Search results

Search for "doping" in Full Text gives 412 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Microplastic pollution in Himalayan lakes: assessment, risks, and sustainable remediation strategies

  • Sameeksha Rawat,
  • S. M. Tauseef and
  • Madhuben Sharma

Beilstein J. Nanotechnol. 2025, 16, 2144–2167, doi:10.3762/bjnano.16.148

Graphical Abstract
  • is TiO2, which is known for being stable, effective, and able to produce ROS when exposed to UV light [43]. The effectiveness of TiO2 has been improved recently by doping it with nonmetals like sulfur and nitrogen or combining it with carbon-based compounds like graphene. According to Xiao et al
PDF
Album
Supp Info
Review
Published 25 Nov 2025

Electron transport through nanoscale multilayer graphene and hexagonal boron nitride junctions

  • Aleksandar Staykov and
  • Takaya Fujisaki

Beilstein J. Nanotechnol. 2025, 16, 2132–2143, doi:10.3762/bjnano.16.147

Graphical Abstract
  • perpendicular to the layers in the stacking direction. We compared the decay of the current with the number of layers and evaluated the ability of h-BN to filter currents as a material coating. To investigate the effect of disorder, we included two major defects in the graphene lattice, namely, nitrogen doping
  • and Stone–Wales defects. Nitrogen doping transforms graphene from a zero-bandgap semiconductor to a metal, while Stone–Wales defects open the bandgap. For h-BN, we considered Stone–Wales defects. A detailed comparison of electron transport through five materials, that is, multilayer nanoscale graphene
  • band structure are calculated. The graphitic nitrogen doping is performed for a 4 × 4 × 1 supercell with one nitrogen atom substituting one carbon atom per layer. Figure 1 shows the unit cell of graphite, the DOS of graphite, the band structure of graphite, the unit cell of h-BN, the DOS of h-BN, the
PDF
Album
Supp Info
Full Research Paper
Published 24 Nov 2025

Piezoelectricity of layered double hydroxides: perspectives regarding piezocatalysis and nanogenerators

  • Evgeniy S. Seliverstov,
  • Evgeniya A. Tarasenko and
  • Olga E. Lebedeva

Beilstein J. Nanotechnol. 2025, 16, 1812–1817, doi:10.3762/bjnano.16.124

Graphical Abstract
  • /Al-LDHs. The crystal structure of LDHs is fairly flexible, enabling adjustment of their cationic composition. One widely used method for preparing LDH-based catalysts is cation doping further increasing their catalytic activity. A cobalt-doped Zn/Al-LDH (ZnCo/Al-LDH) piezoelectric catalyst was used
  • ? In one case, doping a binary LDH with third cation improved its electroactive performance. Which dopants would be most efficient for improving piezoelectric properties? Will new unexpected results emerge from multication LDHs? Only by addressing abovementioned points and questions can this field move
PDF
Album
Review
Published 20 Oct 2025

Transient electronics for sustainability: Emerging technologies and future directions

  • Jae-Young Bae,
  • Myung-Kyun Choi and
  • Seung-Kyun Kang

Beilstein J. Nanotechnol. 2025, 16, 1545–1556, doi:10.3762/bjnano.16.109

Graphical Abstract
  • silicon, while amorphous silicon exhibits the highest degradation rate among them [45]. Interestingly, doping can lead to a retardation of degradation [42], resembling the etch-stop phenomenon in the potassium hydroxide process. This newfound understanding of biodegradability of electronic-grade silicon
PDF
Album
Perspective
Published 04 Sep 2025

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications

  • Akshana Parameswaran Sreekala,
  • Pooja Raveendran Nair,
  • Jithin Kundalam Kadavath,
  • Bindu Krishnan,
  • David Avellaneda Avellaneda,
  • M. R. Anantharaman and
  • Sadasivan Shaji

Beilstein J. Nanotechnol. 2025, 16, 1428–1498, doi:10.3762/bjnano.16.104

Graphical Abstract
PDF
Album
Review
Published 27 Aug 2025

Crystalline and amorphous structure selectivity of ignoble high-entropy alloy nanoparticles during laser ablation in organic liquids is set by pulse duration

  • Robert Stuckert,
  • Felix Pohl,
  • Oleg Prymak,
  • Ulrich Schürmann,
  • Christoph Rehbock,
  • Lorenz Kienle and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2025, 16, 1141–1159, doi:10.3762/bjnano.16.84

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2025

Single-layer graphene oxide film grown on α-Al2O3(0001) for use as an adsorbent

  • Shiro Entani,
  • Mitsunori Honda,
  • Masaru Takizawa and
  • Makoto Kohda

Beilstein J. Nanotechnol. 2025, 16, 1082–1087, doi:10.3762/bjnano.16.79

Graphical Abstract
  • XPS spectra of SLG/α-Al2O3(0001) is shifted to the lower binding energies by 1.0 eV compared with that of graphite (284.4 eV) [23]. This is due to p-type doping of SLG associated with a strong electrostatic interaction between SLG and the α-Al2O3(0001) at the interface [18]. In SLGO, on the other hand
PDF
Album
Full Research Paper
Published 10 Jul 2025

Soft materials nanoarchitectonics: liquid crystals, polymers, gels, biomaterials, and others

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2025, 16, 1025–1067, doi:10.3762/bjnano.16.77

Graphical Abstract
  • aforementioned example. It is also anticipated that soft materials nanoarchitectonics using polymers will be applied in other fields, including the control of the functions of polymer semiconductors. The process of chemical doping of molecular semiconductors is based on electron transfer reactions between the
  • between benzoquinone and hydroquinone is precisely controlled by pH, in accordance with the Nernst equation. In order to compensate for the charge carriers in the semiconductor, dopant ions must be supplied through the redox reaction. The efficient doping of polymeric organic semiconductor thin films is
  • achieved through the synergistic reaction of the proton coupling electron transfer reaction and the insertion of hydrophobic ions. This process has enabled the efficient doping of crystalline organic semiconductor thin films at room temperature. By examining the conditions, it is possible to achieve strong
PDF
Album
Review
Published 04 Jul 2025

Ar+ implantation-induced tailoring of RF-sputtered ZnO films: structural, morphological, and optical properties

  • Manu Bura,
  • Divya Gupta,
  • Arun Kumar and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 872–886, doi:10.3762/bjnano.16.66

Graphical Abstract
  • 23 keV co-implanted (H+ and N+ ions) ZnO films. But in these two above-quoted reports nitrogen ions were used for implantation. Nitrogen ions act as n-type doping and can alter the stoichiometry of ZnO films, which is not desirable in certain optoelectronic devices [10][11]. Hence, we have used Ar
PDF
Album
Full Research Paper
Published 11 Jun 2025

Synchrotron X-ray photoelectron spectroscopy study of sodium adsorption on vertically arranged MoS2 layers coated with pyrolytic carbon

  • Alexander V. Okotrub,
  • Anastasiya D. Fedorenko,
  • Anna A. Makarova,
  • Veronica S. Sulyaeva,
  • Yuliya V. Fedoseeva and
  • Lyubov G. Bulusheva

Beilstein J. Nanotechnol. 2025, 16, 847–859, doi:10.3762/bjnano.16.64

Graphical Abstract
  • -MoS2 are retained, but their positions shift toward higher energies as compared to the spectra of the initial samples. The shift value of the Mo 3d and S 2p components of 2H-MoS2 increases with the deposited sodium concentration because of increased charge doping. The intensity of Mo 3d and S 2p
  • between the MoS2 layers leads to a 2H–1T′ transition and electron charge doping from sodium. The Na/Mo ratio decreases after annealing of the sodiated MoS2 film because of the partial removal of sodium, primarily from the film surface. After annealing, the sodiated MoS2 film still contains a high
PDF
Album
Supp Info
Full Research Paper
Published 10 Jun 2025

Synthesis and magnetic transitions of rare-earth-free Fe–Mn–Ni–Si-based compositionally complex alloys at bulk and nanoscale

  • Shabbir Tahir,
  • Tatiana Smoliarova,
  • Carlos Doñate-Buendía,
  • Michael Farle,
  • Natalia Shkodich and
  • Bilal Gökce

Beilstein J. Nanotechnol. 2025, 16, 823–836, doi:10.3762/bjnano.16.62

Graphical Abstract
  • modification, doping strategies, and material synthesis have been shown to effectively tune the phase transition characteristics, such as the temperature, coercivity (Hc), magnetization, and Curie or Néel temperatures [7][8][9]. For instance Zhou et al. [10] reported that adjusting the composition of NiMnGa to
  • (which partly substitutes Mn atoms) and Ge or Al (which partially replaces Si atoms) [24] (forming CCAs), it effectively lowers the structural and magnetic phase transition temperatures while maintaining the overall magnetization. Previous studies on bulk MnFeNiGeSi [25] (i.e., doping MnNiSi with Fe and
  • Ge) and MnFeNiSiAl [24] (i.e., doping NiMnSi with Fe and Al) alloys, synthesized by arc melting of pure elements show a second-order magnetostructural phase transition between 170 and 220 K with an isothermal entropy change of −7.3 J·kg−1·K−1 at 2.5 T and a first-order magnetostructural phase
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2025

Morphology and properties of pyrite nanoparticles obtained by pulsed laser ablation in liquid and thin films for photodetection

  • Akshana Parameswaran Sreekala,
  • Bindu Krishnan,
  • Rene Fabian Cienfuegos Pelaes,
  • David Avellaneda Avellaneda,
  • Josué Amílcar Aguilar-Martínez and
  • Sadasivan Shaji

Beilstein J. Nanotechnol. 2025, 16, 785–805, doi:10.3762/bjnano.16.60

Graphical Abstract
  • another study, the optoelectronic properties of FeS2 films in the visible light spectral region were made by doping and undoping Zn onto electrodeposited pyrite films. The Zn-doped samples exhibited a 9.2-fold increase in responsivity. The best Zn-doped condition showed a responsivity and detectivity of
  • 0.206 A·W–1 and 3.3 × 109 Jones, respectively, while a detectivity of 1.98 × 109 Jones was reported for undoped samples, which are analogous to the values obatined in present study. This results also suggests a future possibility of doping the films prepared using laser ablated nanocolloids for refining
PDF
Album
Supp Info
Full Research Paper
Published 03 Jun 2025

Thickness dependent oxidation in CrCl3: a scanning X-ray photoemission and Kelvin probe microscopies study

  • Shafaq Kazim,
  • Rahul Parmar,
  • Maryam Azizinia,
  • Matteo Amati,
  • Muhammad Rauf,
  • Andrea Di Cicco,
  • Seyed Javid Rezvani,
  • Dario Mastrippolito,
  • Luca Ottaviano,
  • Tomasz Klimczuk,
  • Luca Gregoratti and
  • Roberto Gunnella

Beilstein J. Nanotechnol. 2025, 16, 749–761, doi:10.3762/bjnano.16.58

Graphical Abstract
  • . employed Monte Carlo methods to observe ferromagnetic behavior in monolayers below 66 K and proposed that hole doping could further enhance the Curie temperature [21]. Similarly, another Monte Carlo study found that the transition temperature for monolayer CrCl3 is 49 K, proposing that the Curie
  • electronic properties of a material. Neal et al. [34] reported the effect of chemisorption of oxygen as a kind of p-type doping, which shows consistency with our results. We expect the surface potential to show the same behavior depending on the chemical composition found by spatially resolved photoemission
PDF
Album
Supp Info
Full Research Paper
Published 02 Jun 2025

Nanostructured materials characterized by scanning photoelectron spectromicroscopy

  • Matteo Amati,
  • Alexey S. Shkvarin,
  • Alexander I. Merentsov,
  • Alexander N. Titov,
  • María Taeño,
  • David Maestre,
  • Sarah R. McKibbin,
  • Zygmunt Milosz,
  • Ana Cremades,
  • Rainer Timm and
  • Luca Gregoratti

Beilstein J. Nanotechnol. 2025, 16, 700–710, doi:10.3762/bjnano.16.54

Graphical Abstract
  • footprint allows for the combination of different materials with dislocation-free interfaces and to form axial or radial heterostructures of varying material, doping, or crystal phase [17][18][19]. Nanowire heterostructures based on III–V semiconductors are especially promising for electronic
PDF
Album
Review
Published 23 May 2025

The impact of tris(pentafluorophenyl)borane hole transport layer doping on interfacial charge extraction and recombination

  • Konstantinos Bidinakis and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2025, 16, 678–689, doi:10.3762/bjnano.16.52

Graphical Abstract
  • devices are the small molecule 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (spiro-OMeTAD) and the polymer poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA). In this work, we investigate the impact of hole transport layer doping on the performance and potential distribution
  • ; hole transport layer doping; Kelvin probe force microscopy; perovskite solar cells; Introduction Perovskite solar cells (PSCs) are a promising class of photovoltaic material that exhibits high power conversion efficiencies and relies on a low-cost solution-processed fabrication method [1][2][3][4]. At
  • adjacent perovskite. There have been many studies trying to address these points and advance PSC performance through HTL optimization, with conventional approaches mainly focusing on the doping strategies applied to these two materials [26][27][28][29]. The organic semiconductors spiro-OMeTAD and PTAA are
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2025

Colloidal few layered graphene–tannic acid preserves the biocompatibility of periodontal ligament cells

  • Teissir Ben Ammar,
  • Naji Kharouf,
  • Dominique Vautier,
  • Housseinou Ba,
  • Nivedita Sudheer,
  • Philippe Lavalle and
  • Vincent Ball

Beilstein J. Nanotechnol. 2025, 16, 664–677, doi:10.3762/bjnano.16.51

Graphical Abstract
  • antioxidant properties at lower concentrations, TA can act as a prooxidant at higher concentrations. Under these conditions, it binds to metal ions, potentially increasing oxidation and causing damage to biomolecules, especially DNA [17]. Doping GBMs with bioactive molecules like TA represents a potentially
PDF
Album
Supp Info
Full Research Paper
Published 20 May 2025

Nanoscale capacitance spectroscopy based on multifrequency electrostatic force microscopy

  • Pascal N. Rohrbeck,
  • Lukas D. Cavar,
  • Franjo Weber,
  • Peter G. Reichel,
  • Mara Niebling and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2025, 16, 637–651, doi:10.3762/bjnano.16.49

Graphical Abstract
  • of 1.5–4.0 Ωcm, and with p-type doping with B atoms. These wafers were thermally oxidized with 300 nm SiO2. A compact coating unit 010/LV with the sputter head SP010 was used to sputter 14 nm of Pt on top of the wafer. The microcapacitors were then milled out of the surface using a FEI Nova600
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2025

N2+-implantation-induced tailoring of structural, morphological, optical, and electrical characteristics of sputtered molybdenum thin films

  • Usha Rani,
  • Kafi Devi,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 495–509, doi:10.3762/bjnano.16.38

Graphical Abstract
  • conductivity of molybdenum thin films by introducing defects, modifying the crystal structure, doping the material with nitrogen ions, and potentially improving surface characteristics. Correlation of structural, optical, and electrical parameters with thickness Figure 12 depicts the mutual correlations
PDF
Album
Full Research Paper
Published 01 Apr 2025

Quantification of lead through rod-shaped silver-doped zinc oxide nanoparticles using an electrochemical approach

  • Ravinder Lamba,
  • Gaurav Bhanjana,
  • Neeraj Dilbaghi,
  • Vivek Gupta and
  • Sandeep Kumar

Beilstein J. Nanotechnol. 2025, 16, 422–434, doi:10.3762/bjnano.16.33

Graphical Abstract
  • activity, and semiconductor properties. By doping ZnO nanoparticles with transition metals, we can alter their electrical, optical, and magnetic properties by introducing new electronic states into the band structure. Herein, Ag is added to ZnO nanostructures to improve their optical properties to detect
  • sensitivity toward lead. The lead chemical sensor that was developed had a detection limit of 3 ppm with a sensitivity of 16 µA·ppm−1·cm−2. The recorded reaction time of lead sensor was less than two seconds. Keywords: electrochemical methods; chemical sensor; doping; lead; nanoparticles; ZnO nanorods
  • particularly well-suited for ZnO doping because of its notable characteristics, including strong conductivity, solubility, favorable ionic size, and low orbital energy. These features contribute to the improvement of optical and electrical characteristics of ZnO. The incorporation of silver boosts the mobility
PDF
Album
Full Research Paper
Published 26 Mar 2025

Vortex lattices of layered HTSCs at different vortex–vortex interaction potentials

  • Valerii P. Lenkov,
  • Anastasia N. Maksimova,
  • Anna N. Moroz and
  • Vladimir A. Kashurnikov

Beilstein J. Nanotechnol. 2025, 16, 362–370, doi:10.3762/bjnano.16.27

Graphical Abstract
  • superconductors can be represented as a stack of pancakes, that is, flat vortices located in the CuO planes and connected by Josephson interaction through interplanar gaps. The vortex structure in layered HTSCs is still a subject of research. In [7], it was shown that Pb doping increases the two-dimensional
PDF
Album
Full Research Paper
Published 13 Mar 2025

Tailoring of physical properties of RF-sputtered ZnTe films: role of substrate temperature

  • Kafi Devi,
  • Usha Rani,
  • Arun Kumar,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 333–348, doi:10.3762/bjnano.16.25

Graphical Abstract
  • . Rakhshani et al. [16] reported the impact of substrate temperature (35 and 305 °C), thermal annealing, and nitrogen doping on optoelectronic properties of ZnTe films and established an optimal doping concentration of nitrogen for lowering the resistivity of the grown films. Further, there are reports [17
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2025

Emerging strategies in the sustainable removal of antibiotics using semiconductor-based photocatalysts

  • Yunus Ahmed,
  • Keya Rani Dutta,
  • Parul Akhtar,
  • Md. Arif Hossen,
  • Md. Jahangir Alam,
  • Obaid A. Alharbi,
  • Hamad AlMohamadi and
  • Abdul Wahab Mohammad

Beilstein J. Nanotechnol. 2025, 16, 264–285, doi:10.3762/bjnano.16.21

Graphical Abstract
  • CB of the material [58][59]. This action serves to reduce the bandgap, which in turn extends the absorption wavelength edge towards the region of visible light [60][61]. The idea of modifying semiconductor materials in the second generation involves the process of co-doping with both metal and
  • under visible light. When using TiO2 in a full-scale field deployment, reducing the amount and utilizing solar energy can be extremely cost-effective and beneficial to wastewater treatment. Researchers have improved the photocatalytic activity of bulk TiO2 through various modifications, including doping
  • endeavors have been undertaken, including the creation of heterojunctions or the introduction of metal doping. Wang et al. [84] synthesized BiOCl/Mt photocatalysts in which montmorillonite (Mt), which is naturally rich in iron, was combined with bismuth nitrate. According to the authors, the composite
PDF
Album
Review
Published 25 Feb 2025

Preferential enrichment and extraction of laser-synthesized nanoparticles in organic phases

  • Theo Fromme,
  • Maximilian L. Spiekermann,
  • Florian Lehmann,
  • Stephan Barcikowski,
  • Thomas Seidensticker and
  • Sven Reichenberger

Beilstein J. Nanotechnol. 2025, 16, 254–263, doi:10.3762/bjnano.16.20

Graphical Abstract
  • ], and/or carbon shells on the nanoparticle surface [7]. These carbon shells are either amorphous or graphitic [7][8][30], while doping of the shells [31] is also possible. Besides carbon formation, the choice of organic solvent influences the properties of the generated nanoparticles and process
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2025

Recent advances in photothermal nanomaterials for ophthalmic applications

  • Jiayuan Zhuang,
  • Linhui Jia,
  • Chenghao Li,
  • Rui Yang,
  • Jiapeng Wang,
  • Wen-an Wang,
  • Heng Zhou and
  • Xiangxia Luo

Beilstein J. Nanotechnol. 2025, 16, 195–215, doi:10.3762/bjnano.16.16

Graphical Abstract
  • bandgap width of TiO2 (≈3.3 eV) is relatively large; thus, absorption of visible light is very weak. Through non-metallic doping, some localized states can be generated above the O 2p orbitals, and the valence band of TiO2 can be reconstructed, resulting in an upward shift of the valence band and a
  • and loading of photothermal nanomaterials is warranted to address more ophthalmic conditions. Modifying these materials with specific targeting molecules could extend their therapeutic applications to various eye tissues. Surface doping with metabolism-related ions could enable precise control over
PDF
Album
Review
Published 17 Feb 2025

Comparison of organic and inorganic hole transport layers in double perovskite material-based solar cell

  • Deepika K and
  • Arjun Singh

Beilstein J. Nanotechnol. 2025, 16, 119–127, doi:10.3762/bjnano.16.11

Graphical Abstract
  • -circuit current density (JSC) of 13.26 mA/cm2, and a fill factor (FF) of 66%. The PCE is close to that of the Pt-based counter electrode (PCE = 6.86%). Akman [3] used hydrothermal methods to synthesize the photoanodes with different doping sources to further improve the stability of DSSCs. For 1.0 mol
  • % Mn doping and an Eu compact layer, an efficiency of 4.20% was obtained. Currently, perovskite solar cells (PSCs) are attracting the attention of research communities worldwide because of their outstanding and unique properties. PSCs possess desirable characteristics such as cost-effectiveness
  • optimized PSC device displays a higher efficiency of 27.84% with Cu2O and 27.38% with PEDOT:PSS for the planar n-i-p FTO/WS2/LNMO/HTL/Au device structure. However, highly efficient organic HTLs have a few disadvantages over inorganic HTLs, including multistep synthesis requiring additional doping, leading
PDF
Album
Full Research Paper
Published 06 Feb 2025
Other Beilstein-Institut Open Science Activities