Search results

Search for "E. coli" in Full Text gives 73 result(s) in Beilstein Journal of Nanotechnology.

Antibacterial activity of a berberine nanoformulation

  • Hue Thi Nguyen,
  • Tuyet Nhung Pham,
  • Anh-Tuan Le,
  • Nguyen Thanh Thuy,
  • Tran Quang Huy and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2022, 13, 641–652, doi:10.3762/bjnano.13.56

Graphical Abstract
  • BBR NPs in water. Antibacterial activity The antibacterial activity of pure BBR and BBR NPs prepared at different concentrations against MRSA and E. coli O157:H7 was compared in vitro using the modified disk diffusion method. Figure 4 and Table 1 show the inhibitory zones of pure BBR (at the
  • saturation concentration of 2.0 mg/mL) and BBR NPs (2.0, 3.0, and 4.0 mg/mL) against MRSA and E. coli O157:H7. An inhibitory zone with a diameter of 15 mm was found for pure BBR against MRSA at a concentration of 2.0 mg/mL (Figure 4a). At the same concentration, BBR NPs gave a higher diameter of the
  • least 2.0 mg/mL. Higher concentrations of BBR could be obtained due to the nanoformulation. Thus, the antibacterial activity could be enhanced. In contrast, determining the inhibition zones against E. coli O157:H7 at different concentrations was very difficult (Figure 4b). Therefore, this method is
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • TiO2 nps to kill even desiccation-resistant microbes, their value has increased in the food, cosmetic, and drug industries. Recently, glass surfaces coated with silver and TiO2 nps showed promising results against bacteria S. aureus (Gram positive) and E. coli (Gram negative) as compared to the
  • TiO2 nps [83]. TiO2 supported on silica nanospheres was checked for its antibacterial activity against E. coli, and the result demonstrated a more effective growth inhibition than that of commercial TiO2-P25 under ultraviolet and visible light [84]. Copper is well known for its antimicrobial properties
  • [92]. Shabib and his colleagues published an interesting study on the synthesis of TiO2 nps from the root extract of W. somnifera and examined its broad-spectrum antibiofilm potential against E. coli, Pseudomonas aeruginosa, methicillin-resistant S. aureus, Listeria monocytogenes, Serratia marcescens
PDF
Album
Review
Published 14 Feb 2022

Bacterial safety study of the production process of hemoglobin-based oxygen carriers

  • Axel Steffen,
  • Yu Xiong,
  • Radostina Georgieva,
  • Ulrich Kalus and
  • Hans Bäumler

Beilstein J. Nanotechnol. 2022, 13, 114–126, doi:10.3762/bjnano.13.8

Graphical Abstract
  • the CCD method after precipitation, as well as after cross-linking, dissolution, and final washing steps are shown in Figure 1. The zeta potential of HbMP in phosphate-buffered saline (PBS), pH 7.4, was −8.51 ± 0.9 mV. The zeta potential in PBS, pH 7.0, of E. coli was −16 mV, that of S. epidermidis
  • bacteria were found in the fraction of the sediment. Influence of glutaraldehyde on bacterial growth E. coli cells cultivated with 0.02% glutaraldehyde at 37 °C showed a significantly reduced growth compared to the control group in normal growth medium (Figure 2A). However, the growth of bacteria was
  • ). Glutaraldehyde significantly inhibits the proliferation of bacteria under the given conditions. During cultivation of E. coli with the addition of glutaraldehyde at room temperature, there were also significant differences in growth rates compared to the control (Figure 2C). After a small increase in the optical
PDF
Album
Full Research Paper
Published 24 Jan 2022

Theranostic potential of self-luminescent branched polyethyleneimine-coated superparamagnetic iron oxide nanoparticles

  • Rouhollah Khodadust,
  • Ozlem Unal and
  • Havva Yagci Acar

Beilstein J. Nanotechnol. 2022, 13, 82–95, doi:10.3762/bjnano.13.6

Graphical Abstract
  • -stranded PIC, this solution was heated to 55 °C then cooled back to room temperature according to the instructions from the manufacturer. As DNA plasmids, GFP plasmids (16542: pBI-MCS-EGFP) were purchased from Addgen, propagated in DH5α competent E. coli bacteria, and purified using the QIAGEN EndoFree
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
PDF
Album
Supp Info
Review
Published 04 Jan 2022

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • International Licence, http://creativecommons.org/licenses/by/4.0/. (A) A κ-carrageenan-stabilized hydroxyapatite rod-shaped nanocomposite. (B) Antibacterial study using E. coli, S. aureus, B. subtilis, P. aeruginosa showing the bactericidal properties of the nanocomposite. (C) The nanocomposite shows
PDF
Album
Review
Published 18 Aug 2021

Silver nanoparticles nucleated in NaOH-treated halloysite: a potential antimicrobial material

  • Yuri B. Matos,
  • Rodrigo S. Romanus,
  • Mattheus Torquato,
  • Edgar H. de Souza,
  • Rodrigo L. Villanova,
  • Marlene Soares and
  • Emilson R. Viana

Beilstein J. Nanotechnol. 2021, 12, 798–807, doi:10.3762/bjnano.12.63

Graphical Abstract
  • analysis and differential scanning calorimetry. The antimicrobial properties of the Ag-NPs were investigated against E. coli and S. aureus. The potential of the Ag-NPs for industrial application was tested by dispersing them into low-density polyethylene. The importance of the chemical affinity between
  • 25922) and Staphylococcus aureus (ATCC 29213). This was achieved by inoculating the bacteria in selective culture media (rapid coliform broth agar for E. coli and salted manitol agar for S. aureus), followed by 24 h of incubation at 37 °C. After incubation, five colonies of each bacterial species were
  • , antimicrobial surface activity tests were performed for LDPE samples doped with Ag/HNT-8 and Ag/HNT-8/DIO. The tests were performed following the guidelines specified in the JIS Z2801 standard, and consist of preparing E. coli and S. aureus suspensions (analogous to the ones produced in the MIC analysis) and
PDF
Album
Full Research Paper
Published 05 Aug 2021

Recent progress in actuation technologies of micro/nanorobots

  • Ke Xu and
  • Bing Liu

Beilstein J. Nanotechnol. 2021, 12, 756–765, doi:10.3762/bjnano.12.59

Graphical Abstract
  • /nanorobots, for example, the flagella or cilia of swimming microorganisms. Behkam and Sitti [45] suspended droplets of bacteria, such as E. coli, and polystyrene in a solution of water and glucose. After absorbing the glucose nutrient, the rotating flagella of the bacteria pushed the droplets forward, and
PDF
Album
Review
Published 20 Jul 2021

A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization

  • Gabriel M. Misirli,
  • Kishore Sridharan and
  • Shirley M. P. Abrantes

Beilstein J. Nanotechnol. 2021, 12, 440–461, doi:10.3762/bjnano.12.36

Graphical Abstract
  • activity against E. coli, Bacillus subtilis, and Staphylococcus aureus of spherical AgNPs of various sizes and concluded that their effectiveness increased with decreasing size, regardless of the bacterial strains [43]. On the other hand, studies indicate that the reactivity and antibacterial activity of
PDF
Album
Supp Info
Review
Published 14 May 2021

Imaging of SARS-CoV-2 infected Vero E6 cells by helium ion microscopy

  • Natalie Frese,
  • Patrick Schmerer,
  • Martin Wortmann,
  • Matthias Schürmann,
  • Matthias König,
  • Michael Westphal,
  • Friedemann Weber,
  • Holger Sudhoff and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 172–179, doi:10.3762/bjnano.12.13

Graphical Abstract
  • field of cell biology for imaging various human and animal cells. These include cartilage [2], cancer [3], liver [4], kidney [5] and stem cells [6], as well as fibrin fibers [7]. To visualize viruses and their host organisms, HIM has so far been applied to image T4 phage-infected E. coli bacteria [8
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2021

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
  • including Escherichia coli (E. coli) and K. Pneumonia when the cell culture supernatant is used [268]. However, the main downside of bacteriogenic synthesis is the slow synthesis rate and large size distribution compared to other green methods [104][259]. The applications of bacteria-synthesized AgNPs can
PDF
Album
Review
Published 25 Jan 2021

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
  • nanopillar texture on the wing of a dragonfly Orthetrum villosovittatum was studied. In addition to imaging the wing alone, samples were prepared with E. coli bacteria on them, to study the bactericidal properties of the nanostructure. Along similar lines, the nanostructures on the wings of three different
  • fabrication (lamellae preparation and conductive coatings) have hindered the studies of phage–bacterium interactions in their natural microbial environments. HIM imaging of phages and phage–bacterium interactions were performed for the first time in 2017 in [17] for bacterial colonies of E. coli on an agar
  • prey cell is transformed into a bdelloplast, in which the predator elongates and divides. In a final step, the bdelloplast lyses and the Bdellovibrio offspring is released and ready to attack another cell. A HIM micrograph of the attachment of a Bdellovibrio to E. coli is shown in Figure 9. Again, it
PDF
Album
Review
Published 04 Jan 2021

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • bacteria (inhibition zone diameter of E. coli: 22 ± 0.86 mm) and Gram-positive bacteria (inhibition zone diameter of B. subtilis: 23 ± 0.9 mm) [88]. Bio-reduction of silver nitrate with Parkia speciosa leaf extract generated spherical Ag NPs with an average particle size of 31 nm [89]. A major
  • antibacterial activity against S. aureus was followed by B. subtilis, E. coli and P. aeruginosa. By using latex extracted from an immature Papaya carica fruit and silver nitrate, spherical and highly stable Ag NPs were also obtained. The reduction in Gram-positive bacteria, such as E. faecalis and B. subtilis
  • , was lower than the reduction in Gram-negative bacteria, such as V. cholerae, P. mirabilis, E. coli, and K. pneumonia. ZnO NPs are of great interest because their synthesis is economical, safe and easy [72]. Vijayakumar et al. (2018) investigated the antimicrobial and antifungal effect of spherical ZnO
PDF
Album
Review
Published 25 Sep 2020

Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms

  • Mykola Borzenkov,
  • Piersandro Pallavicini,
  • Angelo Taglietti,
  • Laura D’Alfonso,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2020, 11, 1134–1146, doi:10.3762/bjnano.11.98

Graphical Abstract
  • tested [53]. It was shown that gold-nanoshell-modified surfaces can effectively kill E. faecalis on silicone surfaces under NIR irradiation. Several bacterial strains (E. coli, Bacillus subtilis, Exiguobacterium sp. AT1b), deposited on surfaces precoated with nanoporous gold disks, were inactivated after
  • 80 °C, sufficient for the photothermal ablation of both Gram-positive (Bacillus subtilis and S. aureus) and Gram-negative bacteria (E. coli and P. aeruginosa). Polymeric nanocomposites containing photothermally active gold nanoparticles for bacteria and biofilm ablation Despite the increasing number
  • . The local photothermal effect triggered by the NIR irradiation of PVA-GNS films was highly efficient in eliminating E. coli bacteria, as shown in Figure 4. In a very recent study, the antimicrobial activity of a chitosan-based hydrogel with embedded gold nanorods under low-power (200 mW) diode laser
PDF
Album
Review
Published 31 Jul 2020

Gram-scale synthesis of splat-shaped Ag–TiO2 nanocomposites for enhanced antimicrobial properties

  • Mohammad Jaber,
  • Asim Mushtaq,
  • Kebiao Zhang,
  • Jindan Wu,
  • Dandan Luo,
  • Zihan Yi,
  • M. Zubair Iqbal and
  • Xiangdong Kong

Beilstein J. Nanotechnol. 2020, 11, 1119–1125, doi:10.3762/bjnano.11.96

Graphical Abstract
  • –TiO2 NCs was tested against the Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) bacterial strains. The Ag–TiO2 NCs exhibited promising and superior antibacterial properties compared to TiO2 nanospheres as confirmed by the bacterial growth and inhibition zone
  • activity of the as-prepared nanocomposites was investigated against Gram-positive S. aureus and Gram-negative E. coli. Experimental Synthesis of the Ag–TiO2 nanocomposite A hydrothermal method was used to prepare the Ag–TiO2 nanocomposite on a gram-scale. 1.25 mol/L of a 16.0 mL titanium sulfate solution
  • Gram-positive Staphylococcus aureus (S. aureus) (ATCC 6538) and Gram-negative Escherichia coli (E. coli) (ATCC 8099) were obtained from the Shanghai Amoy Strain Biotechnology Co. (Shanghai, China). The disc diffusion method was applied to check the antibacterial activity of the prepared pure TiO2 NPs
PDF
Album
Full Research Paper
Published 29 Jul 2020

Silver-decorated gel-shell nanobeads: physicochemical characterization and evaluation of antibacterial properties

  • Marta Bartel,
  • Katarzyna Markowska,
  • Marcin Strawski,
  • Krystyna Wolska and
  • Maciej Mazur

Beilstein J. Nanotechnol. 2020, 11, 620–630, doi:10.3762/bjnano.11.49

Graphical Abstract
  • number of studies has been devoted to non-supported silver nanoparticles and their antimicrobial properties. For example, Martínez-Castañón and co-workers showed that spherical silver nanoparticles of 7 nm in size inhibit the growth of E. coli and S. aureus in concentrations of 6.25 and 7.5 μg/mL
  • , respectively [25]. In another study, citrate-stabilized nanoparticles (average diameter of 9 nm) inhibited the growth of E. coli and S. aureus at 10 and 5 μg/mL, respectively [26]. We report herein on the synthesis of nanocomposites with antibacterial properties. The polystyrene nanobeads were modified with
  • silver nanoparticles. Radzig and co-workers observed that Ag nanoparticles of 8.3 ± 1.9 nm in size hamper the biofilm formation of E. coli and P. aeruginosa. The reduction of bacterial biomass in the biofilm was visible when the concentration was higher than 5 μg/mL for E. coli and 10 μg/mL for P
PDF
Album
Full Research Paper
Published 14 Apr 2020

Correction: Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli

  • Kiran Gupta,
  • R. P. Singh,
  • Ashutosh Pandey and
  • Anjana Pandey

Beilstein J. Nanotechnol. 2020, 11, 547–549, doi:10.3762/bjnano.11.43

Graphical Abstract
PDF
Album
Original
Article
Supp Info
Correction
Published 03 Apr 2020

Luminescent gold nanoclusters for bioimaging applications

  • Nonappa

Beilstein J. Nanotechnol. 2020, 11, 533–546, doi:10.3762/bjnano.11.42

Graphical Abstract
  • systematic study used several other pathogenic bacteria, including Streptococcus pyogenes, vancomycin-resistant Enterococcus faecalis (VRE), E. Coli J96, Pseudomonas aeruginosa, pandrug-resistant Acinetobacter baumannii and Enterobacter cloacae in phosphate-buffered saline (PBS) at pH 6 (Figure 2A
  • rigidify the surface resulting in a 28-fold increase in the PL of Au-MTU/Prot NCs compared to that of Au-MTU NCs. The resulting Au-MTU/Prot NCs displayed antibacterial properties with abilities to kill both Gram-positive and Gram-negative bacteria, which was shown using E. coli and SA strains. The addition
PDF
Album
Review
Published 30 Mar 2020

Preparation and in vivo evaluation of glyco-gold nanoparticles carrying synthetic mycobacterial hexaarabinofuranoside

  • Gennady L. Burygin,
  • Polina I. Abronina,
  • Nikita M. Podvalnyy,
  • Sergey A. Staroverov,
  • Leonid O. Kononov and
  • Lev A. Dykman

Beilstein J. Nanotechnol. 2020, 11, 480–493, doi:10.3762/bjnano.11.39

Graphical Abstract
  • glyco-GNPs. Both antisera contained high titers of antibodies specific for Mycobacteria as shown by enzyme-linked immunosorbent assay using M. bovis and M. smegmatis cells as antigens while there was only a weak response to M. phlei cells and no interaction with E. coli cells. The results obtained
  • detected M. phlei cells significantly weaker than M. bovis and M. smegmatis cells. Importantly, none of the antisera interacted with E. coli cells. Control experiments showed that the observed specificity of the antisera against Ara6-GNPs 3 and 4 is due to the presence of the Ara6-epitope in Ara6-GNPs 3
  • antiserum against LPS of Azospirillum brasilense Sp7, generated in the presence of CFA [99], with M. bovis, M. phlei, M. smegmatis and E. coli cell suspensions could be detected (Figure 6). Discussion The biosynthesis of antibodies in mammals is induced by immunogenic substances. These compounds are
PDF
Album
Supp Info
Full Research Paper
Published 19 Mar 2020

Facile biogenic fabrication of hydroxyapatite nanorods using cuttlefish bone and their bactericidal and biocompatibility study

  • Satheeshkumar Balu,
  • Manisha Vidyavathy Sundaradoss,
  • Swetha Andra and
  • Jaison Jeevanandam

Beilstein J. Nanotechnol. 2020, 11, 285–295, doi:10.3762/bjnano.11.21

Graphical Abstract
  • the TGA data revealed the thermal stability of Hap NRs. In addition, the antibacterial study showed a significant inhibitory effect of CB-Hap NRs against S. aureus (zone of inhibition – 14.5 ± 0.5 mm) and E. coli (13 ± 0.5 mm), whereas the blood compatibility test showed that the CB-Hap NRs exhibited
  • can be noted from the literature that nanometer-sized Hap can effectively inhibit antibacterial activity but only when doped or cationic-substituted [55][56]. In contrast, the CB-derived Hap nanorods in the present study show optimum bactericidal effect on E. coli and S. aureus due to the size (>50 nm
  • ) and morphology of the material. However, no such activity was observed for CB alone. The obtained results are displayed in Figure 6 and the zone of inhibition in Table 1 shows a better bactericidal effect of Hap NRs towards S. aureus as compared with E. coli. This is due to the variations in cell
PDF
Album
Full Research Paper
Published 04 Feb 2020

Molecular architectonics of DNA for functional nanoarchitectures

  • Debasis Ghosh,
  • Lakshmi P. Datta and
  • Thimmaiah Govindaraju

Beilstein J. Nanotechnol. 2020, 11, 124–140, doi:10.3762/bjnano.11.11

Graphical Abstract
  • . The dipicolinamide-guided transfection with plasmid DNA was found to stimulate the growth of E. coli, which confirmed the good transfection efficiency of the small-molecule (dipicolinamide) vector. Izawa and co-workers reported the use of anthracene derivatives to drive the self-assembly of ssDNA into
PDF
Album
Review
Published 09 Jan 2020

Advanced hybrid nanomaterials

  • Andreas Taubert,
  • Fabrice Leroux,
  • Pierre Rabu and
  • Verónica de Zea Bermudez

Beilstein J. Nanotechnol. 2019, 10, 2563–2567, doi:10.3762/bjnano.10.247

Graphical Abstract
  • material exhibiting both micro- and mesopores [37]. The material is efficient in adsorbing water micropollutants, as well as the pathogen E. coli., lending itself for application in water remediation. For the same application, a silica matrix, onto which the conjugated β-ketoenol–pyridine–furan ligand is
PDF
Editorial
Published 20 Dec 2019

Novel hollow titanium dioxide nanospheres with antimicrobial activity against resistant bacteria

  • Carol López de Dicastillo,
  • Cristian Patiño,
  • María José Galotto,
  • Yesseny Vásquez-Martínez,
  • Claudia Torrent,
  • Daniela Alburquenque,
  • Alejandro Pereira and
  • Juan Escrig

Beilstein J. Nanotechnol. 2019, 10, 1716–1725, doi:10.3762/bjnano.10.167

Graphical Abstract
  • bacteria, including resistant E. coli and S. aureus strains, and when compared to commercial TiO2 nanoparticles, CSTiO2 nanospheres exhibited superior performance. In addition, the positive effect of UV irradiation on the antimicrobial activity was demonstrated. Keywords: antimicrobial nanoparticles
  • 622-4) and Escherichia coli (control strain ATCC®25922TM and resistant strain E. coli 33.1). When the analysis was done using control strains, the results in Table 1 indicate that CSTiO2 presented an improved antibacterial activity against S. aureus and a similar activity against E. coli in comparison
  • with commercial TiO2 NPs. Nevertheless, when assays were carried out with resistant bacteria, only CSTiO2 presented promising antibacterial activity against E. coli MRSA 33.1. This low performance could be due to the increased multidrug resistance evidenced by some bacteria due to different mechanisms
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2019

New micro/mesoporous nanocomposite material from low-cost sources for the efficient removal of aromatic and pathogenic pollutants from water

  • Emmanuel I. Unuabonah,
  • Robert Nöske,
  • Jens Weber,
  • Christina Günter and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2019, 10, 119–131, doi:10.3762/bjnano.10.11

Graphical Abstract
  • matter. The new composite is stable up to 900 °C and is an efficient adsorbent for the removal of a water micropollutant, 4-nitrophenol, and a pathogen, E. coli, from an aqueous medium, suggesting applications in water remediation are feasible. Keywords: 4-nitrophenol; Carica papaya seeds; clay; E. coli
  • problem is expected to persist in the coming decades if not quickly addressed [6]. For example, the Escherichia coli (E. coli) O157:H7 strain causes diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome [7] with serious consequences for the infected individuals. Unfortunately, many pathogens have
  • water was used for the removal experiments. Freshly purchased Eva® water does not contain E. coli and was therefore used as the reference. E. coli ATCC 25922 cultures were grown in nutrient broth at 37 °C for 24 h to yield a cell count of approximately 109 cfu/mL. The tip of a sterile inoculation loop
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

Noble metal-modified titania with visible-light activity for the decomposition of microorganisms

  • Maya Endo,
  • Zhishun Wei,
  • Kunlei Wang,
  • Baris Karabiyik,
  • Kenta Yoshiiri,
  • Paulina Rokicka,
  • Bunsho Ohtani,
  • Agata Markowska-Szczupak and
  • Ewa Kowalska

Beilstein J. Nanotechnol. 2018, 9, 829–841, doi:10.3762/bjnano.9.77

Graphical Abstract
  • oxidized (shell) forms, whereas gold was mainly zero valent. The obtained noble metal-modified samples were examined with regard to antibacterial (Escherichia coli (E. coli)) and antifungal (Aspergillus niger (A. niger), Aspergillus melleus (A. melleus), Penicillium chrysogenum (P. chrysogenum), Candida
  • particles; OAP) have shown high activity in both the decomposition of organic compounds and of microorganisms (E. coli and C. albicans) [48]. It has been found that both the intrinsic properties of silver and the photocatalytic activity of silver-modified titania are responsible for the high antibacterial
  • (500 rpm). The obtained noble metal-modified TiO2 samples were centrifuged, washed twice with methanol and twice with Milli-Q water and dried at 378 K. Antibacterial activity test 50 mg of the sample was dispersed in 7.0 mL of E. coli K12 (ATCC29425) suspension at a concentration of ca. 0.180 Abs at
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2018
Other Beilstein-Institut Open Science Activities