Search results

Search for "alkyne" in Full Text gives 554 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Chemoenzymatic synthesis of macrocyclic peptides and polyketides via thioesterase-catalyzed macrocyclization

  • Senze Qiao,
  • Zhongyu Cheng and
  • Fuzhuo Li

Beilstein J. Org. Chem. 2024, 20, 721–733, doi:10.3762/bjoc.20.66

Graphical Abstract
  • several positions and also form 6–14 residue cyclic peptides [37][38]. It should be noted that TycC TE was more sensitive to the amino acid changes near the site of ring closure. The alkyne-containing analogs were conjugated to a variety of azido sugars via copper(I)-catalyzed cycloaddition to obtain the
PDF
Album
Review
Published 04 Apr 2024

SOMOphilic alkyne vs radical-polar crossover approaches: The full story of the azido-alkynylation of alkenes

  • Julien Borrel and
  • Jerome Waser

Beilstein J. Org. Chem. 2024, 20, 701–713, doi:10.3762/bjoc.20.64

Graphical Abstract
  • high yield (72%) of the homopropargylic azide was reached. Full insights are given about the factors that were essential for the success of the optimization process. Keywords: alkyne; azide; hypervalent iodine; photoredox; trifluoroborate salt; Introduction Homopropargylic azides are important
  • and substitution with azide ions to produce the desired homopropargylic azide. However, this approach gives only access to products bearing the alkyne at the least substituted position. To the best of our knowledge, no general strategy has been employed to access the other regioisomer possessing a
  • elimination of the organometallic intermediate would lead to the desired product (Scheme 1B, reaction 1). Unfortunately, this approach will not be compatible in the case of azidation since the copper, azides and alkynes present in the mixture are expected to undergo alkyne–azide cycloaddition reactions [28
PDF
Album
Supp Info
Commentary
Published 03 Apr 2024

Isolation and structure determination of a new analog of polycavernosides from marine Okeania sp. cyanobacterium

  • Kairi Umeda,
  • Naoaki Kurisawa,
  • Ghulam Jeelani,
  • Tomoyoshi Nozaki,
  • Kiyotake Suenaga and
  • Arihiro Iwasaki

Beilstein J. Org. Chem. 2024, 20, 645–652, doi:10.3762/bjoc.20.57

Graphical Abstract
  • polycavernosides. Keywords: macrolide glycoside; marine cyanobacterium; marine natural products; polycavernosides; terminal alkyne; Introduction In 1991, an outbreak of food poisoning caused by a species of red algae known as ‘Polycavernosa tsudai’ occurred in Guam, which resulted in killing of three people. Two
  • HMBC δH 1.62 (H-23)/δC 84.6 (C-25), δH 2.18 (H-24)/δC 84.6 (C-25), and δH 2.18 (H-24)/δC 68.6 (C-26) revealed a terminal alkyne structure. Additionally, COSY correlations shown in Figure 2 revealed the side chain structure of 1 containing a terminal alkyne and a conjugated trans triene (C-15 to C-26
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2024

A laterally-fused N-heterocyclic carbene framework from polysubstituted aminoimidazo[5,1-b]oxazol-6-ium salts

  • Andrew D. Gillie,
  • Matthew G. Wakeling,
  • Bethan L. Greene,
  • Louise Male and
  • Paul W. Davies

Beilstein J. Org. Chem. 2024, 20, 621–627, doi:10.3762/bjoc.20.54

Graphical Abstract
  • -step ynamide annulation and imidazolium ring-formation sequence. Metalation with Au(I), Cu(I) and Ir(I) at the C2 position provides an L-shaped NHC ligand scaffold that has been validated in gold-catalysed alkyne hydration and arylative cyclisation reactions. Keywords: annulation; carbene; gold
PDF
Album
Supp Info
Letter
Published 18 Mar 2024

Switchable molecular tweezers: design and applications

  • Pablo Msellem,
  • Maksym Dekthiarenko,
  • Nihal Hadj Seyd and
  • Guillaume Vives

Beilstein J. Org. Chem. 2024, 20, 504–539, doi:10.3762/bjoc.20.45

Graphical Abstract
  • et al. exploited the same scaffold to control the physical properties of materials. They incorporated planar terpyridine-alkyne Pt complexes as functional units and studied the intercalation of a Pt-complex guest in order to obtain Pt–Pt interactions in solution [23]. In the native state of 3, both
  • tweezers with tert-butyl groups positioned farther from the salphen via alkyne spacers were synthesized [42]. While, like in the parent tweezers 12, no intercalation of aromatic guests was observed in the closed form, strong intramolecular and intermolecular Pt–Pt bonds were achieved in the solid state
PDF
Album
Review
Published 01 Mar 2024

Ligand effects, solvent cooperation, and large kinetic solvent deuterium isotope effects in gold(I)-catalyzed intramolecular alkene hydroamination

  • Ruichen Lan,
  • Brock Yager,
  • Yoonsun Jee,
  • Cynthia S. Day and
  • Amanda C. Jones

Beilstein J. Org. Chem. 2024, 20, 479–496, doi:10.3762/bjoc.20.43

Graphical Abstract
  • Since the seminal 1998 report by Teles et al. on the gold(I)-catalyzed addition of alcohols to alkynes [1], a multitude of gold-catalyzed reactions have been reported. Great successes in mechanistic analysis and synthetic methods have been achieved for allene and alkyne activation, while the activation
  • competing Brønsted acid catalysis in gold-catalyzed alkene functionalization remains a consideration [2], and while it is assumed that alkene activations follow the same prototypical mechanisms as allene and alkyne activations, that is (1) π-activation with nucleophilic attack followed by (2
  • intermediates (expected from allene/alkyne addition) are more reactive than the C(sp3)-alkylgold intermediates expected from alkene addition [29]. Another study demonstrated the inefficiency of protodeauration in the presence of (albeit more basic) alkylamines [30]. These studies cast doubt on protodeauration
PDF
Album
Supp Info
Full Research Paper
Published 29 Feb 2024

Development of a chemical scaffold for inhibiting nonribosomal peptide synthetases in live bacterial cells

  • Fumihiro Ishikawa,
  • Sho Konno,
  • Hideaki Kakeya and
  • Genzoh Tanabe

Beilstein J. Org. Chem. 2024, 20, 445–451, doi:10.3762/bjoc.20.39

Graphical Abstract
  • previously described an activity-based protein profiling (ABPP) strategy for NRPSs using ABPs that target A-domains (Figure 2b) [13][14][15]. The probes comprise an aminoacyl-AMS ligand and a photoaffinity group with clickable alkyne functionality appended to the 2′-OH group of adenosine. A complex structure
  • benzophenone moiety in probe 3. The samples were then reacted with TAMRA-N3 (structure shown in Figure S4, Supporting Information File 1) under copper(I)-catalyzed azide–alkyne cycloaddition conditions [21] and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis coupled with in-gel
  • are treated with a TAMRA-N3 under copper(I)-catalyzed azide–alkyne cycloaddition conditions, followed by SDS-PAGE coupled with in-gel fluorescence scanning. AMS, 5′-O-sulfamoyladenosine. Competitive labeling experiments of GrsA using probe 3 in the presence of ʟ-Phe-AMS inhibitors. (A) Labeling of
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2024

Synthesis of π-conjugated polycyclic compounds by late-stage extrusion of chalcogen fragments

  • Aissam Okba,
  • Pablo Simón Marqués,
  • Kyohei Matsuo,
  • Naoki Aratani,
  • Hiroko Yamada,
  • Gwénaël Rapenne and
  • Claire Kammerer

Beilstein J. Org. Chem. 2024, 20, 287–305, doi:10.3762/bjoc.20.30

Graphical Abstract
  • naphthyl substituents carrying each an alkyne moiety on the ortho position. Ring expansion of both thiophene units in 19 was then triggered by platinum catalysis to generate the corresponding thiopyrans, and finally the bromine atoms located on the latter rings were exploited for the ring closure of the
PDF
Album
Review
Published 15 Feb 2024

Unveiling the regioselectivity of rhodium(I)-catalyzed [2 + 2 + 2] cycloaddition reactions for open-cage C70 production

  • Cristina Castanyer,
  • Anna Pla-Quintana,
  • Anna Roglans,
  • Albert Artigas and
  • Miquel Solà

Beilstein J. Org. Chem. 2024, 20, 272–279, doi:10.3762/bjoc.20.28

Graphical Abstract
  •  1), unveiled the following reaction mechanism: initially, an oxidative coupling of the two alkyne moieties of our model 1a leads to the formation of INT 1, as previously reported [33]. This step, with a Gibbs energy barrier of 25.7 kcal·mol−1, is the rate-determining step for this process. Next, INT
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2024

Chiral phosphoric acid-catalyzed transfer hydrogenation of 3,3-difluoro-3H-indoles

  • Yumei Wang,
  • Guangzhu Wang,
  • Yanping Zhu and
  • Kaiwu Dong

Beilstein J. Org. Chem. 2024, 20, 205–211, doi:10.3762/bjoc.20.20

Graphical Abstract
  • aryl ring smoothly underwent this asymmetric reduction, affording the desired indolines in 95–99% yield and 90–96% ee within 3 hours. Replacing the 3,3-difluoro substituents by two methyl groups in the starting indole as well as the alkyne part by a phenyl group, the reaction still gave good results
  • enantioselectivity of the reaction. The role of fluorine and alkyne in the reaction should be close to the gem-dimethyl moiety and the phenyl group in the previous research [32]. Conclusion In summary, we developed a convenient method for the synthesis of chiral difluoroindoline compounds for the first time. With a
PDF
Album
Supp Info
Letter
Published 01 Feb 2024
Graphical Abstract
  • process. The [2 + 2] CA–RE sequence proceeds successively, as depicted in Scheme 1, where electron-donating groups are denoted as EDGs. During the [2 + 2] CA process, the nucleophilic attack by the terminal alkyne carbon of an electron-rich alkyne on an electron-deficient alkene, such as TCNE and 7,7,8,8
  • TCNQ with electron-rich alkynes, the alkyne terminal carbon executes a nucleophilic attack on the exocyclic carbon of the dicyanovinyl (DCV) group of TCNQ, affording dicyanoquinodimetanes (DCNQs) [12][13]. Intense ICT bands of TCBD and DCNQ are observed at around 450–470 nm and 680–710 nm, respectively
  • [4][5][7]. Notably, the N,N-dimethylanilino (DMA) moiety activates the reactivity of the neighboring alkyne moiety so strongly that the [2 + 2] CA–RE reactions with electron-deficient olefins proceed seamlessly [15][16] even when the terminus of the alkyne moiety is substituted by a cyano group [17
PDF
Album
Review
Published 22 Jan 2024

Multi-redox indenofluorene chromophores incorporating dithiafulvene donor and ene/enediyne acceptor units

  • Christina Schøttler,
  • Kasper Lund-Rasmussen,
  • Line Broløs,
  • Philip Vinterberg,
  • Ema Bazikova,
  • Viktor B. R. Pedersen and
  • Mogens Brøndsted Nielsen

Beilstein J. Org. Chem. 2024, 20, 59–73, doi:10.3762/bjoc.20.8

Graphical Abstract
  • -olefination reaction was first discovered by Ramirez and co-workers [22] and used in the first step of the Corey–Fuchs reaction that ultimately provides an alkyne [23]. To elucidate the properties of the donor part itself of the pyrrolo-annelated IF-DTF systems, we prepared compounds 16 and 17 containing a
PDF
Album
Supp Info
Full Research Paper
Published 15 Jan 2024

Using the phospha-Michael reaction for making phosphonium phenolate zwitterions

  • Matthias R. Steiner,
  • Max Schmallegger,
  • Larissa Donner,
  • Johann A. Hlina,
  • Christoph Marschner,
  • Judith Baumgartner and
  • Christian Slugovc

Beilstein J. Org. Chem. 2024, 20, 41–51, doi:10.3762/bjoc.20.6

Graphical Abstract
  • alkylphosphine, an aldehyde and an alkyne [32]. Another example resulting from phosphine addition to α,β-unsaturated aldehydes was published shortly afterwards [33]. Phosphonium carboxylate zwitterions have been obtained by the reaction of phosphines with acrylic acid [8] and ortho-carboxylated arylphosphines
PDF
Album
Supp Info
Full Research Paper
Published 10 Jan 2024

1-Butyl-3-methylimidazolium tetrafluoroborate as suitable solvent for BF3: the case of alkyne hydration. Chemistry vs electrochemistry

  • Marta David,
  • Elisa Galli,
  • Richard C. D. Brown,
  • Marta Feroci,
  • Fabrizio Vetica and
  • Martina Bortolami

Beilstein J. Org. Chem. 2023, 19, 1966–1981, doi:10.3762/bjoc.19.147

Graphical Abstract
  • possibility of obtaining the products of alkyne hydration with analogous or improved yields, using less hazardous precursors to generate the reactive species in situ. In particular, for terminal arylalkynes, the electrochemical route proved to be advantageous, yielding preferentially the hydration products vs
  • the aldol condensation products. Importantly, the ability to recycle the ionic liquid in subsequent reactions was successfully demonstrated. Keywords: alkyne hydration; boron trifluoride; electrochemical synthesis; ionic liquids; Introduction Alkynes are fundamental starting materials towards more
  • well-known and useful reaction in organic chemistry, affording carbonyl compounds based on an atom-economical approach. Indeed, the addition of water to the triple bond of a terminal alkyne leads to the formation of the corresponding methyl ketone or aldehyde, in the case of Markovnikov or anti
PDF
Album
Supp Info
Full Research Paper
Published 28 Dec 2023

Aldiminium and 1,2,3-triazolium dithiocarboxylate zwitterions derived from cyclic (alkyl)(amino) and mesoionic carbenes

  • Nedra Touj,
  • François Mazars,
  • Guillermo Zaragoza and
  • Lionel Delaude

Beilstein J. Org. Chem. 2023, 19, 1947–1956, doi:10.3762/bjoc.19.145

Graphical Abstract
  • system (G) was first investigated by Albrecht et al. in 2008 [23]. Because the heterocyclic precursors needed to prepare 1,2,3-triazol-5-ylidenes are readily available through the [3 + 2] cycloaddition of an azide and an alkyne, these compounds are currently the most popular MICs for catalytic and other
  • -disubstituted-1,2,3-triazole derivatives is readily achieved via the copper(I)-catalyzed [3 + 2] cycloaddition of an azide and a terminal alkyne (CuAAC) [63][64][65]. A further alkylation of the N3 position with an alkyl halide is an equally straightforward procedure that ultimately affords a large assortment
PDF
Album
Supp Info
Full Research Paper
Published 20 Dec 2023

Biphenylene-containing polycyclic conjugated compounds

  • Cagatay Dengiz

Beilstein J. Org. Chem. 2023, 19, 1895–1911, doi:10.3762/bjoc.19.141

Graphical Abstract
  • 2,2'-dihalogenated biphenyls 4 as starting materials [24][25]. Although the cobalt-mediated alkyne trimerization route frequently used by Vollhardt and co-workers is not the first choice for the synthesis of the biphenylene itself, it has led to the synthesis of structurally demanding substituted
  • biphenylenes and the emergence of a family of polycyclic hydrocarbons called [N]phenylenes. The utilization of cobalt-mediated alkyne trimerization facilitated the synthesis of [N]phenylenes exhibiting diverse structural configurations, including linear 7, angular 8, zig-zag 9, bent 10, branched 11, and cyclic
  • 83 was achieved through a Co-mediated alkyne trimerization process. Finally, the synthesis of the targeted boron-doped extended POA 84 was carried out with a yield of 61%, following a series of reactions including cyclocondensation with BBr3 and mesitylation. Since the "v" and "z"-shaped POAs could
PDF
Album
Review
Published 13 Dec 2023

Active-metal template clipping synthesis of novel [2]rotaxanes

  • Cătălin C. Anghel,
  • Teodor A. Cucuiet,
  • Niculina D. Hădade and
  • Ion Grosu

Beilstein J. Org. Chem. 2023, 19, 1776–1784, doi:10.3762/bjoc.19.130

Graphical Abstract
  • of the final [2]rotaxanes by active template copper(I)-catalyzed alkyne–azide cycloaddition (CuAAC) as key step of the synthesis. HRMS and NMR experiments have been performed to confirm the formation of the interlocked structures. Keywords: active-metal template; clipping; copper(I)-catalyzed alkyne
  • primary alkyl bromides [36] and cooper(I)-catalyzed alkyne–azide cycloaddition (CuAAC) click chemistry [37]. In all these cases a templated metal ion–macrocycle complex is used to catalyze the rotaxane formation by connecting two components of the dumbbell-shaped molecule (Figure 1a). In this context, we
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2023

Selectivity control towards CO versus H2 for photo-driven CO2 reduction with a novel Co(II) catalyst

  • Lisa-Lou Gracia,
  • Philip Henkel,
  • Olaf Fuhr and
  • Claudia Bizzarri

Beilstein J. Org. Chem. 2023, 19, 1766–1775, doi:10.3762/bjoc.19.129

Graphical Abstract
  • complex obtainable via a straightforward synthesis, with improved solubility, concerning our previous Co(II) complexes [21]. Thus, the new Co(II) complex bears two 1-benzyl-4-(quinolin-2-yl)-1H-1,2,3-triazole (BzQuTr) units, that were obtained through a copper-catalyzed alkyne–azide cycloaddition (CuAAC
PDF
Album
Supp Info
Full Research Paper
Published 17 Nov 2023

Radical chemistry in polymer science: an overview and recent advances

  • Zixiao Wang,
  • Feichen Cui,
  • Yang Sui and
  • Jiajun Yan

Beilstein J. Org. Chem. 2023, 19, 1580–1603, doi:10.3762/bjoc.19.116

Graphical Abstract
  • functionalization of optically active polymers [106]. Theato and co-workers introduced vinyl/alkyne-bearing poly(vinyl ether)s [107], poly(vinylcyclopropanes) [108], and poly(allyl 2-ylideneacetate) [109] as promising new platforms compatible to thiol–ene chemistry. Atom transfer radical addition (ATRA) is another
PDF
Album
Review
Published 18 Oct 2023

Lewis acid-promoted direct synthesis of isoxazole derivatives

  • Dengxu Qiu,
  • Chenhui Jiang,
  • Pan Gao and
  • Yu Yuan

Beilstein J. Org. Chem. 2023, 19, 1562–1567, doi:10.3762/bjoc.19.113

Graphical Abstract
  • , which is an internal alkyne instead of a terminal alkyne, but no desired product was obtained. Next, we explored the substrate scope of 2-methylquinolines under the standard conditions. 2-Methylquinoline bearing different substituents at various positions gave the corresponding products with moderate to
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2023

Morpholine-mediated defluorinative cycloaddition of gem-difluoroalkenes and organic azides

  • Tzu-Yu Huang,
  • Mario Djugovski,
  • Sweta Adhikari,
  • Destinee L. Manning and
  • Sudeshna Roy

Beilstein J. Org. Chem. 2023, 19, 1545–1554, doi:10.3762/bjoc.19.111

Graphical Abstract
  • -promoted [22] azide–alkyne cycloaddition reactions [17][23][24]; however, most of these strategies use high temperatures [21][25]. Herein, we report the discovery of a novel, one-step regioselective method under mild conditions to obtain 1,4,5-trisubstituted-1,2,3-triazoles from gem-difluoroalkenes
  • generated via an azide–alkyne cycloaddition or a multicomponent reaction between carbonyls and azides [17]. α-Trifluoromethyl (α-CF3) carbonyls were recently utilized to generate NH-1,2,3-triazoles and fully substituted 1,2,3-triazoles [28][29]. However, there are no reports of a formal [3 + 2
  • –elimination of morpholine to gem-difluoroalkene 1 affording INT-1, which can generate product 3 via two routes (Figure 5). Route A entails the formation of an aminoalkyne intermediate, INT-2, which can participate in a [3 + 2] azide–alkyne cycloaddition to form the final product 3. Alternatively, vinylic
PDF
Album
Supp Info
Letter
Published 05 Oct 2023

N-Sulfenylsuccinimide/phthalimide: an alternative sulfenylating reagent in organic transformations

  • Fatemeh Doraghi,
  • Seyedeh Pegah Aledavoud,
  • Mehdi Ghanbarlou,
  • Bagher Larijani and
  • Mohammad Mahdavi

Beilstein J. Org. Chem. 2023, 19, 1471–1502, doi:10.3762/bjoc.19.106

Graphical Abstract
  • or 14, caused polarization of the S–N bond and produced an electrophilic intermediate I. Through the nucleophilic attack of the alkyne on I, cation II was generated, leaving Al-coordinated phthalimide/succinimide III. Finally, 4-endo-trig spirocyclization of II rendered the unstable intermediate IV
  • of polarized ketene-N,O-acetal to the alkyne β-carbon and trapping of the sulfonium cation at the alkyne-α-carbon afforded 5-(arylthio)-3,6-dihydropyridin-2(1H)-one 148. The coordination of a sulfonium electrophile to the C–C triple bond of 1-I occurred through cyclopropyl intermediate 1-I. The
PDF
Album
Review
Published 27 Sep 2023

Application of N-heterocyclic carbene–Cu(I) complexes as catalysts in organic synthesis: a review

  • Nosheen Beig,
  • Varsha Goyal and
  • Raj K. Bansal

Beilstein J. Org. Chem. 2023, 19, 1408–1442, doi:10.3762/bjoc.19.102

Graphical Abstract
  • catalyst when products were obtained with excellent enantioselectivity (92% ee) (Scheme 46). 2.3 [3 + 2] Cycloaddition reactions In a [3 + 2] cycloaddition reaction, a three atoms dipolar moiety (1,3-dipole) adds across two atoms of an alkene or alkyne (1,3-dipolarophile) (Scheme 47). It is also known as
  • -donors on the catalytic activity of NHC–Cu(I) complexes for azide–alkyne [3 + 2] cycloaddition reactions [67]. They determined binding constants of four NHC–CuCl complexes with two N-donors, which revealed that addition of phenanthroline to the NHC–CuCl enhanced the catalytic activity manifold. In fact
  • and co-workers [68] developed a new series of heteroleptic bis(NHC)–Cu(I) complexes and a mixed NHC–Cu–phosphine complex and employed these complexes as catalysts for azide–alkyne [3 + 2] cycloaddition (Scheme 50). These cationic heteroleptic bis(NHC)–Cu complexes 131 are highly active for this
PDF
Album
Review
Published 20 Sep 2023

One-pot nucleophilic substitution–double click reactions of biazides leading to functionalized bis(1,2,3-triazole) derivatives

  • Hans-Ulrich Reissig and
  • Fei Yu

Beilstein J. Org. Chem. 2023, 19, 1399–1407, doi:10.3762/bjoc.19.101

Graphical Abstract
  • azide was combined with a subsequent copper-catalyzed (3 + 2) cycloaddition with terminal alkynes. This one-pot process was developed with a simple model alkyne, but then applied to more complex alkynes bearing enantiopure 1,2-oxazinyl substituents. Hence, the precursor compounds 1,2-, 1,3- or 1,4-bis
  • discovery of the copper-catalyzed alkyne azide (3 + 2) cycloaddition (CuAAC) [3][4], has dramatically changed the approaches to many problems in chemistry, supramolecular chemistry, materials science, biological chemistry and related fields (selected reviews: [5][6][7][8][9][10][11][12][13][14][15
  • nucleophilic substitutions employing sodium azide and organic substrates with potential leaving groups have been reported. The resulting organic azides were trapped in situ by a suitable alkyne to give the 1,2,3-triazoles [26][27][28][29][30][31][32][33][34][35][36]. Fairly recent review articles summarize
PDF
Album
Supp Info
Full Research Paper
Published 18 Sep 2023

Consecutive four-component synthesis of trisubstituted 3-iodoindoles by an alkynylation–cyclization–iodination–alkylation sequence

  • Nadia Ledermann,
  • Alae-Eddine Moubsit and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2023, 19, 1379–1385, doi:10.3762/bjoc.19.99

Graphical Abstract
  • -catalyzed processes for accessing indoles have become attractive alternatives over the past decades [19][20][21][22][23][24]. Besides Larock's indole synthesis employing alkyne anellation [25] and Cacchi's cyclization of ortho-alkynylanilines [20][22] catalytic syntheses of indoles from alkynes have become
PDF
Album
Supp Info
Full Research Paper
Published 14 Sep 2023
Other Beilstein-Institut Open Science Activities