Search results

Search for "Hock" in Full Text gives 8 result(s) in Beilstein Journal of Organic Chemistry.

Tandem Hock and Friedel–Crafts reactions allowing an expedient synthesis of a cyclolignan-type scaffold

  • Viktoria A. Ikonnikova,
  • Cristina Cheibas,
  • Oscar Gayraud,
  • Alexandra E. Bosnidou,
  • Nicolas Casaretto,
  • Gilles Frison and
  • Bastien Nay

Beilstein J. Org. Chem. 2024, 20, 162–169, doi:10.3762/bjoc.20.15

Graphical Abstract
  • Polytechnique, CNRS, Institut Polytechnique de Paris, F-91128 Palaiseau, France Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, 75005 Paris, France 10.3762/bjoc.20.15 Abstract The Hock cleavage, which is compatible with tandem processes, was applied to the synthesis of 1-aryltetralines through a
  • one-pot transformation from readily available benzyl(prenyl)malonate substrates. After the photooxygenation of the prenyl moiety, the resulting hydroperoxide was directly engaged in a Hock cleavage by adding a Lewis acid. The presence of an aromatic nucleophile in the reaction mixture and that of a
  • –Crafts reactions, rather than an oxocarbenium. Keywords: 1-aryltetralines; Friedel–Crafts reaction; Hock rearrangement; oxidative cleavage; tandem reactions; Introduction The Hock cleavage [1] consists in the acid-catalyzed rearrangement of organic hydroperoxides, leading to the oxidative cleavage of a
PDF
Album
Supp Info
Full Research Paper
Published 25 Jan 2024

Heterogeneous photocatalysis in flow chemical reactors

  • Christopher G. Thomson,
  • Ai-Lan Lee and
  • Filipe Vilela

Beilstein J. Org. Chem. 2020, 16, 1495–1549, doi:10.3762/bjoc.16.125

Graphical Abstract
PDF
Album
Review
Published 26 Jun 2020

Synthesis and biological investigation of (+)-3-hydroxymethylartemisinin

  • Toni Smeilus,
  • Farnoush Mousavizadeh,
  • Johannes Krieger,
  • Xingzhao Tu,
  • Marcel Kaiser and
  • Athanassios Giannis

Beilstein J. Org. Chem. 2019, 15, 567–570, doi:10.3762/bjoc.15.51

Graphical Abstract
  • containing methylene blue as photosensitizer was exposed to sunlight and oxygen. The treatment of the resulting intermediate hydroperoxide with a small amount of trifluoroacetic acid as previously described [17][18], afforded in the frame of a Hock cleavage (+)-3-hydroxymethyl-9-desmethylartemisinin (16) in
PDF
Album
Supp Info
Full Research Paper
Published 27 Feb 2019

Rearrangements of organic peroxides and related processes

  • Ivan A. Yaremenko,
  • Vera A. Vil’,
  • Dmitry V. Demchuk and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2016, 12, 1647–1748, doi:10.3762/bjoc.12.162

Graphical Abstract
  • moieties after O–O-bond cleavage. Detailed information about the Baeyer−Villiger, Criegee, Hock, Kornblum−DeLaMare, Dakin, Elbs, Schenck, Smith, Wieland, and Story reactions is given. Unnamed rearrangements of organic peroxides and related processes are also analyzed. The rearrangements and related
  • processes of important natural and synthetic peroxides are discussed separately. Keywords: artemisinin; Baeyer−Villiger; Criegee; Hock; peroxide; rearrangement; Introduction The chemistry of organic peroxides has more than a hundred-year history. Currently, organic peroxides are widely used as oxidizing
  • acetone are mainly produced by the Hock process, which is based on the rearrangement of cumene hydroperoxide. In 2003, phenol was produced to more than 95% by this oxidation process [52][53][54]. Another important application of organic peroxides is the synthesis of lactones from cyclic ketones via the
PDF
Album
Review
Published 03 Aug 2016

Photoinduced 1,2,3,4-tetrahydropyridine ring conversions

  • Baiba Turovska,
  • Henning Lund,
  • Viesturs Lūsis,
  • Anna Lielpētere,
  • Edvards Liepiņš,
  • Sergejs Beljakovs,
  • Inguna Goba and
  • Jānis Stradiņš

Beilstein J. Org. Chem. 2015, 11, 2166–2170, doi:10.3762/bjoc.11.234

Graphical Abstract
  • ][5][6]. In 1944 hydroperoxides were first obtained by H. Hock [7] and R. Udris [8][9][10] as the catalytic oxidation products of cumene. Heterocyclic hydroperoxides have been less represented, although some of these constitute the best choice for selective oxidations even in nature. When the peroxy
PDF
Album
Supp Info
Letter
Published 11 Nov 2015

The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry

  • Marcus Baumann and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2015, 11, 1194–1219, doi:10.3762/bjoc.11.134

Graphical Abstract
  • singlet oxygen mediated ene-reaction, a Hock cleavage of the resulting hydroperoxide 58 followed by oxidation with triplet oxygen and a final peracetalisation (Scheme 9). Based on previous work by the Seeberger group and others [63][64][65] a simple flow photoreactor set-up comprising of a layer of FEP
PDF
Album
Review
Published 17 Jul 2015

Flow photochemistry: Old light through new windows

  • Jonathan P. Knowles,
  • Luke D. Elliott and
  • Kevin I. Booker-Milburn

Beilstein J. Org. Chem. 2012, 8, 2025–2052, doi:10.3762/bjoc.8.229

Graphical Abstract
PDF
Album
Review
Published 21 Nov 2012

Synthesis of spiroannulated and 3-arylated 1,2,4-trioxanes from mesitylol and methyl 4-hydroxytiglate by photooxygenation and peroxyacetalization

  • Axel G. Griesbeck,
  • Lars-Oliver Höinck and
  • Jörg M. Neudörfl

Beilstein J. Org. Chem. 2010, 6, No. 61, doi:10.3762/bjoc.6.61

Graphical Abstract
  • exception of the adamantane derivative 5d which has a remarkably shorter O-O bond distance. 4-Arylated 1,2,4-trioxanes The 1,2,4-trioxanes 10 were formed in moderate to good yields, with the Hock-type cleavage product from the ß-hydroperdiol as the only side-product, from 4 and substituted benzaldehydes
PDF
Album
Full Research Paper
Published 07 Jun 2010
Other Beilstein-Institut Open Science Activities