Search results

Search for "halide" in Full Text gives 345 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

A review of recent advances in electrochemical and photoelectrochemical late-stage functionalization classified by anodic oxidation, cathodic reduction, and paired electrolysis

  • Nian Li,
  • Ruzal Sitdikov,
  • Ajit Prabhakar Kale,
  • Joost Steverlynck,
  • Bo Li and
  • Magnus Rueping

Beilstein J. Org. Chem. 2024, 20, 2500–2566, doi:10.3762/bjoc.20.214

Graphical Abstract
PDF
Album
Review
Published 09 Oct 2024

Synthesis and conformational analysis of pyran inter-halide analogues of ᴅ-talose

  • Olivier Lessard,
  • Mathilde Grosset-Magagne,
  • Paul A. Johnson and
  • Denis Giguère

Beilstein J. Org. Chem. 2024, 20, 2442–2454, doi:10.3762/bjoc.20.208

Graphical Abstract
  • orbitals. Keywords: organofluorine; pyran inter-halide; solid-state conformation; solution-state conformation; Introduction Polyfluorinated pyran analogues of carbohydrates have attracted attention over the years. This class of glycomimetics has great biological potential with useful applications [1][2
  • ][3][4][5][6][7]. What about other halogens? Pyran inter-halide analogues of carbohydrates were rarely investigated as new tools in glycobiology [8]. This is surprising since the incorporation of halogens can improve cellular uptakes and enhance membrane binding and permeation [9][10][11]. In addition
  • , halogen bonding is an important interaction in biological systems [12][13][14][15][16][17] and the beneficial effect of the chloro substituent has been reviewed recently [18]. As a result, there is a lack of efficient synthetic strategies to access multivicinal inter-halide stereocenters (i.e., contiguous
PDF
Album
Supp Info
Full Research Paper
Published 27 Sep 2024

Evaluating the halogen bonding strength of a iodoloisoxazolium(III) salt

  • Dominik L. Reinhard,
  • Anna Schmidt,
  • Marc Sons,
  • Julian Wolf,
  • Elric Engelage and
  • Stefan M. Huber

Beilstein J. Org. Chem. 2024, 20, 2401–2407, doi:10.3762/bjoc.20.204

Graphical Abstract
  • donors [16][17] from our group as well as of dicationic N-heterocyclic-substituted monodentate catalysts by Nachtsheim [15]. While such compounds are necessary to activate neutral substrates in more challenging reactions, monodentate and monocationic congeners provide sufficient activation in halide
  • halide abstraction is the crucial step towards the formation of a catalytically active gold species [18][19]. Furthermore, iodonium species 1BArF–4BArF have been shown to be halide abstracting agents in the Ritter-type solvolysis of α-methylbenzyl bromide and via the crystal structures of 1Cl, 2Cl, and
  • 3Cl which resulted from crystallization of the respective cation with the abstracted chloride from the Ritter-type solvolysis of benzhydryl chloride [13]. The crystal structure of 5Br was also obtained directly from the halide-abstraction reaction (see Supporting Information File 1). These three facts
PDF
Album
Supp Info
Letter
Published 23 Sep 2024

Electrochemical allylations in a deep eutectic solvent

  • Sophia Taylor and
  • Scott T. Handy

Beilstein J. Org. Chem. 2024, 20, 2217–2224, doi:10.3762/bjoc.20.189

Graphical Abstract
  • , J = 16.5, 1H), 6.25 (dd, = 6.54, 15.78 Hz, 1H), 5.90–5.79 (m, 1H), 5.22–5.15 (m, 2H), 4.36 (q, J = 5.85, 1H), 2.41 (q, J = 8.94, 2H). Influence of electrode material. Aldehyde variations. Halide variations. Recycling for the allylation of p-anisaldehyde in TBAB/EG DES and Sn electrodes. Tin metal
PDF
Album
Full Research Paper
Published 02 Sep 2024

Negishi-coupling-enabled synthesis of α-heteroaryl-α-amino acid building blocks for DNA-encoded chemical library applications

  • Matteo Gasparetto,
  • Balázs Fődi and
  • Gellért Sipos

Beilstein J. Org. Chem. 2024, 20, 1922–1932, doi:10.3762/bjoc.20.168

Graphical Abstract
  • the blue region. This complex then accelerates the oxidative addition of the aryl halide to the metal, which is usually the rate-limiting step for palladium-catalyzed cross-couplings. Based on these results we decided to perform all Negishi reactions under blue light irradiation. With the optimized
  • conditions in hand, we proceeded with the investigation of the heteroaryl halide scope in batch (Scheme 3). Thiazoles proved to be challenging substrates typically affording the desired products in moderate yields (2b–h). While 2-chlorothiazole led to the production of 2b in 44% yield, 2-bromo-5
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2024

Methyltransferases from RiPP pathways: shaping the landscape of natural product chemistry

  • Maria-Paula Schröder,
  • Isabel P.-M. Pfeiffer and
  • Silja Mordhorst

Beilstein J. Org. Chem. 2024, 20, 1652–1670, doi:10.3762/bjoc.20.147

Graphical Abstract
  • pathways Methyltransferases can be classified based on various factors, such as their substrates (small molecule MTs, protein MTs, or RNA/DNA MTs), the atom that accepts the methyl group (oxygen = O-MTs, nitrogen = N-MTs, carbon = C-MTs, sulphur = S-MTs, or halide = H-MTs), metal or cofactor dependence
  • atom, describing O-, N-, C-, and S-MTs; halide MTs have not (yet) been identified in RiPP pathways. The enzymes described below are either conventional SAM-dependent MTs or radical SAM (rSAM) MTs; rSAM MTs are one subfamily of the large rSAM enzyme superfamily, which encompasses enzymes catalysing a
PDF
Album
Review
Published 18 Jul 2024

Tetrabutylammonium iodide-catalyzed oxidative α-azidation of β-ketocarbonyl compounds using sodium azide

  • Christopher Mairhofer,
  • David Naderer and
  • Mario Waser

Beilstein J. Org. Chem. 2024, 20, 1510–1517, doi:10.3762/bjoc.20.135

Graphical Abstract
  • catalyst/DBPO combinations next (Table 1, entries 5–10), showed that the reaction requires a quaternary ammonium halide containing an easily oxidizable counter anion, i.e., iodide or bromide (Table 1, entries 5 and 7). No product formation was observed in the absence of any catalyst (Table 1, entry 6) or
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2024

A comparison of structure, bonding and non-covalent interactions of aryl halide and diarylhalonium halogen-bond donors

  • Nicole Javaly,
  • Theresa M. McCormick and
  • David R. Stuart

Beilstein J. Org. Chem. 2024, 20, 1428–1435, doi:10.3762/bjoc.20.125

Graphical Abstract
  • halogen-bond formation by the linear combination of the % p-orbital character on the halogen and energy of the σ-hole on the halogen-bond donor. Keywords: aryl halide; diarylhalonium; halogen; halogen bond; non-covalent interaction; Introduction Halogen bonding has emerged as an important attractive
  • pentafluorophenyl halide series with chloride anion (Scheme 4c, 49–52). A similar trend for decreasing bond length with increasing van der Waals radii has also been observed for some [38], though not all [39], series of chalcogen bonds. Generally, shorter bonds are stronger and longer bonds are weaker, and the
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2024

Synthesis of substituted triazole–pyrazole hybrids using triazenylpyrazole precursors

  • Simone Gräßle,
  • Laura Holzhauer,
  • Nicolai Wippert,
  • Olaf Fuhr,
  • Martin Nieger,
  • Nicole Jung and
  • Stefan Bräse

Beilstein J. Org. Chem. 2024, 20, 1396–1404, doi:10.3762/bjoc.20.121

Graphical Abstract
  • the pyrazole tautomerism [28], the formation of two possible regioisomers, 17 and 18, was anticipated and could be confirmed experimentally. Depending on the employed halide 16, the distribution of the obtained products varied. A considerable excess of the dominating isomer with yields of up to 70
PDF
Album
Supp Info
Full Research Paper
Published 20 Jun 2024

Generation of alkyl and acyl radicals by visible-light photoredox catalysis: direct activation of C–O bonds in organic transformations

  • Mithu Roy,
  • Bitan Sardar,
  • Itu Mallick and
  • Dipankar Srimani

Beilstein J. Org. Chem. 2024, 20, 1348–1375, doi:10.3762/bjoc.20.119

Graphical Abstract
  • terminal arylalkynes bearing electron-donating and electron-withdrawing substituents were well compatible with this method. The procedure is limited to electron-withdrawing and electron-neutral aryl halides. The presence of a conjugated substituent in the p-position of an aryl halide is crucial for
  • metallaphotoredox catalysis (Scheme 19). Therein, alcohols were activated by the use of NHC salts. This activation facilitated the construction of C–C bonds when combined with aryl halide coupling partners. A diverse array of alcohols and various medicinally important aryl and heteroaryl halides reacted well in
  • avoid the use of various halide-based reactants but also opened up C–O bond activations in terms of alcohol and acid functionalizations, choice of reactants, etc. Consequently, in this review, we focused on the advancements in photocatalytic alkyl and acyl radial generation from alcohols and acids. It
PDF
Album
Review
Published 14 Jun 2024

Rhodium-catalyzed homo-coupling reaction of aryl Grignard reagents and its application for the synthesis of an integrin inhibitor

  • Kazuyuki Sato,
  • Satoki Teranishi,
  • Atsushi Sakaue,
  • Yukiko Karuo,
  • Atsushi Tarui,
  • Kentaro Kawai,
  • Hiroyuki Takeda,
  • Tatsuo Kinashi and
  • Masaaki Omote

Beilstein J. Org. Chem. 2024, 20, 1341–1347, doi:10.3762/bjoc.20.118

Graphical Abstract
  • and Discussion Methodology development In our work towards Rh-catalyzed homo-coupling reactions of benzyl halides, we observed that a similar rhodium–bis(benzyl) complex can also be formed from benzyl halide by using a Grignard reagent instead R2Zn in the presence of RhCl(PPh3)3 to subsequently give
  • RhCl(PPh3)3 in THF as shown in Scheme 3. In addition, similar reactions using 4-fluorobenzyl bromide (1b) or 4-bromobenzyl bromide (1c) gave the desired dibenzyl products 2b (85%) or 2c (90%) along with 3a in 64% or 54% yield, respectively. Mechanistically, the benzyl halide works as an oxidizing agent
  • yields, especially 1,2-dibromoethane was the best oxidant. The reaction proceeded in good yield, even if 0.5 equiv of 1,2-dibromoethane were used in this reaction, as shown in Table 1, entries 7 and 8. However, it has been confirmed that this reaction did not proceed when no alkyl halide was added to the
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2024

Oxidative hydrolysis of aliphatic bromoalkenes: scope study and reactivity insights

  • Amol P. Jadhav and
  • Claude Y. Legault

Beilstein J. Org. Chem. 2024, 20, 1286–1291, doi:10.3762/bjoc.20.111

Graphical Abstract
  • ketones using external halide source [30]. We envisioned that dialkyl bromoalkenes 1 could be used as enol analogs with an improvement in reaction conditions in the presence of I(III) reagents to directly get both symmetrical and unsymmetrical dialkyl bromoketones 2 (Scheme 1c). Recent methods have been
PDF
Album
Supp Info
Letter
Published 03 Jun 2024

Synthesis and physical properties of tunable aryl alkyl ionic liquids based on 1-aryl-4,5-dimethylimidazolium cations

  • Stefan Fritsch and
  • Thomas Strassner

Beilstein J. Org. Chem. 2024, 20, 1278–1285, doi:10.3762/bjoc.20.110

Graphical Abstract
  • use in different fields of chemistry like synthesis [4][5][6][7][8][9], catalysis [10][11][12][13][14] and materials science [15][16][17][18][19][20][21][22][23]. ILs generally consist of an organic cation [24], such as the imidazolium or ammonium ion and an inorganic anion like a halide anion or
PDF
Album
Supp Info
Full Research Paper
Published 31 May 2024

Domino reactions of chromones with activated carbonyl compounds

  • Peter Langer

Beilstein J. Org. Chem. 2024, 20, 1256–1269, doi:10.3762/bjoc.20.108

Graphical Abstract
  • intramolecular nucleophilic attack of the oxygen to the halide to give intermediate U and subsequent ring-cleavage. The reaction of 3-ketoamide 34a (R3 = Me, R4 = Ph) with 3-chloro-, 3-bromo-, and 3-iodochromone showed that the yields strongly depend on the type of halogen atom located at position 3 of the
  • hydrate which reduces significantly its electrophilicity. In case of 3-halochromones, the halide acts as a leaving group during the reaction. For 3-cyanochromones, a nucleophilic attack of chromone-derived hydroxy group to the nitrile was observed in most cases. However, a different reaction was observed
PDF
Album
Review
Published 29 May 2024

Light on the sustainable preparation of aryl-cored dibromides

  • Fabrizio Roncaglia,
  • Alberto Ughetti,
  • Nicola Porcelli,
  • Biagio Anderlini,
  • Andrea Severini and
  • Luca Rigamonti

Beilstein J. Org. Chem. 2024, 20, 1076–1087, doi:10.3762/bjoc.20.95

Graphical Abstract
  • ) greater electrophilicity of the halo compound due to better leaving group ability of the halide ion, (iii) reduced toxicity, presumably due to faster hydrolysis [18], and (iv) easier oxidation of the halide to molecular halogen (E0 = 1.087 V (SHE) for Br2/Br−; E0 = 1.358 V (SHE) for Cl2/Cl−) [19
  • redox couple NaBr–NaBrO3 in acidic media [40][41]. Other variations include the system KBr–Oxone® [42]. However, based on a literature review, we concluded that unparalleled efficiency and sustainability can be achieved through the well-established redox equilibria between hydrogen peroxide and halide
PDF
Album
Supp Info
Full Research Paper
Published 14 May 2024

Carbonylative synthesis and functionalization of indoles

  • Alex De Salvo,
  • Raffaella Mancuso and
  • Xiao-Feng Wu

Beilstein J. Org. Chem. 2024, 20, 973–1000, doi:10.3762/bjoc.20.87

Graphical Abstract
  • what we are discussing in this mini-review. Review Carbonylative synthesis of indoles Synthesis of indoles by Pd(0)-catalyzed carbonylation reaction of halide compounds Processes using organic halides as their starting materials involving the oxidative addition of Pd(0) to C–X bonds to give Ar–PdII–X
  • carbonylation reaction [81]. Initially it was assumed that the presence of the halide and the NH group could lead to an oligomerization or polymerization reaction, but carrying out the reaction with Pd(CH3CN)2Cl2/dppf as catalyst system and Et3N as the base at 130 °C under 25 bar of CO, they succeeded in the
PDF
Album
Review
Published 30 Apr 2024

Advancements in hydrochlorination of alkenes

  • Daniel S. Müller

Beilstein J. Org. Chem. 2024, 20, 787–814, doi:10.3762/bjoc.20.72

Graphical Abstract
  • discovery by Markovnikov in 1869, who formulated the "Markovnikov rule" as follows: "Experience shows that the halide adds to the least hydrogenated carbon, that is, to the one most susceptible to the influence of other carbon units” [1][2]. In the 1960s and 1970s, various research groups conducted detailed
  • chloride metal halide complexes are −6 kJ mol−1 for SnCl4, −8 kJ mol−1 for BiCl3, −9 kJ mol−1 for ZnCl2, −15 kJ mol−1 for CdCl2, −16 kJ mol−1 for FeCl3, and −41 kJ mol−1 for AlCl3. d) Addition of chloride-containing salts (e.g., LiCl) accelerate the reaction. e) Traces of water can increase the rate of the
PDF
Album
Review
Published 15 Apr 2024

Palladium-catalyzed three-component radical-polar crossover carboamination of 1,3-dienes or allenes with diazo esters and amines

  • Geng-Xin Liu,
  • Xiao-Ting Jie,
  • Ge-Jun Niu,
  • Li-Sheng Yang,
  • Xing-Lin Li,
  • Jian Luo and
  • Wen-Hao Hu

Beilstein J. Org. Chem. 2024, 20, 661–671, doi:10.3762/bjoc.20.59

Graphical Abstract
  • reaction of diazo compounds mediated by visible light has been reported by the group of Gevorgyan, which achieves the monofunctionalization of alkenes [52]. Inspired by these collective studies, we considered diazo compounds could be a competent activated alkyl halide equivalent to overcome the synthetic
PDF
Album
Supp Info
Full Research Paper
Published 27 Mar 2024

Switchable molecular tweezers: design and applications

  • Pablo Msellem,
  • Maksym Dekthiarenko,
  • Nihal Hadj Seyd and
  • Guillaume Vives

Beilstein J. Org. Chem. 2024, 20, 504–539, doi:10.3762/bjoc.20.45

Graphical Abstract
  • that enables monitoring by circular dichroism. Upon the addition of Ca(II), a large increase in the binding affinity for halide ions was observed due to the folding of the receptor in a helicoidal form that enabled cooperative interaction with both urea moieties. More flexible coordination responsive
  • ligands and a halide-induced ligand rearrangement (HRI) [81]. For example, when two symmetric Rh(I) complexes, one with P,O and one with P,S ligands, are subjected to the addition of halide anions, a rearrangement is observed by ligand exchange from the symmetric [Rh(P,O)2], [Rh(P,S)2] complexes to the
PDF
Album
Review
Published 01 Mar 2024

Mechanisms for radical reactions initiating from N-hydroxyphthalimide esters

  • Carlos R. Azpilcueta-Nicolas and
  • Jean-Philip Lumb

Beilstein J. Org. Chem. 2024, 20, 346–378, doi:10.3762/bjoc.20.35

Graphical Abstract
  • utility is frequently restricted due to various challenges, such as RAE decomposition and a limited aryl halide scope. In recent years, the Baran lab has made progress in enhancing the practicality and applicability of electrochemically driven decarboxylative couplings involving NHPI esters and aryl
PDF
Album
Perspective
Published 21 Feb 2024

Nucleophilic functionalization of thianthrenium salts under basic conditions

  • Xinting Fan,
  • Duo Zhang,
  • Xiangchuan Xiu,
  • Bin Xu,
  • Yu Yuan,
  • Feng Chen and
  • Pan Gao

Beilstein J. Org. Chem. 2024, 20, 257–263, doi:10.3762/bjoc.20.26

Graphical Abstract
  • , the scope of sulfonium salts was examined, as summarized in Scheme 2a. Alkylsulfonium salts substituted with a halide (F, Cl, or Br) or isocyano group at the para-position of the aryl ring (1b–e) were successfully converted into the carbon–sulfur bond formation products (3ba–fa) in moderate to good
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2024

Copper-promoted C5-selective bromination of 8-aminoquinoline amides with alkyl bromides

  • Changdong Shao,
  • Chen Ma,
  • Li Li,
  • Jingyi Liu,
  • Yanan Shen,
  • Chen Chen,
  • Qionglin Yang,
  • Tianyi Xu,
  • Zhengsong Hu,
  • Yuhe Kan and
  • Tingting Zhang

Beilstein J. Org. Chem. 2024, 20, 155–161, doi:10.3762/bjoc.20.14

Graphical Abstract
  • , and aryl bromides as bromination reagents are limited. Wan and Li, respectively, demonstrated a few examples of a one-pot N-acylation and C5–H bromination of 8‑aminoquinolines using acyl bromines acting as both acyl and halide donors [25][26]. The groups of Lei and Fang independently realized the
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2024

Aldiminium and 1,2,3-triazolium dithiocarboxylate zwitterions derived from cyclic (alkyl)(amino) and mesoionic carbenes

  • Nedra Touj,
  • François Mazars,
  • Guillermo Zaragoza and
  • Lionel Delaude

Beilstein J. Org. Chem. 2023, 19, 1947–1956, doi:10.3762/bjoc.19.145

Graphical Abstract
  • -disubstituted-1,2,3-triazole derivatives is readily achieved via the copper(I)-catalyzed [3 + 2] cycloaddition of an azide and a terminal alkyne (CuAAC) [63][64][65]. A further alkylation of the N3 position with an alkyl halide is an equally straightforward procedure that ultimately affords a large assortment
PDF
Album
Supp Info
Full Research Paper
Published 20 Dec 2023

Construction of diazepine-containing spiroindolines via annulation reaction of α-halogenated N-acylhydrazones and isatin-derived MBH carbonates

  • Xing Liu,
  • Wenjing Shi,
  • Jing Sun and
  • Chao-Guo Yan

Beilstein J. Org. Chem. 2023, 19, 1923–1932, doi:10.3762/bjoc.19.143

Graphical Abstract
  • ylide B. Thirdly, the intermediate C is formed by the nucleophilic substitution of a halide ion in substrate 1 by the allylic ylide B. Then, Michael addition of the amino group to the C=C bond results in the cyclic intermediate D. Finally, the spiro[indoline-3,5'-[1,2]diazepine] 3 is produced by the
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2023

Beyond n-dopants for organic semiconductors: use of bibenzo[d]imidazoles in UV-promoted dehalogenation reactions of organic halides

  • Kan Tang,
  • Megan R. Brown,
  • Chad Risko,
  • Melissa K. Gish,
  • Garry Rumbles,
  • Phuc H. Pham,
  • Oana R. Luca,
  • Stephen Barlow and
  • Seth R. Marder

Beilstein J. Org. Chem. 2023, 19, 1912–1922, doi:10.3762/bjoc.19.142

Graphical Abstract
  • several other benzyl halides (1b–e), an alkyl halide 2, and several aryl halides (3a–f). Again GC–MS was used to identify and quantify the products; the necessary authentic samples were mostly commercially available, but the R2 products from 1b and 1c were not, although well-known in the literature (for
  • the main products are those in which the halide is replaced by a hydrogen atom. The more easily reduced benzyl halides examined (1b and 1c) are dehalogenated by (N-DMBI)2 in the dark, and with (N-DMBI)2 and UV irradiation are quantitatively dehalogenated in 2–6 h with the corresponding substituted
PDF
Album
Supp Info
Full Research Paper
Published 14 Dec 2023
Other Beilstein-Institut Open Science Activities