Search results

Search for "cyclopropylcarbinyl" in Full Text gives 10 result(s) in Beilstein Journal of Organic Chemistry.

Unraveling the role of prenyl side-chain interactions in stabilizing the secondary carbocation in the biosynthesis of variexenol B

  • Moe Nakano,
  • Rintaro Gemma and
  • Hajime Sato

Beilstein J. Org. Chem. 2023, 19, 1503–1510, doi:10.3762/bjoc.19.107

Graphical Abstract
  • as the C–H–π interaction between the carbocation intermediate and the Phe residue of terpene cyclase in the biosynthesis of sesterfisherol [21], and the intricated rearrangement reaction mechanism promoted by the equilibrium state of the homoallyl cation and the cyclopropylcarbinyl cation in the
PDF
Album
Supp Info
Letter
Published 28 Sep 2023

Strategies to access the [5-8] bicyclic core encountered in the sesquiterpene, diterpene and sesterterpene series

  • Cécile Alleman,
  • Charlène Gadais,
  • Laurent Legentil and
  • François-Hugues Porée

Beilstein J. Org. Chem. 2023, 19, 245–281, doi:10.3762/bjoc.19.23

Graphical Abstract
PDF
Album
Review
Published 03 Mar 2023

CF3-substituted carbocations: underexploited intermediates with great potential in modern synthetic chemistry

  • Anthony J. Fernandes,
  • Armen Panossian,
  • Bastien Michelet,
  • Agnès Martin-Mingot,
  • Frédéric R. Leroux and
  • Sébastien Thibaudeau

Beilstein J. Org. Chem. 2021, 17, 343–378, doi:10.3762/bjoc.17.32

Graphical Abstract
PDF
Album
Review
Published 03 Feb 2021

An overview on disulfide-catalyzed and -cocatalyzed photoreactions

  • Yeersen Patehebieke

Beilstein J. Org. Chem. 2020, 16, 1418–1435, doi:10.3762/bjoc.16.118

Graphical Abstract
  • cyclopropylcarbinyl radical 5. Then, the radical 5 opens to form the homoallylic radical 6, followed by the addition of olefins to this radical form the 5-hexenyl radical 7. The ring closure of the radical 7 and the elimination of a thiyl radical furnishes the final product 9. When it came to annulations of complex
PDF
Album
Review
Published 23 Jun 2020

Understanding the role of active site residues in CotB2 catalysis using a cluster model

  • Keren Raz,
  • Ronja Driller,
  • Thomas Brück,
  • Bernhard Loll and
  • Dan T. Major

Beilstein J. Org. Chem. 2020, 16, 50–59, doi:10.3762/bjoc.16.7

Graphical Abstract
  • cyclopropylcarbinyl cation, as shown by isotope labeling [41]. QM calculations support this unusual 1,3-alkyl shift that interconverts H and I [38][39]. Finally, the cyclopropyl ring opens by virtue of a nucleophilic water attack, and cyclooctat-9-en-7-ol is formed. Although gas phase calculations shed light on the
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2020

The cyclopropylcarbinyl route to γ-silyl carbocations

  • Xavier Creary

Beilstein J. Org. Chem. 2019, 15, 1769–1780, doi:10.3762/bjoc.15.170

Graphical Abstract
  • substituents on the 1-position. These substrates all solvolyze in CD3CO2D to give products derived from cyclopropylcarbinyl cations that undergo further rearrangement to give 3-trimethylsilylcyclobutyl cations. These 3-trimethylsilylcyclobutyl cations are stabilized by a long-range rear lobe interaction with
  • solvolysis chemistry of mesylate and triflate derivatives of trans-1-hydroxymethyl-2-trimethylsilylcyclopropane and 1-substituted analogs can be quite different since these substrates do not generally lead to 3-trimethylsilylcyclobutyl cations. Keywords: bicyclobutane; carbocation; cyclopropylcarbinyl
  • contributed heavily to the development of carbocation chemistry. This article will deal with three types of carbocations that have been of intense and fundamental interest over the years, i.e., cyclopropylcarbinyl cations, electron-deficient cations, and silyl substituted carbocations. A brief overview of
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Synthesis of aryl cyclopropyl sulfides through copper-promoted S-cyclopropylation of thiophenols using cyclopropylboronic acid

  • Emeline Benoit,
  • Ahmed Fnaiche and
  • Alexandre Gagnon

Beilstein J. Org. Chem. 2019, 15, 1162–1171, doi:10.3762/bjoc.15.113

Graphical Abstract
  • chloride to give the corresponding β-thioaryl ketone 4 [10]. Reacting 2 with epoxides results in the formation of the 1-(β-hydroxy)cyclopropyl aryl sulfides 5 [10] while reaction with formaldehydes [11] or aldehydes [12] affords 1-(arylthio)cyclopropylcarbinyl alcohols 6. Treating 6 with Burgess reagent or
PDF
Album
Supp Info
Letter
Published 27 May 2019

Sigmatropic rearrangements of cyclopropenylcarbinol derivatives. Access to diversely substituted alkylidenecyclopropanes

  • Guillaume Ernouf,
  • Jean-Louis Brayer,
  • Christophe Meyer and
  • Janine Cossy

Beilstein J. Org. Chem. 2019, 15, 333–350, doi:10.3762/bjoc.15.29

Graphical Abstract
  • afford alkylidenecyclopropane 63 (92%, Scheme 22) [61]. The Ireland–Claisen rearrangement was then extended to a challenging class of cyclopropylcarbinyl glycolates possessing gem-difluoro substitution at C3 [65]. Gem-difluorocyclopropenes are accessible by difluorocyclopropenation of alkynes with
PDF
Album
Review
Published 05 Feb 2019

One-pot synthesis of cyanohydrin derivatives from alkyl bromides via incorporation of two one-carbon components by consecutive radical/ionic reactions

  • Shuhei Sumino,
  • Akira Fusano,
  • Hiroyuki Okai,
  • Takahide Fukuyama and
  • Ilhyong Ryu

Beilstein J. Org. Chem. 2014, 10, 150–154, doi:10.3762/bjoc.10.12

Graphical Abstract
  • 3j, which possessed an olefin structure arising from the ring-opening of a cyclopropylcarbinyl radical (Table 1, entry 10) [30][31]. Conclusion In summary, we have demonstrated a three-component coupling reaction comprising alkyl bromides 1, CO and ethyl cyanoformate (2a) in the presence of Bu3SnH
PDF
Album
Letter
Published 14 Jan 2014

Intraannular photoreactions in pseudo-geminally substituted [2.2]paracyclophanes

  • Henning Hopf,
  • Vitaly Raev and
  • Peter G. Jones

Beilstein J. Org. Chem. 2011, 7, 658–667, doi:10.3762/bjoc.7.78

Graphical Abstract
  • with the ylide prepared from cyclopropylcarbinyl triphenylphosphonium bromide and obtained in quantitative yield a product mixture consisting of the three possible diastereomers E,E-, E,Z- and Z,Z-22 (Scheme 8), the latter being the main product as is often observed in classical Wittig reactions
PDF
Album
Full Research Paper
Published 24 May 2011
Other Beilstein-Institut Open Science Activities