Search results

Search for "electron energy loss spectroscopy" in Full Text gives 47 result(s) in Beilstein Journal of Nanotechnology.

Formation of pure Cu nanocrystals upon post-growth annealing of Cu–C material obtained from focused electron beam induced deposition: comparison of different methods

  • Aleksandra Szkudlarek,
  • Alfredo Rodrigues Vaz,
  • Yucheng Zhang,
  • Andrzej Rudkowski,
  • Czesław Kapusta,
  • Rolf Erni,
  • Stanislav Moshkalev and
  • Ivo Utke

Beilstein J. Nanotechnol. 2015, 6, 1508–1517, doi:10.3762/bjnano.6.156

Graphical Abstract
  • ) images were taken at 200 keV. Selected area diffraction (SAD) was taken using the second smallest selected area aperture corresponding to an area of 400 nm in diameter on the sample. Chemical mapping was obtained using electron energy loss spectroscopy (EELS) operated in the scanning TEM (STEM) mode. The
  • resistance measurement. Supporting Information Supporting Information features additional information about the chemical mapping with electron energy loss spectroscopy, the estimation of Cu precipitation on deposit, and the distribution of Cu nanocrystals along the Cu–C lines after conventional and IR laser
PDF
Album
Supp Info
Correction
Full Research Paper
Published 13 Jul 2015

Current–voltage characteristics of manganite–titanite perovskite junctions

  • Benedikt Ifland,
  • Patrick Peretzki,
  • Birte Kressdorf,
  • Philipp Saring,
  • Andreas Kelling,
  • Michael Seibt and
  • Christian Jooss

Beilstein J. Nanotechnol. 2015, 6, 1467–1484, doi:10.3762/bjnano.6.152

Graphical Abstract
  • width of the SCR is on the order of one unit cell or even less, the rigid band model is not applied. Nevertheless, the calculated values roughly agree with the band bending region deduced from electron energy loss spectroscopy [22]. The strength of the electron lattice coupling also strongly affects the
PDF
Album
Full Research Paper
Published 07 Jul 2015

Influence of the shape and surface oxidation in the magnetization reversal of thin iron nanowires grown by focused electron beam induced deposition

  • Luis A. Rodríguez,
  • Lorenz Deen,
  • Rosa Córdoba,
  • César Magén,
  • Etienne Snoeck,
  • Bert Koopmans and
  • José M. De Teresa

Beilstein J. Nanotechnol. 2015, 6, 1319–1331, doi:10.3762/bjnano.6.136

Graphical Abstract
  • microstructure were determined by bright field (BF) TEM and high resolution TEM (HRTEM) imaging, and chemical composition of the sections was determined by combining high angle annular dark field (HAADF) imaging and electron energy loss spectroscopy (EELS) in scanning transmission electron microscopy (STEM) mode
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2015

Surface excitations in the modelling of electron transport for electron-beam-induced deposition experiments

  • Francesc Salvat-Pujol,
  • Roser Valentí and
  • Wolfgang S. Werner

Beilstein J. Nanotechnol. 2015, 6, 1260–1267, doi:10.3762/bjnano.6.129

Graphical Abstract
  • , including a number of spectroscopies (electron-energy-loss spectroscopy, X-ray photoelectron spectroscopy, and Auger-electron spectroscopy), electron microscopy, and the focused-electron-beam-induced deposition (FEBID) of nanostructures, on which we focus here. This technique employs beams of focussed
PDF
Album
Review
Published 03 Jun 2015

Applications of three-dimensional carbon nanotube networks

  • Manuela Scarselli,
  • Paola Castrucci,
  • Francesco De Nicola,
  • Ilaria Cacciotti,
  • Francesca Nanni,
  • Emanuela Gatto,
  • Mariano Venanzi and
  • Maurizio De Crescenzi

Beilstein J. Nanotechnol. 2015, 6, 792–798, doi:10.3762/bjnano.6.82

Graphical Abstract
  • studies described in [13]. SEM micrographs obtained at higher magnification evidence the presence of interconnected and curled CNTs as shown in Figure 2b. The electron energy loss spectroscopy analysis performed in reflection mode further supports the predominance of C-sp2 hybridization in the nanotubes
PDF
Album
Full Research Paper
Published 23 Mar 2015

Tm-doped TiO2 and Tm2Ti2O7 pyrochlore nanoparticles: enhancing the photocatalytic activity of rutile with a pyrochlore phase

  • Desiré M. De los Santos,
  • Javier Navas,
  • Teresa Aguilar,
  • Antonio Sánchez-Coronilla,
  • Concha Fernández-Lorenzo,
  • Rodrigo Alcántara,
  • Jose Carlos Piñero,
  • Ginesa Blanco and
  • Joaquín Martín-Calleja

Beilstein J. Nanotechnol. 2015, 6, 605–616, doi:10.3762/bjnano.6.62

Graphical Abstract
  • , solid state, 532 nm laser (CNI, MSL-III-532nm-50mW). The Raman study was carried out using a portable system (B&W Tek Raman, i-Raman) equipped with a diode laser (BAC100-785C, 785 nm) as an illumination source. Additionally, transmission electron microscopy (TEM) imaging and electron energy loss
  • spectroscopy (EELS) analysis were carried out on samples of different Tm concentrations (2 and 5.8 atom %) which underwent different annealing conditions in order to evaluate the Tm distribution in the nanoparticle. As EELS provides information relating the material with the resulting electron inelastic
PDF
Album
Full Research Paper
Published 02 Mar 2015

Overview of nanoscale NEXAFS performed with soft X-ray microscopes

  • Peter Guttmann and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2015, 6, 595–604, doi:10.3762/bjnano.6.61

Graphical Abstract
  • spectromicroscopy having the capability of offering both spatial and chemical/physical information opens avenues for detailed characterization of nanostructures. Other spatially resolved techniques or spectromicroscopy as, e.g., electron energy loss spectroscopy (EELS) [14] have been chosen to study individual
PDF
Album
Review
Published 27 Feb 2015

Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques

  • Anja Ostrowski,
  • Daniel Nordmeyer,
  • Alexander Boreham,
  • Cornelia Holzhausen,
  • Lars Mundhenk,
  • Christina Graf,
  • Martina C. Meinke,
  • Annika Vogt,
  • Sabrina Hadam,
  • Jürgen Lademann,
  • Eckart Rühl,
  • Ulrike Alexiev and
  • Achim D. Gruber

Beilstein J. Nanotechnol. 2015, 6, 263–280, doi:10.3762/bjnano.6.25

Graphical Abstract
  • microscope [35]. Energy dispersive X-ray (EDX) analysis and electron energy loss spectroscopy (EELS) allow one to identify the elemental composition of a sample [167][168]. An elemental analysis may be of prime interest to distinguish NP in the tissue from artifacts that may be produced by staining
PDF
Album
Review
Published 23 Jan 2015

X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms

  • Toma Susi,
  • Thomas Pichler and
  • Paola Ayala

Beilstein J. Nanotechnol. 2015, 6, 177–192, doi:10.3762/bjnano.6.17

Graphical Abstract
  • in their properties or in the distribution of dopants poses additional challenges for characterization. Furthermore, although local methods such as scanning tunneling microscopy (STM) [24][25] and transmission electron microscopy based electron energy loss spectroscopy (TEM/EELS) [23][26] can these
PDF
Album
Review
Published 15 Jan 2015

Two-dimensional and tubular structures of misfit compounds: Structural and electronic properties

  • Tommy Lorenz,
  • Jan-Ole Joswig and
  • Gotthard Seifert

Beilstein J. Nanotechnol. 2014, 5, 2171–2178, doi:10.3762/bjnano.5.226

Graphical Abstract
  • addition to theoretical considerations, the electronic structure is discernible by spectroscopy as Ohno [12][35] presented in 1991. By performing X-ray photoelectron and absorption spectroscopy (XPS, XAS) and reflection electron energy loss spectroscopy (REELS), it was revealed that the electronic
PDF
Album
Review
Published 19 Nov 2014

Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nano-toxicological assays

  • Christoph Rehbock,
  • Jurij Jakobi,
  • Lisa Gamrad,
  • Selina van der Meer,
  • Daniela Tiedemann,
  • Ulrike Taylor,
  • Wilfried Kues,
  • Detlef Rath and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2014, 5, 1523–1541, doi:10.3762/bjnano.5.165

Graphical Abstract
  • EELS (electron energy loss spectroscopy) were used to analyze the ultrastructure of the particle by localizing nickel on a single-particle basis. Single particle EELS of a NiTi particle, laser-fabricated in acetone and embedded in a polymer, revealed a totally homogeneous ultrastructure [115] (Figure
PDF
Album
Video
Review
Published 12 Sep 2014

Growth and characterization of CNT–TiO2 heterostructures

  • Yucheng Zhang,
  • Ivo Utke,
  • Johann Michler,
  • Gabriele Ilari,
  • Marta D. Rossell and
  • Rolf Erni

Beilstein J. Nanotechnol. 2014, 5, 946–955, doi:10.3762/bjnano.5.108

Graphical Abstract
  • the topic of synthesis and characterization of the CNT–TiO2 interface. In particular, atomic layer deposition (ALD) offers a good control of the size, crystallinity and morphology of TiO2 on CNTs. Analytical transmission electron microscopy (TEM) techniques such as electron energy loss spectroscopy
  • /metal oxide material systems. Keywords: atomic layer deposition (ALD); carbon nanotubes; electron energy loss spectroscopy (EELS); interface; titanium dioxide (TiO2); transmission electron microscopy (TEM); Introduction Since the discovery by Iijima in 1991, carbon nanotubes (CNTs) have always been on
  • has already been demonstrated [40]. On the other hand, analytical TEM provides chemical and electronic information about nanomaterials with an increasingly improved energy resolution. One powerful analytical TEM technique is electron energy loss spectroscopy (EELS). It detects electrons that lose a
PDF
Album
Review
Published 02 Jul 2014

Oriented attachment explains cobalt ferrite nanoparticle growth in bioinspired syntheses

  • Annalena Wolff,
  • Walid Hetaba,
  • Marco Wißbrock,
  • Stefan Löffler,
  • Nadine Mill,
  • Katrin Eckstädt,
  • Axel Dreyer,
  • Inga Ennen,
  • Norbert Sewald,
  • Peter Schattschneider and
  • Andreas Hütten

Beilstein J. Nanotechnol. 2014, 5, 210–218, doi:10.3762/bjnano.5.23

Graphical Abstract
  • stages of the growth process using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS) and electron diffraction measurements. Results In this bioinspired synthesis, stoichiometric Co2FeO4 discs of hexagonal, diamond
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2014

Probing the plasmonic near-field by one- and two-photon excited surface enhanced Raman scattering

  • Katrin Kneipp and
  • Harald Kneipp

Beilstein J. Nanotechnol. 2013, 4, 834–842, doi:10.3762/bjnano.4.94

Graphical Abstract
  • variations. However, surface plasmons can be also excited by low energy [12] and high energy electrons [13][14]. Therefore, as an alternative to optical methods, electron energy loss spectroscopy (EELS) is emerging as a novel tool to probe plasmonic near-fields of metal nanostructures at nanometer
PDF
Album
Full Research Paper
Published 02 Dec 2013

Influence of particle size and fluorination ratio of CFx precursor compounds on the electrochemical performance of C–FeF2 nanocomposites for reversible lithium storage

  • Ben Breitung,
  • M. Anji Reddy,
  • Venkata Sai Kiran Chakravadhanula,
  • Michael Engel,
  • Christian Kübel,
  • Annie K. Powell,
  • Horst Hahn and
  • Maximilian Fichtner

Beilstein J. Nanotechnol. 2013, 4, 705–713, doi:10.3762/bjnano.4.80

Graphical Abstract
  • 25 cycles. The composites were characterized by Raman spectroscopy, X-Ray diffraction measurements, electron energy loss spectroscopy and TEM measurements. The electrochemical performances of the materials were tested by galvanostatic measurements. Keywords: conducting carbon; conversion material
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2013
Graphical Abstract
PDF
Album
Review
Published 17 Dec 2012

Tuning the properties of magnetic thin films by interaction with periodic nanostructures

  • Ulf Wiedwald,
  • Felix Haering,
  • Stefan Nau,
  • Carsten Schulze,
  • Herbert Schletter,
  • Denys Makarov,
  • Alfred Plettl,
  • Karsten Kuepper,
  • Manfred Albrecht,
  • Johannes Boneberg and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2012, 3, 831–842, doi:10.3762/bjnano.3.93

Graphical Abstract
  • particle size, the multilayer (with a nominal thickness of 16.8 nm) follows the curvature of the particle array (Figure 8a). By electron energy loss spectroscopy (EELS) along the line displayed in Figure 8a, the Co content was probed by using intensity profiling of the Co-L3,2 edges. Figure 8b shows the Co
PDF
Album
Full Research Paper
Published 07 Dec 2012

Towards atomic resolution in sodium titanate nanotubes using near-edge X-ray-absorption fine-structure spectromicroscopy combined with multichannel multiple-scattering calculations

  • Carla Bittencourt,
  • Peter Krüger,
  • Maureen J. Lagos,
  • Xiaoxing Ke,
  • Gustaaf Van Tendeloo,
  • Chris Ewels,
  • Polona Umek and
  • Peter Guttmann

Beilstein J. Nanotechnol. 2012, 3, 789–797, doi:10.3762/bjnano.3.88

Graphical Abstract
  • as electron energy loss spectroscopy (EELS) performed in aberration-corrected transmission electron microscopes operated at low electron acceleration voltages [30]. Alkali titanate nanostructures are very sensitive to electron-beam irradiation, which has prevented detailed studies at high energetic
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2012

Focused electron beam induced deposition: A perspective

  • Michael Huth,
  • Fabrizio Porrati,
  • Christian Schwalb,
  • Marcel Winhold,
  • Roland Sachser,
  • Maja Dukic,
  • Jonathan Adams and
  • Georg Fantner

Beilstein J. Nanotechnol. 2012, 3, 597–619, doi:10.3762/bjnano.3.70

Graphical Abstract
  • microscopy (TEM) investigations which show a progression from nanocrystalline fcc Pt particles in a carbon matrix for Si-free deposits, towards an amorphous structure of the granules. Since only a direct local probe, such as electron energy loss spectroscopy (EELS) in a TEM, would be able to unequivocally
PDF
Album
Video
Review
Published 29 Aug 2012

Nano-structuring, surface and bulk modification with a focused helium ion beam

  • Daniel Fox,
  • Yanhui Chen,
  • Colm C. Faulkner and
  • Hongzhou Zhang

Beilstein J. Nanotechnol. 2012, 3, 579–585, doi:10.3762/bjnano.3.67

Graphical Abstract
  • surface and structure using advanced transmission electron microscopy (TEM) techniques such as energy filtered TEM (EFTEM) and electron energy loss spectroscopy (EELS). We also present the limitations of this surface modification technique. Results and Discussion Sample 1 is a silicon lamella shown after
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2012

Investigation on structural, thermal, optical and sensing properties of meta-stable hexagonal MoO3 nanocrystals of one dimensional structure

  • Angamuthuraj Chithambararaj and
  • Arumugam Chandra Bose

Beilstein J. Nanotechnol. 2011, 2, 585–592, doi:10.3762/bjnano.2.62

Graphical Abstract
  • microscopy (TEM) images clearly depicted the morphology and size of h-MoO3. The morphology study showed that the product comprises one-dimensional (1D) hexagonal rods. From the electron energy loss spectroscopy (EELS) measurement, the elemental composition was investigated and confirmed from the
PDF
Album
Full Research Paper
Published 14 Sep 2011

Simulation of bonding effects in HRTEM images of light element materials

  • Simon Kurasch,
  • Jannik C. Meyer,
  • Daniela Künzel,
  • Axel Groß and
  • Ute Kaiser

Beilstein J. Nanotechnol. 2011, 2, 394–404, doi:10.3762/bjnano.2.45

Graphical Abstract
  • changes in the electronic state, such as electron energy loss spectroscopy [4] or scanning tunneling microscopy [5], make use of advanced simulation methods to model the specimen. In 1997, Gemming and Möbus performed ab-initio HRTEM simulations of ionic crystals and justified the use of conventional image
PDF
Album
Supp Info
Full Research Paper
Published 19 Jul 2011
Other Beilstein-Institut Open Science Activities