Search results

Search for "nucleophilic substitution" in Full Text gives 344 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Transformation of the cyclohexane ring to the cyclopentane fragment of biologically active compounds

  • Natalya Akhmetdinova,
  • Ilgiz Biktagirov and
  • Liliya Kh. Faizullina

Beilstein J. Org. Chem. 2025, 21, 2416–2446, doi:10.3762/bjoc.21.185

Graphical Abstract
  • converted by a series of synthetic transformations to (−)-spirochensilide A (228) with a total yield of 2.2% in 22 steps starting from acetylenic epoxide 229. 4.1 Wagner–Meerwein rearrangement The isomerization of terpenes via cleavage, addition or nucleophilic substitution reactions accompanied by a
PDF
Album
Review
Published 06 Nov 2025

Recent advances in Norrish–Yang cyclization and dicarbonyl photoredox reactions for natural product synthesis

  • Peng-Xi Luo,
  • Jin-Xuan Yang,
  • Shao-Min Fu and
  • Bo Liu

Beilstein J. Org. Chem. 2025, 21, 2315–2333, doi:10.3762/bjoc.21.177

Graphical Abstract
  • ; and subsequent conversion of the ketone in 20 to the vinyl iodide in 21 – via hydrazone formation, lithium–halogen exchange, and final nucleophilic substitution – secured the Norrish–Yang cyclization precursor 22. Following systematic optimization of reaction conditions, irradiation of 22 with 100 W
  • blue LEDs at room temperature constructed a single diastereoisomer 23 in 90% yield. From 23, the ABCDE pentacyclic skeleton of phainanoids (27) was ultimately established via a Mitsunobu reaction, intramolecular nucleophilic substitution with in situ-generated aryllithium, and protecting group
PDF
Album
Review
Published 30 Oct 2025

Electrochemical cyclization of alkynes to construct five-membered nitrogen-heterocyclic rings

  • Lifen Peng,
  • Ting Wang,
  • Zhiwen Yuan,
  • Bin Li,
  • Zilong Tang,
  • Xirong Liu,
  • Hui Li,
  • Guofang Jiang,
  • Chunling Zeng,
  • Henry N. C. Wong and
  • Xiao-Shui Peng

Beilstein J. Org. Chem. 2025, 21, 2173–2201, doi:10.3762/bjoc.21.166

Graphical Abstract
  • nucleophilic substitution of D afforded target indeno[1,2-c]pyrrole 40a along with eliminating I. Notably, this oxidant-free and catalyst-free approach could be potentially applied in the pharmaceutical manufacture. A Rh-promoted synthesis of pyrroles through annulation of alkynes and enamides was demonstrated
PDF
Album
Review
Published 16 Oct 2025

C2 to C6 biobased carbonyl platforms for fine chemistry

  • Jingjing Jiang,
  • Muhammad Noman Haider Tariq,
  • Florence Popowycz,
  • Yanlong Gu and
  • Yves Queneau

Beilstein J. Org. Chem. 2025, 21, 2103–2172, doi:10.3762/bjoc.21.165

Graphical Abstract
PDF
Album
Review
Published 15 Oct 2025

Discovery of cytotoxic indolo[1,2-c]quinazoline derivatives through scaffold-based design

  • Daniil V. Khabarov,
  • Valeria A. Litvinova,
  • Lyubov G. Dezhenkova,
  • Dmitry N. Kaluzhny,
  • Alexander S. Tikhomirov and
  • Andrey E. Shchekotikhin

Beilstein J. Org. Chem. 2025, 21, 2062–2071, doi:10.3762/bjoc.21.161

Graphical Abstract
  • ]quinazoline (13) was of particular interest, as the presence of a reactive chloromethyl group facilitates nucleophilic substitution with various amines. The compound 13 was synthesized according to a procedure described in the literature [28]. Subsequent displacement of the chloride in 13 with amines provided
  • NH proton in the urea moiety (position N5) of indolo[1,2-c]quinazolin-6(5H)-one (1) enables efficient N-alkylation. Accordingly, alkylation of 1 with 1-bromo-3-chloropropane afforded intermediate 11, bearing a reactive chloropropyl side chain suitable for further derivatization. Nucleophilic
  • substitution of the terminal chloride in 11 with various cyclic amines, including pyrrolidine, piperidine, and mono-tert-butoxycarbonyl (Boc)-protected piperazine, provided a set of aminoalkyl derivatives 12а–с (Scheme 4). This strategy enables the expansion of structural diversity within this scaffold and
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2025

Measuring the stereogenic remoteness in non-central chirality: a stereocontrol connectivity index for asymmetric reactions

  • Ivan Keng Wee On,
  • Yu Kun Choo,
  • Sambhav Baid and
  • Ye Zhu

Beilstein J. Org. Chem. 2025, 21, 1995–2006, doi:10.3762/bjoc.21.155

Graphical Abstract
  • coupling of biaryls is designated as [30 20]. In addition to biaryls, axially chiral allenes are popular targets for asymmetric synthesis. Three examples of asymmetric reactions that form axially chiral allenes are shown in Scheme 4. For example, the enantioselective nucleophilic substitution to yield
PDF
Album
Supp Info
Full Research Paper
Published 30 Sep 2025

Photoswitches beyond azobenzene: a beginner’s guide

  • Michela Marcon,
  • Christoph Haag and
  • Burkhard König

Beilstein J. Org. Chem. 2025, 21, 1808–1853, doi:10.3762/bjoc.21.143

Graphical Abstract
  • (37) followed by reduction with Zn/Ba(OH)2 and partial re-oxidation (Scheme 12A) [52]. They can also be obtained from o-halogenated benzyl bromides 40 by lithium–halogen exchange followed by nucleophilic substitution and a second lithium–halogen exchange with iodine (Scheme 12B) or by nickel-catalysed
  • aldehyde and, if required, N-functionalisation via nucleophilic substitution (for aliphatic substituents) or palladium-catalysed cross-coupling (for aromatic substituents) (Scheme 25) [77]. Hemithioindigo can be synthesised by treating phenylthioacetic acid (83) with triflic acid. Then, the product is
PDF
Album
Review
Published 08 Sep 2025

3,3'-Linked BINOL macrocycles: optimized synthesis of crown ethers featuring one or two BINOL units

  • Somayyeh Kheirjou,
  • Jan Riebe,
  • Maike Thiele,
  • Christoph Wölper and
  • Jochen Niemeyer

Beilstein J. Org. Chem. 2025, 21, 1719–1729, doi:10.3762/bjoc.21.134

Graphical Abstract
  • ]. For the synthesis of macrocycles M2 with two BINOL units, we relied on the monoiodide 12, which was first reacted in a two-fold Suzuki coupling to install the first linker, followed by silyl deprotection and introduction of the second linker via nucleophilic substitution [51]. Both procedures require
PDF
Album
Supp Info
Full Research Paper
Published 28 Aug 2025

Photoredox-catalyzed arylation of isonitriles by diaryliodonium salts towards benzamides

  • Nadezhda M. Metalnikova,
  • Nikita S. Antonkin,
  • Tuan K. Nguyen,
  • Natalia S. Soldatova,
  • Alexander V. Nyuchev,
  • Mikhail A. Kinzhalov and
  • Pavel S. Postnikov

Beilstein J. Org. Chem. 2025, 21, 1480–1488, doi:10.3762/bjoc.21.110

Graphical Abstract
  • for unsymmetrical iodonium salts. Therefore, we moved to these to test the selectivity of aryl transfer under the established conditions. Since iodonium salts are prone to repeat the selectivity pattern of nucleophilic substitution in photoredox processes [35][36][37][38][39][40][41], we evaluated
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2025

Wittig reaction of cyclobisbiphenylenecarbonyl

  • Taito Moribe,
  • Junichiro Hirano,
  • Hideaki Takano,
  • Hiroshi Shinokubo and
  • Norihito Fukui

Beilstein J. Org. Chem. 2025, 21, 1454–1461, doi:10.3762/bjoc.21.107

Graphical Abstract
  • nucleophilic substitution of the thus generated alkoxide to form an oxygen-containing five-membered ring. At least, density functional theory (DFT) calculations support that the nucleophilic attack of methylenetriphenylphosphorane to the exo-methylene unit is slightly favorable over reaction with the carbonyl
PDF
Album
Supp Info
Letter
Published 14 Jul 2025

Recent advances and future challenges in the bottom-up synthesis of azulene-embedded nanographenes

  • Bartłomiej Pigulski

Beilstein J. Org. Chem. 2025, 21, 1272–1305, doi:10.3762/bjoc.21.99

Graphical Abstract
  • bathochromically shifted compared to isomeric terrylenebisimide (λmax = 650 nm) [86] and even larger rylene bisimides like hexarylenebisimide (λmax = 953 nm) [87]. Bisimide 129 might be regioselectivily brominated using NBS, yielding PAH 130 in 80%. The bromide 130 undergoes nucleophilic substitution with
PDF
Album
Review
Published 26 Jun 2025

Synthetic approach to borrelidin fragments: focus on key intermediates

  • Yudhi Dwi Kurniawan,
  • Zetryana Puteri Tachrim,
  • Teni Ernawati,
  • Faris Hermawan,
  • Ima Nurasiyah and
  • Muhammad Alfin Sulmantara

Beilstein J. Org. Chem. 2025, 21, 1135–1160, doi:10.3762/bjoc.21.91

Graphical Abstract
  • iodide, and subsequent nucleophilic substitution with deprotonated (R,R)-91. The introduction of the OPMB functionality in compound 88 could then be achieved by following the steps employed in the transformation of 84 to 83. The synthesis via route A began with efforts to optimize the epimerization of
PDF
Album
Review
Published 12 Jun 2025

Recent advances in the electrochemical synthesis of organophosphorus compounds

  • Babak Kaboudin,
  • Milad Behroozi,
  • Sepideh Sadighi and
  • Fatemeh Asgharzadeh

Beilstein J. Org. Chem. 2025, 21, 770–797, doi:10.3762/bjoc.21.61

Graphical Abstract
  • )(OR)2. The final product was formed by a simple nucleophilic substitution of the phosphorus center (Scheme 20). The N–P bond formation is a critical process in organic synthesis due to the preparation of various materials with different biological and medicinal activities. In 2021 Wang et al. [65
  • reaction proceeded with anodic oxidation of iodide to iodine, followed by a reaction with dialkyl phosphite to give I–P(O)(OR)2. The final product was formed by a simple nucleophilic substitution of phenols with I–P(O)(OR)2. In 2021, Wang et al. [65] presented a report on electrochemical P–O bond formation
  • the rings contained electron-withdrawing groups. It is suggested that the reaction proceeded via single-electron oxidation of thiocyanate at the anode. DBU was used in the reaction for a simple nucleophilic substitution of phosphonate with a cyanide group in the formed intermediate (Scheme 28). In
PDF
Album
Review
Published 16 Apr 2025

Orthogonal photoswitching of heterobivalent azobenzene glycoclusters: the effect of glycoligand orientation in bacterial adhesion

  • Leon M. Friedrich and
  • Thisbe K. Lindhorst

Beilstein J. Org. Chem. 2025, 21, 736–748, doi:10.3762/bjoc.21.57

Graphical Abstract
  • azobenzene derivative 9 [34] to furnish 10. This reaction had to be carried out at −78 °C in order to suppress nucleophilic substitution of the ortho-fluorine substituents in 9 by the thiol 8, a reaction that competes with the desired cross-coupling. For the second Buchwald–Hartwig–Migita cross-coupling, the
PDF
Album
Supp Info
Full Research Paper
Published 08 Apr 2025

Formaldehyde surrogates in multicomponent reactions

  • Cecilia I. Attorresi,
  • Javier A. Ramírez and
  • Bernhard Westermann

Beilstein J. Org. Chem. 2025, 21, 564–595, doi:10.3762/bjoc.21.45

Graphical Abstract
  • last step (nucleophilic substitution in intermediate C by the amine compound). Depending on the conditions, the role of the base can be fulfilled by the amine itself [63] or by the addition of another base such as DBU [66], DABCO [64], or TMG [65]. This mechanism is supported by experimental evidence
PDF
Album
Review
Published 13 Mar 2025

Beyond symmetric self-assembly and effective molarity: unlocking functional enzyme mimics with robust organic cages

  • Keith G. Andrews

Beilstein J. Org. Chem. 2025, 21, 421–443, doi:10.3762/bjoc.21.30

Graphical Abstract
  • generated large electrostatic effects by functionalizing the capsule exteriors with charged groups (Figure 4D) [136][137]. Observed rate accelerations for capsule-promoted nucleophilic substitution reactions demonstrate significant enthalpic stabilization of the transition state attributable due to the
  • nucleophile and electrophile in a glycosylation reaction [105]. (D) An externally charged cavitand promotes charge-stabilized nucleophilic substitution reactions of hydrophobically encapsulated substrates [136][137]. (A) Metal-organic cages and key modes in catalysis. (B) Charged metals or ligands can result
PDF
Album
Supp Info
Perspective
Published 24 Feb 2025

The effect of neighbouring group participation and possible long range remote group participation in O-glycosylation

  • Rituparna Das and
  • Balaram Mukhopadhyay

Beilstein J. Org. Chem. 2025, 21, 369–406, doi:10.3762/bjoc.21.27

Graphical Abstract
  • glycosylation. Conventional glycosylation involves the ‘nucleophilic substitution’ of the leaving group at the sp3 anomeric centre of the donor moiety with a suitable carbohydrate or non-carbohydrate-based aglycon with the help of an electrophilic promoter to form the equatorial glycoside 7 or the axial
PDF
Album
Review
Published 17 Feb 2025

Molecular diversity of the reactions of MBH carbonates of isatins and various nucleophiles

  • Zi-Ying Xiao,
  • Jing Sun and
  • Chao-Guo Yan

Beilstein J. Org. Chem. 2025, 21, 286–295, doi:10.3762/bjoc.21.21

Graphical Abstract
  • Zi-Ying Xiao Jing Sun Chao-Guo Yan College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China 10.3762/bjoc.21.21 Abstract In this paper, the nucleophilic substitution reactions of various N- and P-containing nucleophiles to MBH carbonates of isatins were investigated
  • synthetic methodologies and in continuation of our aim to develop domino reactions based on MBH carbonates of isatins for efficient construction of diverse polycyclic spiroindolinones [42][43][44][45][46][47][48][49][50][51][52], herein, we wish to report the nucleophilic substitution reactions of various N
  • investigated nucleophilic substitution reactions of various N- and P-containing nucleophiles to MBH carbonates of isatins. It is interesting to find that diverse functionalized 3-substituted oxindole derivatives were successfully prepared in satisfactory yields and with high diastereoselectivity. In addition
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2025

Recent advances in organocatalytic atroposelective reactions

  • Henrich Szabados and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2025, 21, 55–121, doi:10.3762/bjoc.21.6

Graphical Abstract
  • -catalyzed reaction of indoles 210 with 2-nitrosonaphthalenes 211 was conducted in 2020 (Scheme 63) [93]. In combination with catalyst hydrogen bonding, the nitroso group was identified as a suitable partner for the nucleophilic substitution by possessing a sufficiently low LUMO energy value. Based on the
PDF
Album
Review
Published 09 Jan 2025

Synthesis, characterization, and photophysical properties of novel 9‑phenyl-9-phosphafluorene oxide derivatives

  • Shuxian Qiu,
  • Duan Dong,
  • Jiahui Li,
  • Huiting Wen,
  • Jinpeng Li,
  • Yu Yang,
  • Shengxian Zhai and
  • Xingyuan Gao

Beilstein J. Org. Chem. 2024, 20, 3299–3305, doi:10.3762/bjoc.20.274

Graphical Abstract
  • available 2-bromo-4-fluoro-1-nitrobenzene, featuring a noble-metal-free system, mild reaction conditions, and a good yield, especially for the final Cs2CO3-facilitated nucleophilic substitution (77–91% yield). The characterization data obtained from IR and NMR spectroscopy (1H, 13C, 19F, and 31P) as well as
  • hand, we turned our attention to the synthesis of PhFlOP-based compounds through a Cs2CO3-facilitated nucleophilic substitution with substituted carbazoles as the nucleophiles (Scheme 2). For example, tert-butyl, bromo, carbazolyl, or phenyl substituents were introduced into the carbazoles. To our
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2024

Efficient synthesis of fluorinated triphenylenes with enhanced arene–perfluoroarene interactions in columnar mesophases

  • Yang Chen,
  • Jiao He,
  • Hang Lin,
  • Hai-Feng Wang,
  • Ping Hu,
  • Bi-Qin Wang,
  • Ke-Qing Zhao and
  • Bertrand Donnio

Beilstein J. Org. Chem. 2024, 20, 3263–3273, doi:10.3762/bjoc.20.270

Graphical Abstract
  • chains and derived from the classical triphenylene core self-assembling in columnar mesophases based on this paradigm. These mesogenic compounds were simply obtained in good yields by the nucleophilic substitution (SNFAr) of various types of commercially available fluoroarenes with the electrophilic
  • subsequent second annulation, yielding a new series of extended polyaromatic mesomorphic compounds, i.e., 1,1',3,3',4,4'-hexafluoro-6,6',7,7',10,10',11,11'-octaalkoxy-2,2'-bitriphenylene (Gnm) which were found to display a Colrec mesophase. The specific nucleophilic substitution patterns of the Fn
  • red-shift of the emission peak. Keywords: arene–perfluoroarene interaction; decafluorobiphenyl; fluorinated triphenylene; fluoroarene nucleophilic substitution; organolithium; Introduction Non-covalent arene–fluoroarene intermolecular interactions [1][2] are drawing increasing attention due to their
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2024

Non-covalent organocatalyzed enantioselective cyclization reactions of α,β-unsaturated imines

  • Sergio Torres-Oya and
  • Mercedes Zurro

Beilstein J. Org. Chem. 2024, 20, 3221–3255, doi:10.3762/bjoc.20.268

Graphical Abstract
  • -derived azadiene by H-bonding. This dual activation promotes a stereoselective addition of 3-chlorooxindole to the azadiene leading to intermediate A. The latter is also activated by the chiral guanidine and undergoes an intramolecular nucleophilic substitution which delivers the product 19b with the
PDF
Album
Review
Published 10 Dec 2024
Graphical Abstract
  • structure in the early days. Rotaxane bearing a dumbbell comprising only covalent bonds was first reported by Harada and co-workers in 1997 (Scheme 1B) [38]. In this system, the end-capping reaction was based on the nucleophilic substitution of the amino groups on the axle ends. Afterward, such nucleophilic
  • synthesis, Harada and co-workers reported the end-capping reaction based on nucleophilic substitution by the amino groups on axle ends (Scheme 2) [43]. Similarly, other highly efficient reactions have been performed as end-capping reactions to produce polyrotaxane [13][14][15]. In addition to the simple
  • substitution/addition reactions became the standard for end-capping reactions, although a transition metal–catalyzed cross-coupling reaction has also been used to synthesize CD-based rotaxane. Typically, water-soluble components are prepared, after which the Suzuki coupling reaction in water is used to
PDF
Album
Review
Published 19 Nov 2024

Advances in radical peroxidation with hydroperoxides

  • Oleg V. Bityukov,
  • Pavel Yu. Serdyuchenko,
  • Andrey S. Kirillov,
  • Gennady I. Nikishin,
  • Vera A. Vil’ and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2024, 20, 2959–3006, doi:10.3762/bjoc.20.249

Graphical Abstract
  • mainly include: nucleophilic addition or nucleophilic substitution with H2O2 or ROOH [17][18], autoxidation with O2, pericyclic reactions of unsaturated bonds with O3 or O2, and metal-catalyzed peroxidation (Isayama–Mukaiyama hydrosilylperoxidation [19][20], for example) [21][22][23]. As the topic is
  • styrenes 217, oxygen sources (water or alcohol), and TBHP mediated by ammonium iodine has been developed (Scheme 68) [137]. Addition of the tert-butylperoxy radical to alkene 217 followed by SN2 nucleophilic substitution with O-source was considered as a possible pathway to the formation of products 218
PDF
Album
Review
Published 18 Nov 2024

Synthesis of fluorinated acid-functionalized, electron-rich nickel porphyrins

  • Mike Brockmann,
  • Jonas Lobbel,
  • Lara Unterriker and
  • Rainer Herges

Beilstein J. Org. Chem. 2024, 20, 2954–2958, doi:10.3762/bjoc.20.248

Graphical Abstract
  • 20 in a yield of 89% [13]. To convert the iodo to an OH group, compound 20 was reacted with Cu2O, 2-pyridinaldoxime and CsOH to give 2-hydroxy-3,4,5-trimethoxybenzaldehyde (21, 65%) [13]. In a subsequent nucleophilic substitution, the fluorinated alkyl chains of 16, 17, and 18 were linked via a
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2024
Other Beilstein-Institut Open Science Activities