Search results

Search for "oligonucleotides" in Full Text gives 96 result(s) in Beilstein Journal of Organic Chemistry.

The role of chemistry in the success of oligonucleotides as therapeutics

  • Pawan Kumar and
  • Tom Brown

Beilstein J. Org. Chem. 2022, 18, 197–199, doi:10.3762/bjoc.18.22

Graphical Abstract
  • Pawan Kumar Tom Brown Takeda Development Center Americas, Inc. (TDCA), 9625 Town Centre Drive, San Diego, CA 92121, USA Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK 10.3762/bjoc.18.22 Keywords: antisense oligonucleotides; chemically modified
  • nucleotides; siRNAs; RNA-targeting oligonucleotides (e.g., antisense, siRNA, and anti-miR) are widely explored as fundamental research tools and are gaining increasing promise as therapeutic agents, particularly against diseases of genetic origin. The idea of treating a disease by targeting the molecular
  • messenger (mRNA) to stop the synthesis of proteins using short strands of DNA, now known as antisense oligonucleotides, was first coined about 40 years ago [1]. Almost 20 years later, another endogenous mechanism, known as RNA interference (RNAi) was discovered when it was shown that short stretches of
PDF
Album
Editorial
Published 14 Feb 2022

Synthetic strategies toward 1,3-oxathiolane nucleoside analogues

  • Umesh P. Aher,
  • Dhananjai Srivastava,
  • Girij P. Singh and
  • Jayashree B. S

Beilstein J. Org. Chem. 2021, 17, 2680–2715, doi:10.3762/bjoc.17.182

Graphical Abstract
PDF
Album
Review
Published 04 Nov 2021

Cationic oligonucleotide derivatives and conjugates: A favorable approach for enhanced DNA and RNA targeting oligonucleotides

  • Mathias B. Danielsen and
  • Jesper Wengel

Beilstein J. Org. Chem. 2021, 17, 1828–1848, doi:10.3762/bjoc.17.125

Graphical Abstract
  • Mathias B. Danielsen Jesper Wengel Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark 10.3762/bjoc.17.125 Abstract Antisense oligonucleotides (ASOs) have the ability of binding to
  • nuclease resistance, increased binding to the nucleic acid target and improved cell uptake for oligonucleotides (ONs) and ASOs. The modifications highlighted in this review are some of the most prevalent cationic amine groups which have been attached as single modifications onto ONs/ASOs. The review has
  • , and examining the future design for ASOs. Keywords: antisense oligonucleotides; backbone modifications; cations; nucleobase modifications; sugar modifications; Introduction Antisense oligonucleotides (ASOs) are single-stranded (ss) oligomers composed of typically 10–25 nucleotides linked by
PDF
Album
Review
Published 29 Jul 2021

Chemical approaches to discover the full potential of peptide nucleic acids in biomedical applications

  • Nikita Brodyagin,
  • Martins Katkevics,
  • Venubabu Kotikam,
  • Christopher A. Ryan and
  • Eriks Rozners

Beilstein J. Org. Chem. 2021, 17, 1641–1688, doi:10.3762/bjoc.17.116

Graphical Abstract
  • a neutral and achiral pseudopeptide backbone (Figure 1) [1]. PNA retains the natural DNA nucleobases that are connected to the amide-linked backbone through additional amide linkages. PNA was originally designed as a DNA mimic to improve the properties of triplex-forming oligonucleotides [1][2]. Two
  • extensive studies reviewed below, PNA still needs innovative chemistry to break through in clinic and other in vivo applications. Review PNA binding modes to DNA and RNA PNA was originally designed with an expectation to improve the binding properties of negatively charged triplex-forming oligonucleotides
  • found to bind single-stranded DNA and RNA (ssDNA and ssRNA) in an antiparallel fashion (the C-terminus of PNA aligning with the 5′-terminus of ssDNA) with affinity and sequence selectivity significantly higher than that of the natural oligonucleotides [18][19]. The thermal stabilities of duplexes
PDF
Album
Review
Published 19 Jul 2021

Double-headed nucleosides: Synthesis and applications

  • Vineet Verma,
  • Jyotirmoy Maity,
  • Vipin K. Maikhuri,
  • Ritika Sharma,
  • Himal K. Ganguly and
  • Ashok K. Prasad

Beilstein J. Org. Chem. 2021, 17, 1392–1439, doi:10.3762/bjoc.17.98

Graphical Abstract
  • terminal carbons only. Double-headed nucleosides are synthetically derived nucleoside scaffolds that are known to impact significantly secondary structures in nucleic acids [29]. Some oligonucleotides containing a particular double-headed nucleotide monomer have been found to form a three-way junction
  • structure with a hairpin loop and two flanking sequences [30][31]. Moreover, these nucleotides have been found to orient the additional nucleobase towards the core of the duplex to participate in Watson–Crick base pairing [32][33][34]. The incorporation of the double-headed nucleosides into oligonucleotides
  • double-headed nucleosides 4a,b were dimethoxytritylated (DMTr), phosphitylated, and incorporated into DNA oligonucleotides using the standard automated phosphoramidite method. The UV-based melting temperature (Tm) of hybrids of the modified oligonucleotides with complementary DNA strands were studied
PDF
Album
Review
Published 08 Jun 2021

Synthesis of 10-O-aryl-substituted berberine derivatives by Chan–Evans–Lam coupling and investigation of their DNA-binding properties

  • Peter Jonas Wickhorst,
  • Mathilda Blachnik,
  • Denisa Lagumdzija and
  • Heiko Ihmels

Beilstein J. Org. Chem. 2021, 17, 991–1000, doi:10.3762/bjoc.17.81

Graphical Abstract
  • forms, the effect of thermally induced unfolding of dye-labeled, quadruplex-forming oligonucleotides in the presence of the ligands was studied. In general, the binding of the ligand to the G4-DNA leads to a stabilization and thus to an increasing melting temperature of the DNA (Table 2). This effect of
  • ) [49] and insulin (a2) [50], or in telomerase inhibition (F21T) [30][51][52]. At a ligand-DNA ratio (LDR) of 5, the derivatives 5b–e induced a small, but significant shift of the melting temperature of the oligonucleotides F21T (∆Tm = 1.8–3.9 °C), and FmycT (∆Tm = 1.3–2.1 °C), while the melting
  • temperatures of the sequences Fa2T and FkitT were only affected marginally by the presence of all ligands. Notably, derivative 5a exhibited only a stabilizing effect on F21T (∆Tm = 3.2 °C), whereas the melting temperature of all other oligonucleotides was not affected significantly. The induced ∆Tm values of
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2021

Beyond ribose and phosphate: Selected nucleic acid modifications for structure–function investigations and therapeutic applications

  • Christopher Liczner,
  • Kieran Duke,
  • Gabrielle Juneau,
  • Martin Egli and
  • Christopher J. Wilds

Beilstein J. Org. Chem. 2021, 17, 908–931, doi:10.3762/bjoc.17.76

Graphical Abstract
  • diseases. Oligonucleotides with alterations to their scaffold, prepared with modified nucleosides and solid-phase synthesis, have yielded molecules with interesting biophysical properties that bind to their targets and are tolerated by the cellular machinery to elicit a therapeutic outcome. Structural
  • oligonucleotides that have been explored for gene silencing. Keywords: antisense; chemically modified oligonucleotides; crystallography; siRNA; structure; Introduction The natural nucleic acids sugar-phosphate backbone comes in two flavors, 2'-deoxyribose in DNA and ribose in RNA. However, this relative
  • production of proteins, enzymes and receptors that may be inhibited by small-molecule and antibody therapeutics. However, native RNA oligonucleotides do not possess sufficient metabolic stability for in vivo applications. Therefore, chemical modification is absolutely essential to re-engineer RNA into a
PDF
Album
Review
Published 28 Apr 2021

Enhanced target cell specificity and uptake of lipid nanoparticles using RNA aptamers and peptides

  • Roslyn M. Ray,
  • Anders Højgaard Hansen,
  • Maria Taskova,
  • Bernhard Jandl,
  • Jonas Hansen,
  • Citra Soemardy,
  • Kevin V. Morris and
  • Kira Astakhova

Beilstein J. Org. Chem. 2021, 17, 891–907, doi:10.3762/bjoc.17.75

Graphical Abstract
  • transferrin receptor is highly expressed in brain capillaries, nucleated cells, and in rapidly dividing cells [21], and its endogenous ligand transferrin has previously been used to increase transport of small molecules and oligonucleotides across the BBB [21][22][23]. The peptide T7 consisting of seven amino
  • no need for additional reactions after cleavage [27][28][29]. One approach to generate LNP formulations with higher specificity for antigen-expressing cells is to use RNA aptamers. RNA aptamers are short oligonucleotides that are evolved using a process called systematic evolution of ligands by
  • aptamers present an additional potential route for LNP internalization and target cell specificity. In order to assess the ability of aptamers to drive LNP internalization, short complementary Cy5-DNA oligonucleotides specific for each aptamer were used as probes to detect LNP uptake in different cells. In
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2021

DNA with zwitterionic and negatively charged phosphate modifications: Formation of DNA triplexes, duplexes and cell uptake studies

  • Yongdong Su,
  • Maitsetseg Bayarjargal,
  • Tracy K. Hale and
  • Vyacheslav V. Filichev

Beilstein J. Org. Chem. 2021, 17, 749–761, doi:10.3762/bjoc.17.65

Graphical Abstract
  • recognise and cut DNA sequences, or CRISPR-CAS9 [8][9][10] and CAS9-constructs [11][12][13][14] which rely on large proteins to open the target duplex, triplex-forming oligonucleotides (TFOs) [15] can be designed to bind in a sequence-specific manner to double-stranded DNA (dsDNA) [16]. In forming the
  • [47][48], a sugar [49][50], or the DNA backbone [51][52][53] leading to the formation of more stable duplexes and triplexes [54]. The introduction of sulfonamide RNA (SaRNA monomers) to replace the phosphodiester backbone led to charge-neutral sulfonamide antisense oligonucleotides (SaASOs), which
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2021

Synthesis and properties of oligonucleotides modified with an N-methylguanidine-bridged nucleic acid (GuNA[Me]) bearing adenine, guanine, or 5-methylcytosine nucleobases

  • Naohiro Horie,
  • Takao Yamaguchi,
  • Shinji Kumagai and
  • Satoshi Obika

Beilstein J. Org. Chem. 2021, 17, 622–629, doi:10.3762/bjoc.17.54

Graphical Abstract
  • , Fujisawa, Kanagawa 251-8555, Japan National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan 10.3762/bjoc.17.54 Abstract Chemical modifications have been extensively used for therapeutic oligonucleotides because they strongly enhance
  • the stability against nucleases, binding affinity to the targets, and efficacy. We previously reported that oligonucleotides modified with an N-methylguanidine-bridged nucleic acid (GuNA[Me]) bearing the thymine (T) nucleobase show excellent biophysical properties for applications in antisense
  • technology. In this paper, we describe the synthesis of GuNA[Me] phosphoramidites bearing other typical nucleobases including adenine (A), guanine (G), and 5-methylcytosine (mC). The phosphoramidites were successfully incorporated into oligonucleotides following the method previously developed for the GuNA
PDF
Supp Info
Full Research Paper
Published 04 Mar 2021

19F NMR as a tool in chemical biology

  • Diana Gimenez,
  • Aoife Phelan,
  • Cormac D. Murphy and
  • Steven L. Cobb

Beilstein J. Org. Chem. 2021, 17, 293–318, doi:10.3762/bjoc.17.28

Graphical Abstract
  • advantage that can be easily incorporated either as internally fluorinated nucleobases or as external 19F-labelled terminal tags in longer oligonucleotides (Figure 14b). As a proof of concept, Bao et al. demonstrated the utility of these tags for the direct observation and quantitative thermodynamic
PDF
Album
Review
Published 28 Jan 2021

Selected peptide-based fluorescent probes for biological applications

  • Debabrata Maity

Beilstein J. Org. Chem. 2020, 16, 2971–2982, doi:10.3762/bjoc.16.247

Graphical Abstract
  • to perform FRET in vitro and in vivo, particularly in living cells [30]. FRET-based peptide probes are heavily used for ratiometric fluorescence detection of biomolecules. Pyrene-functionalized oligonucleotides and locked nucleic acids (LNAs) are considerably used for targeting nucleic acids [31
PDF
Album
Review
Published 03 Dec 2020

Incorporation of a metal-mediated base pair into an ATP aptamer – using silver(I) ions to modulate aptamer function

  • Marius H. Heddinga and
  • Jens Müller

Beilstein J. Org. Chem. 2020, 16, 2870–2879, doi:10.3762/bjoc.16.236

Graphical Abstract
  • function opens new possibilities for applications of oligonucleotides. Keywords: aptamer; ATP; bioinorganic chemistry; DNA; imidazole; metal-mediated base pairs; Introduction Aptamers are oligonucleotides capable of recognizing and binding to specific molecules up to the size of proteins [1]. While
  • (or removal) of external triggers, allowing to switch the nucleic acid function [8]. For example, DNA can be used in nanotechnology to create mechanically moving systems such as walkers, fueled by the addition of appropriately designed oligonucleotides [9]. Moreover, external triggers can be applied
  • applied in combination with a fluorophore (fluorescein), a quencher (DABCYL), and complementary oligonucleotides to devise a system referred to as structure-switching signaling aptamer [40]. Based on this concept, two systems were devised to investigate whether the Im–Ag(I)–Im base pairs could be applied
PDF
Album
Supp Info
Full Research Paper
Published 25 Nov 2020

Changed reactivity of secondary hydroxy groups in C8-modified adenosine – lessons learned from silylation

  • Jennifer Frommer and
  • Sabine Müller

Beilstein J. Org. Chem. 2020, 16, 2854–2861, doi:10.3762/bjoc.16.234

Graphical Abstract
  • oligonucleotides has become a major tool for RNA structure and function studies. Reporter groups or specific functional entities are required to be attached at a pre-defined site of the oligomer. An attractive strategy is the incorporation of suitably functionalized building blocks that allow post-synthetic
  • Supporting Information File 1). The presence of the modified ribonucleotide in the synthesized sequence was confirmed by MALDI–TOF MS (Figure S1, Supporting Information File 1). Conclusion Oligonucleotides carrying a specific modification or functional entity at a pre-defined position are in high demand for
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2020

Synthesis and investigation of quadruplex-DNA-binding, 9-O-substituted berberine derivatives

  • Jonas Becher,
  • Daria V. Berdnikova,
  • Heiko Ihmels and
  • Christopher Stremmel

Beilstein J. Org. Chem. 2020, 16, 2795–2806, doi:10.3762/bjoc.16.230

Graphical Abstract
  • berberine derivatives was synthesized by the Cu-catalyzed click reaction of 9-propargyladenine with 9-O-(azidoalkyl)berberine derivatives. The association of the resulting berberine–adenine conjugates with representative quadruplex-forming oligonucleotides 22AG dA(G3TTA)3G3 and a2 d(ACAG4TGTG4)2 was
  • . DNA-binding properties Spectrometric titrations The interactions of the conjugates 4a–e with the quadruplex-forming oligonucleotides 22AG dA(G3TTA)3G3 and a2 d(ACAG4TGTG4)2 were analyzed by photometric and fluorimetric titrations (Figure 1). In all cases, the initial absorption maxima of the ligands
  • experiments. For that purpose, the DNA melting temperature Tm of the dye-labeled oligonucleotides F21T and Fa2T (for sequence see caption of Figure 2) was monitored by fluorescence spectroscopy, as the thermally induced unfolding of the quadruplex disrupts the Förster resonance energy transfer (FRET) between
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2020

Encrypting messages with artificial bacterial receptors

  • Pragati Kishore Prasad,
  • Naama Lahav-Mankovski,
  • Leila Motiei and
  • David Margulies

Beilstein J. Org. Chem. 2020, 16, 2749–2756, doi:10.3762/bjoc.16.225

Graphical Abstract
  • -thiogalactopyranoside (IPTG) were added to the culture, and then the cells were allowed to grow for 12 h at 30 °C. Decorating bacteria with modified oligonucleotides. The structures of the ODNs are reported in our previously published paper [2]. Samples of ODN-1:FAM-ODN-2 (duplex), ODN-1:TAMRA-ODN-2 (duplex), and CY5
PDF
Album
Full Research Paper
Published 12 Nov 2020

Optical detection of di- and triphosphate anions with mixed monolayer-protected gold nanoparticles containing zinc(II)–dipicolylamine complexes

  • Lena Reinke,
  • Julia Bartl,
  • Marcus Koch and
  • Stefan Kubik

Beilstein J. Org. Chem. 2020, 16, 2687–2700, doi:10.3762/bjoc.16.219

Graphical Abstract
  • surface plasmon resonance of the individual AuNPs starts to couple when they approach each other [7][8][9]. Early examples of optical probes working in this way are the nanoparticles introduced by Mirkin et al., containing immobilized oligonucleotides that aggregated in the presence of single-stranded DNA
PDF
Album
Supp Info
Full Research Paper
Published 02 Nov 2020

Automated high-content imaging for cellular uptake, from the Schmuck cation to the latest cyclic oligochalcogenides

  • Rémi Martinent,
  • Javier López-Andarias,
  • Dimitri Moreau,
  • Yangyang Cheng,
  • Naomi Sakai and
  • Stefan Matile

Beilstein J. Org. Chem. 2020, 16, 2007–2016, doi:10.3762/bjoc.16.167

Graphical Abstract
  • challenge is most pronounced with large substrates, such as proteins, oligonucleotides, or nanoparticles, due to the permeability barriers formed by the lipophilic core of the cell membrane [18][19]. In recent decades, the use of arginine-rich cell-penetrating peptides (CPPs) as carriers has emerged as an
PDF
Album
Supp Info
Full Research Paper
Published 14 Aug 2020

In search of visible-light photoresponsive peptide nucleic acids (PNAs) for reversible control of DNA hybridization

  • Lei Zhang,
  • Greta Linden and
  • Olalla Vázquez

Beilstein J. Org. Chem. 2019, 15, 2500–2508, doi:10.3762/bjoc.15.243

Graphical Abstract
  • Lei Zhang Greta Linden Olalla Vazquez Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein Straße 4, 35043 Marburg, Germany 10.3762/bjoc.15.243 Abstract Photoswitchable oligonucleotides can determine specific biological outcomes by light-induced conformational changes. In particular
  • translation [24][25]. Except a handful of current examples [22][24][26], most of these photoresponsive oligonucleotides are canonical ones where the classical azobenzene is the prominently used photoswitch; although spiropyrans [27], stilbenes [28], diarylethanes [29] and overcrowded alkenes [30] have also
  • S27B, Supporting Information File 1). Remarkably, its time-dependent conversion to the trans-PNA12(oF4Azo) (3) at 90 °C was surprisingly slow (Figure 2 and Figure S28, Supporting Information File 1) in contrast to the reported cis-azobenzene tethered oligonucleotides [49]. Therefore, such unique
PDF
Album
Supp Info
Letter
Published 22 Oct 2019

Identification of optimal fluorescent probes for G-quadruplex nucleic acids through systematic exploration of mono- and distyryl dye libraries

  • Xiao Xie,
  • Michela Zuffo,
  • Marie-Paule Teulade-Fichou and
  • Anton Granzhan

Beilstein J. Org. Chem. 2019, 15, 1872–1889, doi:10.3762/bjoc.15.183

Graphical Abstract
  • fluorimetric test for conformational classification of DNA oligonucleotides. As discussed above, they present complementary preferences with respect to the analyte groups, with 1p preferentially responding to hybrid and 18a to parallel G4-DNA structures. Moreover, both dyes showed excellent light-up response
  • some of the previously tested oligonucleotides (c-myc, 25CEB, 22AG, 46AG, TBA, ct DNA). Altogether, the panel of analytes comprehended five conformational groups of roughly equal size, representing the three G4 topologies (parallel, antiparallel and hybrid) as well as single and double strands. RNA
  • oligonucleotide, K-100 buffer). The data points corresponding to the oligonucleotides in the set are displayed in a 2D scatter plot (Figure 8), featuring normalized emission intensities of 1p and 18a dyes as x and y axes, respectively. Notably, the oligonucleotides appeared to be grouped in clusters broadly
PDF
Album
Supp Info
Full Research Paper
Published 06 Aug 2019

Electrophilic oligodeoxynucleotide synthesis using dM-Dmoc for amino protection

  • Shahien Shahsavari,
  • Dhananjani N. A. M. Eriyagama,
  • Bhaskar Halami,
  • Vagarshak Begoyan,
  • Marina Tanasova,
  • Jinsen Chen and
  • Shiyue Fang

Beilstein J. Org. Chem. 2019, 15, 1116–1128, doi:10.3762/bjoc.15.108

Graphical Abstract
  • thioester. Using the technology, the sensitive groups can be installed at any location within the ODN sequences without using any sequence- or functionality-specific conditions and procedures. Keywords: Dmoc; electrophilic; oligonucleotides; protecting group; solid-phase synthesis; Introduction After over
PDF
Album
Supp Info
Full Research Paper
Published 20 May 2019

Tuning the stability of alkoxyisopropyl protection groups

  • Zehong Liang,
  • Henna Koivikko,
  • Mikko Oivanen and
  • Petri Heinonen

Beilstein J. Org. Chem. 2019, 15, 746–751, doi:10.3762/bjoc.15.70

Graphical Abstract
  • , since hydrolysis in water solution is not often a very practical method for detritylation, due to hydrophobicity of the trityl derivative. Nevertheless, half-times for the deprotection of 5’-O-dimethoxytrityl oligonucleotides have been determined under several different conditions [15]. The values
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2019

Aqueous olefin metathesis: recent developments and applications

  • Valerio Sabatino and
  • Thomas R. Ward

Beilstein J. Org. Chem. 2019, 15, 445–468, doi:10.3762/bjoc.15.39

Graphical Abstract
  • reactions can be integrated in the toolbox of chemical proteomics. Recently, following a similar strategy, Lu et al. reported on-DNA RCM and CM, an application potentially useful to generate DNA-encoded libraries for hit identification and target validation [90]. Substrates appended to oligonucleotides
PDF
Album
Review
Published 14 Feb 2019

Synthesis, biophysical properties, and RNase H activity of 6’-difluoro[4.3.0]bicyclo-DNA

  • Sibylle Frei,
  • Adam K. Katolik and
  • Christian J. Leumann

Beilstein J. Org. Chem. 2019, 15, 79–88, doi:10.3762/bjoc.15.9

Graphical Abstract
  • addition of an electrophilic iodine during the nucleosidation step followed by reduction. The gem-difluorinated bicyclic nucleoside was then converted into the corresponding phosphoramidite building block which was incorporated into oligonucleotides. Thermal denaturation experiments of these
  • oligonucleotides hybridized to complementary DNA or RNA disclosed a significant destabilization of both duplex types (ΔTm/mod = −1.6 to −5.5 °C). However, in the DNA/RNA hybrid the amount of destabilization could be reduced by multiple insertions of the modified unit. In addition, CD spectroscopy of the
  • oligonucleotides hybridized to RNA showed a similar structure than the natural DNA/RNA duplex. Furthermore, since the structural investigation on the nucleoside level by X-ray crystallography and ab initio calculations pointed to a furanose conformation in the southern region, a RNase H cleavage assay was
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2019

6’-Fluoro[4.3.0]bicyclo nucleic acid: synthesis, biophysical properties and molecular dynamics simulations

  • Sibylle Frei,
  • Andrei Istrate and
  • Christian J. Leumann

Beilstein J. Org. Chem. 2018, 14, 3088–3097, doi:10.3762/bjoc.14.288

Graphical Abstract
  • Sibylle Frei Andrei Istrate Christian J. Leumann Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland 10.3762/bjoc.14.288 Abstract Here we report on the synthesis, biophysical properties and molecular modeling of oligonucleotides containing
  • phosphoramidite building blocks into oligonucleotides was achieved with tert-butyl hydroperoxide as oxidation agent. Thermal melting experiments of the modified duplexes disclosed a destabilizing effect versus DNA and RNA complements, but with a lesser degree of destabilization versus complementary DNA (ΔTm/mod
  • use of therapeutic antisense oligonucleotides (AONs) [1][2][3][4]. These short, synthetic fragments bind through Watson–Crick base pairing to cellular RNA, thus modulating or silencing the gene expression through various mechanisms [5][6][7]. One mode of action is the recruitment of the endonuclease
PDF
Album
Supp Info
Full Research Paper
Published 20 Dec 2018
Other Beilstein-Institut Open Science Activities