Search results

Search for "PhIO" in Full Text gives 5 result(s) in Beilstein Journal of Organic Chemistry.

Construction of trisubstituted chromone skeletons carrying electron-withdrawing groups via PhIO-mediated dehydrogenation and its application to the synthesis of frutinone A

  • Qiao Li,
  • Chen Zhuang,
  • Donghua Wang,
  • Wei Zhang,
  • Rongxuan Jia,
  • Fengxia Sun,
  • Yilin Zhang and
  • Yunfei Du

Beilstein J. Org. Chem. 2019, 15, 2958–2965, doi:10.3762/bjoc.15.291

Graphical Abstract
  • biologically interesting chromone skeleton was realized by PhIO-mediated dehydrogenation of chromanones under mild conditions. Interestingly, this method also found application in the synthesis of the naturally occurring frutinone A. Keywords: chromanone; chromone; dehydrogenation; frutinone A; PhIO
  • reagents have emerged as a class of efficient and environmentally benign nonmetal “green” oxidants [66][67][68][69][70][71][72][73]. For instance, iodosobenzene (PhIO) [74] has been widely used in many synthetic transformations. It was found that PhIO is efficient in realizing epoxidation of olefins [75
  • , PhIO has never been utilized for the dehydrogenative oxidation reaction. In this letter, we report a facile PhIO-mediated dehydrogenation of chromanones, resulting in the efficient synthesis of biologically interesting chromone compounds under metal-free conditions. Results and Discussion We initially
PDF
Album
Supp Info
Letter
Published 12 Dec 2019

Recent advances in transition-metal-catalyzed incorporation of fluorine-containing groups

  • Xiaowei Li,
  • Xiaolin Shi,
  • Xiangqian Li and
  • Dayong Shi

Beilstein J. Org. Chem. 2019, 15, 2213–2270, doi:10.3762/bjoc.15.218

Graphical Abstract
  • Groves [82] developed two manganese catalysts for the fluorination of C(sp3)–H bonds (Scheme 38). On the one hand, they employed a manganese porphyrin to catalyze the oxidative aliphatic C–H fluorination with iodosylbenzene (PhIO) as a stoichiometric oxidant. A variety of substrates, including simple
PDF
Album
Review
Published 23 Sep 2019

Metal-free mechanochemical oxidations in Ertalyte® jars

  • Andrea Porcheddu,
  • Francesco Delogu,
  • Lidia De Luca,
  • Claudia Fattuoni and
  • Evelina Colacino

Beilstein J. Org. Chem. 2019, 15, 1786–1794, doi:10.3762/bjoc.15.172

Graphical Abstract
  • compounds under very mild conditions [6][7]. Initially used in a stoichiometric amount [8], over the last 20 years it has been exploited successfully in catalytic quantities in combination with other oxidants [9]. A diverse range of co-oxidant agents (N-chlorosuccinimide, NaOCl, Oxone®, PhIO, PhICl2, PhI
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2019

Synthesis of trifluoromethylated 2H-azirines through Togni reagent-mediated trifluoromethylation followed by PhIO-mediated azirination

  • Jiyun Sun,
  • Xiaohua Zhen,
  • Huaibin Ge,
  • Guangtao Zhang,
  • Xuechan An and
  • Yunfei Du

Beilstein J. Org. Chem. 2018, 14, 1452–1458, doi:10.3762/bjoc.14.123

Graphical Abstract
  • (PhIO)-mediated intramolecular azirination in a one-pot process. Keywords: azirination; 2H-azirine; iodosobenzene; Togni reagent; β-trifluoromethylation; Introduction The trifluoromethyl group is a striking structural motif, which can be widely found in the fields of pharmaceutical and agrochemical
  • , R2 = H) with PhIO in 2,2,2-trifluoroethanol (TFE) afforded 2-trifluoroethoxy-2H-azirines 4 [57]. The latter process involves an intermolecular oxidative trifluoroethoxylation and the subsequent oxidative intramolecular azirination. In continuation of our interest in the construction of the 2H-azirine
  • skeleton bearing versatile substituents, we herein report that the biologically interesting CF3 group can be incorporated into the privileged 2H-azirine framework through the Togni reagent 1-mediated trifluoromethylation followed by PhIO-mediated azirination in a one-pot process. Results and Discussion It
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2018

Hypervalent iodine-guided electrophilic substitution: para-selective substitution across aryl iodonium compounds with benzyl groups

  • Cyrus Mowdawalla,
  • Faiz Ahmed,
  • Tian Li,
  • Kiet Pham,
  • Loma Dave,
  • Grace Kim and
  • I. F. Dempsey Hyatt

Beilstein J. Org. Chem. 2018, 14, 1039–1045, doi:10.3762/bjoc.14.91

Graphical Abstract
  • not cause a substantial difference in yield, but at −50 °C the solubility of the activated hypervalent iodine species seemed poor upon visual inspection. It should be noted that the only other major products in the resultant reaction mixture were the decomposition of PhI(OAc)2 (1a) or PhIO to PhI, and
PDF
Album
Supp Info
Full Research Paper
Published 14 May 2018
Other Beilstein-Institut Open Science Activities