48, 8018–8021. doi:10.1002/anie.200903558
    Return to citation in text: [1]
  70. Spiteri, C.; Moses, J. E. Angew. Chem., Int. Ed. 2010, 49, 31–33. doi:10.1002/anie.200905322
    Return to citation in text: [1]
  71. Ackermann, L.; Born, R.; Álvarez-Bercedo, P. Angew. Chem., Int. Ed. 2007, 46, 6364–6367. doi:10.1002/anie.200701727
    Return to citation in text: [1]
  72. Ackermann, L.; Althammer, A. Angew. Chem., Int. Ed. 2007, 46, 1627–1629. doi:10.1002/anie.200603833
    Return to citation in text: [1]
  73. Ackermann, L.; Althammer, A.; Mayer, P. Synthesis 2009, 3493–3503. doi:10.1055/s-0029-1216977
    Return to citation in text: [1]
  74. Astruc, D.; Liang, L.; Rapakousiou, A.; Ruiz, J. Acc. Chem. Res. 2012, 45, 630–640. doi:10.1021/ar200235m
    Return to citation in text: [1]
  75. Agalave, S. G.; Maujan, S. R.; Pore, V. S. Chem.–Asian J. 2011, 6, 2696–2718. doi:10.1002/asia.201100432
    Return to citation in text: [1]
  76. Pedersen, D. S.; Abell, A. Eur. J. Org. Chem. 2011, 2399–2411. doi:10.1002/ejoc.201100157
    Return to citation in text: [1]
  77. Hänni, K. D.; Leigh, D. A. Chem. Soc. Rev. 2010, 39, 1240–1251. doi:10.1039/b901974j
    Return to citation in text: [1]
  78. Kappe, C. O.; Van der Eycken, E. Chem. Soc. Rev. 2010, 39, 1280–1290. doi:10.1039/b901973c
    Return to citation in text: [1]
  79. El-Sagheer, A. H.; Brown, T. Chem. Soc. Rev. 2010, 39, 1388–1405. doi:10.1039/b901971p
    Return to citation in text: [1]
  80. Qin, A.; Lam, J. W. Y.; Tang, B. Z. Chem. Soc. Rev. 2010, 2522–2544. doi:10.1039/b909064a
    Return to citation in text: [1]
  81. Meldal, M.; Tornoe, C. W. Chem. Rev. 2008, 108, 2952–3015. doi:10.1021/cr0783479
    Return to citation in text: [1]
  82. Nandivada, H.; Jiang, X.; Lahann, J. Adv. Mater. 2007, 19, 2197–2208. doi:10.1002/adma.200602739
    Return to citation in text: [1]
  83. Angell, Y. L.; Burgess, K. Chem. Soc. Rev. 2007, 36, 1674–1689. doi:10.1039/b701444a
    Return to citation in text: [1]
  84. Fournier, D.; Hoogenboom, R.; Schubert, U. S. Chem. Soc. Rev. 2007, 36, 1369–1380. doi:10.1039/b700809k
    Return to citation in text: [1]
  85. Moses, J. E.; Moorhouse, A. D. Chem. Soc. Rev. 2007, 36, 1249–1262. doi:10.1039/b613014n
    Return to citation in text: [1]
  86. Lutz, J.-F. Angew. Chem., Int. Ed. 2007, 46, 1018–1025. doi:10.1002/anie.200604050
    Return to citation in text: [1]
  87. Dondoni, A. Chem.–Asian J. 2007, 2, 700–708. doi:10.1002/asia.200700015
    Return to citation in text: [1]
  88. Kolb, H. C.; Sharpless, K. B. Drug Discovery Today 2003, 8, 1128–1137. doi:10.1016/S1359-6446(03)02933-7
    Return to citation in text: [1]
  89. Bowman, W. R.; Krintel, S. L.; Schilling, M. B. Org. Biomol. Chem. 2004, 2, 585–592. doi:10.1039/b310520b
    Return to citation in text: [1]
  90. Pastine, S. J.; Youn, S. W.; Sames, D. Org. Lett. 2003, 5, 1055–1058. doi:10.1021/ol034177k
    Return to citation in text: [1]
  91. Wang, R. T.; Chou, F. L.; Luo, F. T. J. Org. Chem. 1990, 55, 4846–4849. doi:10.1021/jo00303a017
    Return to citation in text: [1]
  92. Shore, G.; Organ, M. G. Chem.–Eur. J. 2008, 14, 9641–9646. doi:10.1002/chem.200801610
    Return to citation in text: [1]
  93. Kacprzak, K. Synlett 2005, 943–946. doi:10.1055/s-2005-864809
    Return to citation in text: [1]

© 2012 Jeyachandran et al; licensee Beilstein-Institut.
This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: (http://www.beilstein-journals.org/bjoc)

 
Back to Article List

Other Beilstein-Institut Open Science Activities

Keep Informed

RSS Feed

Subscribe to our Latest Articles RSS Feed.

Subscribe

Follow the Beilstein-Institut

LinkedIn

Twitter: @BeilsteinInst