The importance of the rotor in hydrazone-based molecular switches

Xin Su, Timo Lessing and Ivan Aprahamian
Beilstein J. Org. Chem. 2012, 8, 872–876. https://doi.org/10.3762/bjoc.8.98

Supporting Information

Supporting Information File 1: Experimental section and acid titration of the hydrazone compounds.
Format: PDF Size: 371.4 KB Download

Cite the Following Article

The importance of the rotor in hydrazone-based molecular switches
Xin Su, Timo Lessing and Ivan Aprahamian
Beilstein J. Org. Chem. 2012, 8, 872–876. https://doi.org/10.3762/bjoc.8.98

How to Cite

Su, X.; Lessing, T.; Aprahamian, I. Beilstein J. Org. Chem. 2012, 8, 872–876. doi:10.3762/bjoc.8.98

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Castaño, J. A.; Galindo Betancourth, J.; Chaur, M. N. Importance of the Amino Moiety of the Hydrazone Group in the Electrochemical and UV‐Vis Absorption Properties of Simple Isomeric Hydrazones. ChemistrySelect 2023, 8. doi:10.1002/slct.202303157
  • Betancourth, J. G.; Castaño, J. A.; Visbal, R.; Chaur, M. N. Versatility of the Amino Group in Hydrazone‐Based Molecular and Supramolecular Systems. European Journal of Organic Chemistry 2022, 2022. doi:10.1002/ejoc.202200228
  • Janasik, D.; Jasiński, K.; Węglarz, W. P.; Nemec, I.; Jewula, P.; Krawczyk, T. Ratiometric pH-Responsive 19F Magnetic Resonance Imaging Contrast Agents Based on Hydrazone Switches. Analytical chemistry 2022, 94, 3427–3431. doi:10.1021/acs.analchem.1c04978
  • Yang, S.; Harris, J. D.; Lambai, A.; Jeliazkov, L. L.; Mohanty, G.; Zeng, H.; Priimagi, A.; Aprahamian, I. Multistage Reversible Tg Photomodulation and Hardening of Hydrazone-Containing Polymers. Journal of the American Chemical Society 2021, 143, 16348–16353. doi:10.1021/jacs.1c07504
  • Munir, R.; Javid, N.; Zia-ur-Rehman, M.; Zaheer, M.; Huma, R.; Roohi, A.; Athar, M. M. Synthesis of Novel N-Acylhydrazones and Their C-N/N-N Bond Conformational Characterization by NMR Spectroscopy. Molecules (Basel, Switzerland) 2021, 26, 4908. doi:10.3390/molecules26164908
  • Khattab, T. A. From chromic switchable hydrazones to smart materials. Materials Chemistry and Physics 2020, 254, 123456. doi:10.1016/j.matchemphys.2020.123456
  • Chin, Z.; Khor; Lee, M.; Low; Irene; Ling.
  • Noirbent, G.; Xu, Y.; Bonardi, A.-H.; Duval, S.; Gigmes, D.; Lalevée, J.; Dumur, F. New Donor-Acceptor Stenhouse Adducts as Visible and Near Infrared Light Polymerization Photoinitiators. Molecules (Basel, Switzerland) 2020, 25, 2317. doi:10.3390/molecules25102317
  • Shao, B.; Aprahamian, I. Planarization-Induced Activation Wavelength Red-Shift and Thermal Half-Life Acceleration in Hydrazone Photoswitches. ChemistryOpen 2020, 9, 191–194. doi:10.1002/open.201900340
  • Khor, Z. C.; Low, M. L.; Ling, I. Schiff Bases and their Copper(II) Complexes Derived from Cinnamaldehyde and Different Hydrazides: Synthesis and Antibacterial Properties. Journal of Transition Metal Complexes 2020, 3, 1–9. doi:10.32371/jtmc/236087
  • Su, X.; Chen, H.; Qinqin, M. Recent Advances in Hydrazone-based Switches. Modern Concepts in Material Science 2019, 1, 1–2. doi:10.33552/mcms.2019.01.000509
  • Shao, B.; Qian, H.; Li, Q.; Aprahamian, I. Structure Property Analysis of the Solution and Solid-State Properties of Bistable Photochromic Hydrazones. Journal of the American Chemical Society 2019, 141, 8364–8371. doi:10.1021/jacs.9b03932
  • Panettieri, S.; Silverman, J. R.; Nifosì, R.; Signore, G.; Bizzarri, R.; John, G. Unique Photophysical Behavior of Coumarin-Based Viscosity Probes during Molecular Self-Assembly. ACS omega 2019, 4, 4785–4792. doi:10.1021/acsomega.8b02357
  • Ryabchun, A.; Li, Q.; Lancia, F.; Aprahamian, I.; Katsonis, N. Shape-Persistent Actuators from Hydrazone Photoswitches. Journal of the American Chemical Society 2019, 141, 1196–1200. doi:10.1021/jacs.8b11558
  • Angelova, S.; Paskaleva, V.; Kochev, N.; Antonov, L. DFT study of hydrazone-based molecular switches: the effect of different stators on the on/off state distribution. Molecular Physics 2018, 117, 1604–1612. doi:10.1080/00268976.2018.1548717
  • Villada, J. D.; D'Vries, R. F.; Macías, M. A.; Zuluaga, F.; Chaur, M. N. Structural characterization of a fluorescein hydrazone molecular switch with application towards logic gates. New Journal of Chemistry 2018, 42, 18050–18058. doi:10.1039/c8nj03817a
  • Moran, M.; Magrini, M. J.; Walba, D. M.; Aprahamian, I. Driving a Liquid Crystal Phase Transition Using a Photochromic Hydrazone. Journal of the American Chemical Society 2018, 140, 13623–13627. doi:10.1021/jacs.8b09622
  • Gordillo, M. A.; Soto-Monsalve, M.; Carmona-Vargas, C. C.; Gutiérrez, G.; D'Vries, R. F.; Lehn, J.-M.; Chaur, M. N. Photochemical and Electrochemical Triggered Bis(hydrazone) Switch. Chemistry (Weinheim an der Bergstrasse, Germany) 2017, 23, 14872–14882. doi:10.1002/chem.201703065
  • Qian, H.; Pramanik, S.; Aprahamian, I. Photochromic Hydrazone Switches with Extremely Long Thermal Half-Lives. Journal of the American Chemical Society 2017, 139, 9140–9143. doi:10.1021/jacs.7b04993
  • Aprahamian, I. Hydrazone switches and things in between. Chemical communications (Cambridge, England) 2017, 53, 6674–6684. doi:10.1039/c7cc02879b
Other Beilstein-Institut Open Science Activities