Search results

Search for "Sonogashira" in Full Text gives 189 result(s) in Beilstein Journal of Organic Chemistry.

Synthesis and properties of 6-alkynyl-5-aryluracils

  • Ruben Manuel Figueira de Abreu,
  • Till Brockmann,
  • Alexander Villinger,
  • Peter Ehlers and
  • Peter Langer

Beilstein J. Org. Chem. 2024, 20, 898–911, doi:10.3762/bjoc.20.80

Graphical Abstract
  • Abstract The development of a new and straightforward chemoselective method for the synthesis of uracil-based structures by combining Suzuki–Miyaura and Sonogashira–Hagihara cross-coupling is reported. The methodology was applied to synthesize a series of novel compounds. The tolerance of the combination
  • this work, we report a new chemoselective method for the synthesis of a series of hitherto unknown uracil-based compounds by combining Suzuki–Miyaura and Sonogashira–Hagihara cross-coupling [60][61]. The method is designed to be flexible and could also be used to synthesize other structural motifs
  • starting with commercially available 6-chloro-1,2-dimethyluracil (1), as depicted in Scheme 1. Subsequently, 5-bromo-6-chloro-1,3-dimethyluracil (2) was synthesized by brominating the starting material. The single Sonogashira–Hagihara cross-coupling afforded 3a–j and, by a two-fold approach, 4a–h could be
PDF
Album
Supp Info
Full Research Paper
Published 22 Apr 2024

Three-component N-alkenylation of azoles with alkynes and iodine(III) electrophile: synthesis of multisubstituted N-vinylazoles

  • Jun Kikuchi,
  • Roi Nakajima and
  • Naohiko Yoshikai

Beilstein J. Org. Chem. 2024, 20, 891–897, doi:10.3762/bjoc.20.79

Graphical Abstract
  • Suzuki–Miyaura and Sonogashira couplings on 4aa or 4ba afforded the desired products 5 and 6 in 47% and 74% yields, respectively. In the former case, the C–Br bond on the pyrazole moiety remained intact, highlighting the superior leaving group ability of the BX group. Cu-catalyzed Ullmann coupling
PDF
Album
Supp Info
Full Research Paper
Published 22 Apr 2024
Graphical Abstract
  • through scanning tunneling microscopy [85]. For TCBDs bearing unsubstituted anilino (p-H2NC6H4–) groups, their conversion into the p-iodophenyl derivatives via the Sandmeyer reaction and subsequent post-functionalization via the Suzuki and Sonogashira coupling reactions are achieved [86]. In the reaction
PDF
Album
Review
Published 22 Jan 2024

Multi-redox indenofluorene chromophores incorporating dithiafulvene donor and ene/enediyne acceptor units

  • Christina Schøttler,
  • Kasper Lund-Rasmussen,
  • Line Broløs,
  • Philip Vinterberg,
  • Ema Bazikova,
  • Viktor B. R. Pedersen and
  • Mogens Brøndsted Nielsen

Beilstein J. Org. Chem. 2024, 20, 59–73, doi:10.3762/bjoc.20.8

Graphical Abstract
  • variety of reactions; that are, phosphite- or Lawesson’s reagent-mediated olefination reactions (to introduce DTF motifs), Ramirez/Corey–Fuchs dibromo-olefinations followed by Sonogashira couplings (to introduce enediynes motifs), and Knoevenagel condensations (to introduce the vinylic diester motif). By
  • various elaborate systems [24][25][26][27]. Next, we wanted to explore IF-DTFs as motifs for acetylenic scaffolding (Scheme 4). Starting from IF-DTF building block 6, dibromo-olefinated compound 18 was obtained by a Ramirez/Corey–Fuchs reaction. Two-fold Sonogashira couplings with trimethylsilylacetylene
  • , ethynylbenzene, or 4-ethynylbenzonitrile yielded compounds 19–21, while two-fold Sonogashira coupling with ((2-ethynylphenyl)ethynyl)triisopropylsilane resulted in compound 22. Desilylation of the alkynes of compound 22 with tetrabutylammonium fluoride (TBAF) and subsequent intramolecular Glaser–Hay coupling of
PDF
Album
Supp Info
Full Research Paper
Published 15 Jan 2024

Biphenylene-containing polycyclic conjugated compounds

  • Cagatay Dengiz

Beilstein J. Org. Chem. 2023, 19, 1895–1911, doi:10.3762/bjoc.19.141

Graphical Abstract
  • through Sonogashira cross-coupling reactions with alkynes featuring different protecting groups such as TIPS, TES, and TIBS. Scheme 7 illustrates the derivatization process using one of the chosen examples, specifically the TIPS group. Accordingly, the cross-coupling products 33a–c were obtained in yields
  • selectively synthesize compound 87 through a hybrid approach involving the integration of both solution and surface chemistry techniques [53]. The key compound 96 to be used in the synthesis of POA 87 was synthesized in two steps. In the first step, 94 was obtained using a double Sonogashira cross-coupling
PDF
Album
Review
Published 13 Dec 2023

Aromatic systems with two and three pyridine-2,6-dicarbazolyl-3,5-dicarbonitrile fragments as electron-transporting organic semiconductors exhibiting long-lived emissions

  • Karolis Leitonas,
  • Brigita Vigante,
  • Dmytro Volyniuk,
  • Audrius Bucinskas,
  • Pavels Dimitrijevs,
  • Sindija Lapcinska,
  • Pavel Arsenyan and
  • Juozas Vidas Grazulevicius

Beilstein J. Org. Chem. 2023, 19, 1867–1880, doi:10.3762/bjoc.19.139

Graphical Abstract
  • -dicarbazolyl-3,5-dicarbonitrile. The compounds are synthesized by Sonogashira coupling reactions and characterized by steady-state and time-resolved luminescence spectroscopy. The compounds show efficient intramolecular charge transfer (ICT) from the donor to the acceptor. The photoluminescence (PL) spectra of
  • )-4-(4-bromophenyl)pyridine-3,5-carbonitrile (4) was obtained by the interaction of 3,6-di-tert-butyl-9H-carbazole with compound 3 in THF/DMF solution. The ethynylphenyl-substituted pyridine 5 was synthesized by Sonogashira coupling of 4 with ethynyltrimethylsilane in the presence of PdCl2(PPh3)2 and
  • copper(I) iodide in DMF/DIPEA solution at 55 °C with subsequent desilylation with potassium carbonate. Finally, butadiyne 6 was prepared by a homocoupling reaction of 5 with 80% yield. Derivatives containing two dicyanopyridyl moieties, 7 and 8, were prepared starting with a Sonogashira coupling of
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2023

Consecutive four-component synthesis of trisubstituted 3-iodoindoles by an alkynylation–cyclization–iodination–alkylation sequence

  • Nadia Ledermann,
  • Alae-Eddine Moubsit and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2023, 19, 1379–1385, doi:10.3762/bjoc.19.99

Graphical Abstract
  • synthesis of 1,2,5-trisubstituted 7-azaindoles [34]. Inspired by the coupling–cyclization–alkylation sequence and the stepwise Sonogashira coupling–cyclization–iodination protocol to give valuable 3-iodoindoles by Amjad and Knight [35], we reasoned that the interception by an electrophilic iodination step
PDF
Album
Supp Info
Full Research Paper
Published 14 Sep 2023

Construction of hexabenzocoronene-based chiral nanographenes

  • Ranran Li,
  • Di Wang,
  • Shengtao Li and
  • Peng An

Beilstein J. Org. Chem. 2023, 19, 736–751, doi:10.3762/bjoc.19.54

Graphical Abstract
  • )benzene through Co-catalyzed cyclotrimerization in a 45% yield. Then monoiodide NG 49 was obtained through oxidative cyclodehydronation in a high yield. From the heptagon-containing NG 49, Sonogashira coupling with p-tert-butylphenylacetylene (50) afforded 51 in a quantitative yield. Subsequent Diels
  • -workers synthesized a helical bilayer NG by using helicene in the initial step as the linker to fuse two HBC units [48]. As shown in Scheme 6, starting from the helical alkyne 54, Sonogashira coupling with 4-tert-butyliodobenzene (55) afforded structure 56 in a 77% yield. Subsequent Diels–Alder reaction
  • Sonogashira cross-coupling reaction of phenylacetylene 50 and 1,4-dibromotetrafluorobenzene. The resulting bis[aryl(ethynyl)]tetrafluorobenzene 59 was able to undergo a 2-fold [4 + 2] cycloaddition reaction with cyclopentadienone 2, affording polyaromatic 60 in a 70% yield. The final step was the Scholl
PDF
Album
Review
Published 30 May 2023

Strategies in the synthesis of dibenzo[b,f]heteropines

  • David I. H. Maier,
  • Barend C. B. Bezuidenhoudt and
  • Charlene Marais

Beilstein J. Org. Chem. 2023, 19, 700–718, doi:10.3762/bjoc.19.51

Graphical Abstract
  • relies on a double Sonogashira coupling [(i) and (iii)], reduction (iv), and bromination (v), followed by Buchwald–Hartwig amination (viii) (Scheme 14). While interesting, the reaction has limited substrate scope due to the reliance on a late-stage bromination. To achieve the correct ortho-bromo
  • towards dibenzo[b,f]azepines and other dibenzo[b,f]heteropines, and the functionalisation thereof. Modern metal-catalyzed methods to introduce the C–C bridge include the Heck reaction, the Sonogashira reaction, Suzuki coupling and ring-closing metathesis, whereas Buchwald–Hartwig type reactions and Ullman
PDF
Album
Review
Published 22 May 2023

Synthesis, structure, and properties of switchable cross-conjugated 1,4-diaryl-1,3-butadiynes based on 1,8-bis(dimethylamino)naphthalene

  • Semyon V. Tsybulin,
  • Ekaterina A. Filatova,
  • Alexander F. Pozharskii,
  • Valery A. Ozeryanskii and
  • Anna V. Gulevskaya

Beilstein J. Org. Chem. 2023, 19, 674–686, doi:10.3762/bjoc.19.49

Graphical Abstract
  • –Stephens reaction, method A) and arylacetylenes (Sonogashira reaction, method B). In all cases, even when using a small excess of 8, in addition to the desired monoalkynyl derivative 7, a double alkynylation product 9 was formed (Table 1). The Sonogashira coupling was somewhat more efficient, yielding
PDF
Album
Supp Info
Full Research Paper
Published 15 May 2023

Combretastatins D series and analogues: from isolation, synthetic challenges and biological activities

  • Jorge de Lima Neto and
  • Paulo Henrique Menezes

Beilstein J. Org. Chem. 2023, 19, 399–427, doi:10.3762/bjoc.19.31

Graphical Abstract
  • esterification reactions gave the ester 33 which was submitted to a Sonogashira coupling reaction with propargyl alcohol to give the advanced intermediate 34 [34]. Partial hydrogenation of the triple bond in 34 using Lindlar’s catalyst led to the cis-allylic alcohol 35 and subsequent ester hydrolysis led to the
PDF
Album
Review
Published 29 Mar 2023

Total synthesis of insect sex pheromones: recent improvements based on iron-mediated cross-coupling chemistry

  • Eric Gayon,
  • Guillaume Lefèvre,
  • Olivier Guerret,
  • Adrien Tintar and
  • Pablo Chourreu

Beilstein J. Org. Chem. 2023, 19, 158–166, doi:10.3762/bjoc.19.15

Graphical Abstract
  • ]) are linear syntheses involving a great number of steps and purifications as well as cryogenic temperatures. Moreover, the introduction of the C=C unsaturation is achieved via a Wittig reaction or a Pd-catalyzed Sonogashira cross-coupling followed by a reduction by a borane reagent, methods which lead
PDF
Album
Perspective
Published 14 Feb 2023

Inline purification in continuous flow synthesis – opportunities and challenges

  • Jorge García-Lacuna and
  • Marcus Baumann

Beilstein J. Org. Chem. 2022, 18, 1720–1740, doi:10.3762/bjoc.18.182

Graphical Abstract
  • reported by Pitts and collaborators. This study achieves full removal of metal species after common homogenous catalytic reactions such as a Suzuki–Miyaura reaction, Sonogashira reaction or hydrogenation mediated by Wilkinson’s catalyst [84]. Other interesting examples to remove transition metals in
PDF
Album
Perspective
Published 16 Dec 2022

Total synthesis of grayanane natural products

  • Nicolas Fay,
  • Rémi Blieck,
  • Cyrille Kouklovsky and
  • Aurélien de la Torre

Beilstein J. Org. Chem. 2022, 18, 1707–1719, doi:10.3762/bjoc.18.181

Graphical Abstract
  • -membered triflate 71 was synthesized from diketone 26 in 5 steps and 37% overall yield. Both fragments were assembled by a Sonogashira cross-coupling, affording 72 in 72% yield. In a first attempt, TBS protection was considered on the bicylo[3.2.1]octane. However, later in the strategy, the deprotection
PDF
Album
Review
Published 12 Dec 2022

Formal total synthesis of macarpine via a Au(I)-catalyzed 6-endo-dig cycloisomerization strategy

  • Jiayue Fu,
  • Bingbing Li,
  • Zefang Zhou,
  • Maosheng Cheng,
  • Lu Yang and
  • Yongxiang Liu

Beilstein J. Org. Chem. 2022, 18, 1589–1595, doi:10.3762/bjoc.18.169

Graphical Abstract
  • . The convergent synthetic strategies feature the utilization of Au(I)-catalyzed cycloisomerizations of a 1,5-enyne and alkynyl ketone substrates, which were prepared by Sonogashira coupling reactions. Keywords: benzo[c]phenanthridine alkaloids; 1,5-enyne; formal total synthesis; gold catalysis
  • be synthesized from silyl enol ether compound 10 via the Au(I)-catalyzed cycloisomerization reaction developed by our group [15]. The compound 10 could be constructed by the Sonogashira coupling reaction from readily prepared iodoarene 8 [12][16] and ketone 5, which could be synthesized by using
  • cheap 6-bromopiperonal (2) as the starting material. To attempt the proposed synthetic strategy, ketone 5 and iodoarene 8 were prepared by following the synthetic route outlined in Scheme 4. Ketone 5 was prepared in a four-step procedure. Firstly, a Sonogashira coupling between 6-bromopiperonal (2) and
PDF
Album
Supp Info
Letter
Published 23 Nov 2022

Simple synthesis of multi-halogenated alkenes from 2-bromo-2-chloro-1,1,1-trifluoroethane (halothane)

  • Yukiko Karuo,
  • Atsushi Tarui,
  • Kazuyuki Sato,
  • Kentaro Kawai and
  • Masaaki Omote

Beilstein J. Org. Chem. 2022, 18, 1567–1574, doi:10.3762/bjoc.18.167

Graphical Abstract
  • HF from 1 provides 2 as an E/Z mixuture (E/Z = 1:1). We speculated that the stability of the E isomer was equal to that of the Z isomer under these conditions. To expand the scope of this reaction, we subjected product 2 to a Sonogashira cross-coupling reaction (Scheme 3). This gave a highly
  • functionalized enyne structure that will be useful in various molecular transformations [27][28][29]. On the basis of a previous report, Sonogashira cross-coupling of 2 with trimethylsilylacetylene was performed with a bis(triphenylphosphine)palladium(II) dichloride. The reaction proceeded smoothly to give
  • presence of KOH. In this reaction, halothane plays a key role in the construction of highly halogenated and structurally intriguing products. The tri-halogenated alkenyl ether has potential applications in organic chemistry, e.g., in Suzuki–Miyaura or Sonogashira cross-coupling reactions. Further
PDF
Album
Supp Info
Full Research Paper
Published 21 Nov 2022

Palladium-catalyzed solid-state borylation of aryl halides using mechanochemistry

  • Koji Kubota,
  • Emiru Baba,
  • Tamae Seo,
  • Tatsuo Ishiyama and
  • Hajime Ito

Beilstein J. Org. Chem. 2022, 18, 855–862, doi:10.3762/bjoc.18.86

Graphical Abstract
  • transformations. Thus far, mechanochemical palladium-catalyzed cross-coupling reactions such as Suzuki–Miyaura [34][35][36][37][38][39][40][41][42][43][44][45][46][47], Buchwald–Hartwig [48][49][50][51][52], Sonogashira [53][54][55][56], Negishi [57], Mizoroki–Heck [58][59][60], and C–S bond-forming [61
PDF
Album
Supp Info
Letter
Published 18 Jul 2022

Recent developments and trends in the iron- and cobalt-catalyzed Sonogashira reactions

  • Surendran Amrutha,
  • Sankaran Radhika and
  • Gopinathan Anilkumar

Beilstein J. Org. Chem. 2022, 18, 262–285, doi:10.3762/bjoc.18.31

Graphical Abstract
  • , Kottayam, Kerala, 686560, India 10.3762/bjoc.18.31 Abstract Iron- and cobalt-catalyzed Sonogashira coupling reactions are becoming central areas of research in organic synthesis. Owing to their significant importance in the formation of carbon–carbon bonds, numerous green and nanoparticle protocols have
  • emerged during the past decades. The non-toxic and inexpensive nature of catalysts gained much attention in recent times. In this context, their catalytic nature and activity in Sonogashira coupling reactions were well explored and compared. Most importantly, one of the highlights of this review is the
  • emphasis given to green strategies. This is the first review on iron- and cobalt-catalyzed Sonogashira coupling reactions which comprehends literature up to 2020. Keywords: C–C bond formation; cobalt; green reaction; iron; nanoparticles; Sonogashira; Introduction The palladium-catalyzed cross-coupling
PDF
Album
Review
Published 03 Mar 2022

The PIFA-initiated oxidative cyclization of 2-(3-butenyl)quinazolin-4(3H)-ones – an efficient approach to 1-(hydroxymethyl)-2,3-dihydropyrrolo[1,2-a]quinazolin-5(1H)-ones

  • Alla I. Vaskevych,
  • Nataliia O. Savinchuk,
  • Ruslan I. Vaskevych,
  • Eduard B. Rusanov,
  • Oleksandr O. Grygorenko and
  • Mykhailo V. Vovk

Beilstein J. Org. Chem. 2021, 17, 2787–2794, doi:10.3762/bjoc.17.189

Graphical Abstract
  • ring (especially with functional groups) is annulation of the latter moiety to the quinazoline ring. Thus, a series of 1,5-disubstituted pyrroloquinazolines 3 were obtained by a three-component Sonogashira-type coupling of 2-chloro-4-substituted quinazolines 4, propargylic alcohol, and secondary amines
PDF
Album
Supp Info
Letter
Published 25 Nov 2021

Visible-light-mediated copper photocatalysis for organic syntheses

  • Yajing Zhang,
  • Qian Wang,
  • Zongsheng Yan,
  • Donglai Ma and
  • Yuguang Zheng

Beilstein J. Org. Chem. 2021, 17, 2520–2542, doi:10.3762/bjoc.17.169

Graphical Abstract
  • -catalyzed coupling reactions of terminal alkynes was published by Hwang and co-worker. In 2012, they [65] achieved a photoinitiated Sonogashira reaction using aryl halides (bromides and iodides) 20 and aryl- or alkylacetylenes 19. In control experiments, the replacement of the copper salt with palladium
  • promising, scalable green process that can be used as an alternative to the conventional Sonogashira cross-coupling reactions. In 2018, Lalic and co-workers [66] extended this approach to alkyl halides and reported the photoinduced copper-catalyzed Sonogashira coupling of alkynes and alkyl iodide 21. The
  • with oxime esters. Oxo-azidation of vinyl arenes. Azidation/difunctionalization of vinyl arenes. Photoinitiated copper-catalyzed Sonogashira reaction. Alkyne functionalization reactions. Alkynylation of dihydroquinoxalin-2-ones with terminal alkynes. Decarboxylative alkynylation of redox-active esters
PDF
Album
Review
Published 12 Oct 2021

Recent advances in the tandem annulation of 1,3-enynes to functionalized pyridine and pyrrole derivatives

  • Yi Liu,
  • Puying Luo,
  • Yang Fu,
  • Tianxin Hao,
  • Xuan Liu,
  • Qiuping Ding and
  • Yiyuan Peng

Beilstein J. Org. Chem. 2021, 17, 2462–2476, doi:10.3762/bjoc.17.163

Graphical Abstract
  • ]. Then, they also reported another CuH-catalyzed coupling reaction of 1,3-enynes 54 and nitrile to prepare polysubstituted pyrroles 55 (Scheme 21) [66]. The substrates 54 could be easily prepared by Sonogashira coupling of terminal alkynes and vinyl halides. It is worth mentioning that the addition of
PDF
Album
Review
Published 22 Sep 2021

Photoredox catalysis in nickel-catalyzed C–H functionalization

  • Lusina Mantry,
  • Rajaram Maayuri,
  • Vikash Kumar and
  • Parthasarathy Gandeepan

Beilstein J. Org. Chem. 2021, 17, 2209–2259, doi:10.3762/bjoc.17.143

Graphical Abstract
  • a reliable strategy in modern organic synthesis. Palladium-catalyzed cross-coupling reactions such as Mizoroki–Heck [5][6][7][8], Suzuki–Miyaura [9][10][11], Buchwald–Hartwig [12][13], Negishi [14][15], Migita–Stille [16], Sonogashira [17], among others [18][19][20], significantly changed the design
PDF
Album
Review
Published 31 Aug 2021

Chemical syntheses and salient features of azulene-containing homo- and copolymers

  • Vijayendra S. Shetti

Beilstein J. Org. Chem. 2021, 17, 2164–2185, doi:10.3762/bjoc.17.139

Graphical Abstract
  • -(n-dodecyl)azulene (16) is shown in Scheme 5A. The Sonogashira cross-coupling reaction between 4,7-dibromo-6-(n-dodecyl)azulene (13) and 4,7-diethynyl-6-(n-dodecyl)azulene (16) yielded 4,7-polyazulene 17 linked through ethynyl bridges (Scheme 5B). Similarly, the Yamamoto cross-coupling reaction
  • decades. Azulene-containing homopolymers (polyazulenes) and copolymers incorporating thiophene, fluorene, benzothiadiazole, and carbazole units along the polymer backbone can be synthesized by utilizing cross-coupling strategies such as Suzuki, Sonogashira, Stille, Yamamoto, and Buchwald–Hartwig reactions
PDF
Album
Review
Published 24 Aug 2021

Cationic oligonucleotide derivatives and conjugates: A favorable approach for enhanced DNA and RNA targeting oligonucleotides

  • Mathias B. Danielsen and
  • Jesper Wengel

Beilstein J. Org. Chem. 2021, 17, 1828–1848, doi:10.3762/bjoc.17.125

Graphical Abstract
  • containing a stretch of four DNA nucleotides in the middle, flanked by the modifications in a ´mixmer´ design, which is important for designing gapmer ASOs [31]. Another well-established method for C-5 pyrimidine modification involves the Sonogashira cross-coupling reaction between an alkyne group and a 5
PDF
Album
Review
Published 29 Jul 2021

2,4-Bis(arylethynyl)-9-chloro-5,6,7,8-tetrahydroacridines: synthesis and photophysical properties

  • Najeh Tka,
  • Mohamed Adnene Hadj Ayed,
  • Mourad Ben Braiek,
  • Mahjoub Jabli,
  • Noureddine Chaaben,
  • Kamel Alimi,
  • Stefan Jopp and
  • Peter Langer

Beilstein J. Org. Chem. 2021, 17, 1629–1640, doi:10.3762/bjoc.17.115

Graphical Abstract
  • properties. Herein, starting from readily available anthranilic acid, an efficient synthesis of 2,4-bis(arylethynyl)-9-chloro-5,6,7,8-tetrahydroacridine derivatives was accomplished via a one-pot double Sonogashira cross-coupling method. The UV-visible absorption and emission properties of the synthesized
  • catalysis. With this precursor in hand, we intended to expand the π-conjugation by introducing two arylethynyl groups by Sonogashira reactions [66][67][68][69]. For the optimization, we studied the reaction of 2 with phenylacetylene (3a) and we obtained the desired product 4a in up to 72% as best yield
  • of the temperature. We found that increasing the temperature to 90 or 100 °C did not lead to any improvement (Table 1, entries 6 and 7). The best result for the Sonogashira coupling reaction between intermediate 2 and phenylacetylene (3a) was obtained using 0.6 mol % of Pd(PPh3)4, 1.2 mol % of CuI in
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2021
Other Beilstein-Institut Open Science Activities