Search results

Search for "photocatalytic performance" in Full Text gives 74 result(s) in Beilstein Journal of Nanotechnology.

Nanocasting synthesis of BiFeO3 nanoparticles with enhanced visible-light photocatalytic activity

  • Thomas Cadenbach,
  • Maria J. Benitez,
  • A. Lucia Morales,
  • Cesar Costa Vera,
  • Luis Lascano,
  • Francisco Quiroz,
  • Alexis Debut and
  • Karla Vizuete

Beilstein J. Nanotechnol. 2020, 11, 1822–1833, doi:10.3762/bjnano.11.164

Graphical Abstract
  • 1.75 g/L result in an increased opacity of the heterogeneous reaction mixture, which consequently leads to a decrease of the photocatalytic performance. Thus, we conclude that the optimum concentration of the nanocast BiFeO3 catalyst for the photodegradation of RhB is 1.25 g/L. The stability and
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2020

Effect of Ag loading position on the photocatalytic performance of TiO2 nanocolumn arrays

  • Jinghan Xu,
  • Yanqi Liu and
  • Yan Zhao

Beilstein J. Nanotechnol. 2020, 11, 717–728, doi:10.3762/bjnano.11.59

Graphical Abstract
  • efficiency of methylene blue (MB) compared with Ag-coated TiO2 (ACT) nanocolumn arrays and pure TiO2 nanocolumns arrays. Both experimental and theoretical simulation results demonstrated that the enhanced photocatalytic performance of AFT nanocolumn arrays was attributed to the surface plasmon resonance (SPR
  • affords specimens with different electron transfer characteristics than those of rutile and anatase TiO2, and the as-prepared films fit the template well. When Ag particles are combined with TiO2, the photocatalytic performance of the film can be significantly enhanced by hot electron injection [24
PDF
Album
Full Research Paper
Published 05 May 2020

Preparation, characterization and photocatalytic performance of heterostructured CuO–ZnO-loaded composite nanofiber membranes

  • Wei Fang,
  • Liang Yu and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 631–650, doi:10.3762/bjnano.11.50

Graphical Abstract
  • using cathodic co-electrodeposition and observed their photocatalytic performance. Fierro et al. [25] synthesized CuO–ZnO composite catalysts by temperature-programmed reduction and applied them in photocatalytic degradation. Nanocomposites loaded with metal oxide semiconductors have excellent optical
  • electrospinning and observed their photocatalytic performance. Yuan et al. [35] obtained TiO2/WO3 CNFs using electrospinning and applied them in the photocatalytic removal of mercury. Teng et al. [36] prepared TiO2/NiO CNFs by electrospinning and used them for photocatalysis. Polyacrylonitrile (PAN) has been
PDF
Album
Full Research Paper
Published 15 Apr 2020

Synthesis and enhanced photocatalytic performance of 0D/2D CuO/tourmaline composite photocatalysts

  • Changqiang Yu,
  • Min Wen,
  • Zhen Tong,
  • Shuhua Li,
  • Yanhong Yin,
  • Xianbin Liu,
  • Yesheng Li,
  • Tongxiang Liang,
  • Ziping Wu and
  • Dionysios D. Dionysiou

Beilstein J. Nanotechnol. 2020, 11, 407–416, doi:10.3762/bjnano.11.31

Graphical Abstract
  • NANO ZS90 instrument (Malvern, UK). Photocatalytic activity evaluation The photocatalytic performance was examined by the degradation of MB with light irradiation simulated by a 300 W Xe lamp with a 420 nm cut-off filter. In detail, 0.05 g of the as-synthesized photocatalyst was added into 100 mL of
  • photocatalytic performance of the CuO/tourmaline composite was also tested under different conditions. The composite with the synthesis temperature of 180 °C exhibited optimum photocatalytic activity (Supporting Information File 1, Figure S2), implying that the synthesis temperature of 180 °C could optimize the
  • 0D/2D CuO structure and interfacial interaction between CuO and tourmaline. The initial solution pH affected the photocatalytic performance mainly via changing the adsorption of dye molecules onto photocatalysts (Figure 7a), as adsorption occurred firstly during the photodegradation reactions [42
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2020

Improved adsorption and degradation performance by S-doping of (001)-TiO2

  • Xiao-Yu Sun,
  • Xian Zhang,
  • Xiao Sun,
  • Ni-Xian Qian,
  • Min Wang and
  • Yong-Qing Ma

Beilstein J. Nanotechnol. 2019, 10, 2116–2127, doi:10.3762/bjnano.10.206

Graphical Abstract
  • , 2, 3, 4 and 5. The S-doped samples synthesized at 250 °C exhibit a significantly improved photocatalytic performance. More precisely, S-doping has the following effects on the material: (1) S can adopt different chemical states in the samples. Specifically, it exists in the form of S2− replacing O2
  • high photocatalytic activity [10]. However, Yu et al. demonstrated that an appropriate proportion of exposed (001) and (101) crystal faces, which forms a “surface heterojunction”, facilitates the separation of photo-generated carriers [8]. Consequently, this improves the photocatalytic performance
  • performance. Li et al. synthesized composites of mesoporous (001)-TiO2 and C applying a one-pot hydrothermal strategy in the presence of glucose and hydrofluoric acid (HF). The composites an exhibited excellent visible-light-driven photocatalytic performance [14]. Chen et al. synthesized a composite of g-C3N4
PDF
Album
Full Research Paper
Published 01 Nov 2019

Direct observation of oxygen-vacancy formation and structural changes in Bi2WO6 nanoflakes induced by electron irradiation

  • Hong-long Shi,
  • Bin Zou,
  • Zi-an Li,
  • Min-ting Luo and
  • Wen-zhong Wang

Beilstein J. Nanotechnol. 2019, 10, 1434–1442, doi:10.3762/bjnano.10.141

Graphical Abstract
  • prominent role of oxygen vacancies in the photocatalytic performance of bismuth tungsten oxides is well recognized, while the underlying formation mechanisms remain poorly understood. Here, we use the transmission electron microscopy to investigate the formation of oxygen vacancies and the structural
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2019

BiOCl/TiO2/diatomite composites with enhanced visible-light photocatalytic activity for the degradation of rhodamine B

  • Minlin Ao,
  • Kun Liu,
  • Xuekun Tang,
  • Zishun Li,
  • Qian Peng and
  • Jing Huang

Beilstein J. Nanotechnol. 2019, 10, 1412–1422, doi:10.3762/bjnano.10.139

Graphical Abstract
  • , low-cost and ease of application, which are superior to other approaches of environmental remediation [8][9]. However, the application of photocatalysis is still hindered due to the agglomeration of photocatalyst particles, the difficulty of photocatalyst recovery and low photocatalytic performance
  • . The recyclability of the photocatalysts is of great significance for the evaluation of photocatalytic performance and practical application [43]. Five cycles of photocatalytic activity of the BTD composite were investigated and the results (Supporting Information File 1, Figure S3b) show that BTD has
  • , the lower the recombination rate, and the better the photocatalytic performance. Although BTD only slightly reduces the band gap and enhances the light response ability, it has the lowest PL spectral intensity shown in Figure 10a, indicating that BTD can efficiently promote photogenerated electron
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2019

Construction of a 0D/1D composite based on Au nanoparticles/CuBi2O4 microrods for efficient visible-light-driven photocatalytic activity

  • Weilong Shi,
  • Mingyang Li,
  • Hongji Ren,
  • Feng Guo,
  • Xiliu Huang,
  • Yu Shi and
  • Yubin Tang

Beilstein J. Nanotechnol. 2019, 10, 1360–1367, doi:10.3762/bjnano.10.134

Graphical Abstract
  • photocatalyst consisting of Au nanoparticles (NPs) and CuBi2O4 microrods (Au/CBO) was designed and prepared by a simple thermal reduction–precipitation approach. It shows excellent photocatalytic performance in the degradation of tetracycline (TC). The maximum photocatalytic degradation rate constant for Au/CBO
  • composites with 2.5 wt % Au NPs was 4.76 times as high as that of bare CBO microrods. Additionally, the 0D/1D Au/CBO composite also exhibited ideal stability. The significant improvement of the photocatalytic performance could be attributed to the improved light harvesting and increased specific surface area
  • degradation of organic contaminants in water [13][14]. However, bare CuBi2O4 shows poor photocatalytic performance under visible-light irradiation because of the rapid recombination rate of photo-induced charge carriers and the low chemical affinity to substrate ions. This results in only a small portion of
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2019

A highly efficient porous rod-like Ce-doped ZnO photocatalyst for the degradation of dye contaminants in water

  • Binjing Hu,
  • Qiang Sun,
  • Chengyi Zuo,
  • Yunxin Pei,
  • Siwei Yang,
  • Hui Zheng and
  • Fangming Liu

Beilstein J. Nanotechnol. 2019, 10, 1157–1165, doi:10.3762/bjnano.10.115

Graphical Abstract
  • –hole pairs are easy to recombine. The photocatalytic performance can be greatly affected by the particle size, morphology and concentration [8][9]. As such, it is possible to modify these ZnO properties to enhance its photocatalytic efficiency. Doping ZnO with rare-earth ions is an attractive strategy
  • %, and 4%, respectively. The experimental results demonstrated that all CZO samples show significantly higher photocatalytic activity than ZnO. CZO-4 has the highest photocatalytic performance. It can be found that the degradation rate of RhB first increases and then decreases with the increase of Ce
  • exhibits a superior catalytic performance to pristine ZnO. The change of morphology also contributes to the improvement of the photocatalytic performance of CZO, which will be further discussed in a later section. However, a further increase in the cerium concentration acts to lower the photocatalytic
PDF
Album
Full Research Paper
Published 03 Jun 2019

Synthesis of novel C-doped g-C3N4 nanosheets coupled with CdIn2S4 for enhanced photocatalytic hydrogen evolution

  • Jingshuai Chen,
  • Chang-Jie Mao,
  • Helin Niu and
  • Ji-Ming Song

Beilstein J. Nanotechnol. 2019, 10, 912–921, doi:10.3762/bjnano.10.92

Graphical Abstract
  • devoted to improving the transport and separation of electron–hole pairs [10][11][12][13][14][15][16]. Among them, C atom doping for N atoms in g-C3N4 is highly promising due to its π-rich nature, which can evidently improve the photocatalytic performance of g-C3N4 [17][18][19][20][21]. For instance
  • photocatalytic performance of CdIn2S4 alone is barely satisfactory, mainly due to the low separation and migration efficiency of photogenerated charge carriers. The construction of a heterojunction by combination with semiconductor materials is expected to be a strategy to improve the separation of
  • charges apparently, leading to the enhancement of photocatalytic activity of the hybrid photocatalyst. Photocatalytic performance Time-dependent visible-light-induced photocatalytic H2 formation over different samples has been measured in the presence of methanol (sacrificial electron donor) without the
PDF
Album
Full Research Paper
Published 18 Apr 2019

Deposition of metal particles onto semiconductor nanorods using an ionic liquid

  • Michael D. Ballentine,
  • Elizabeth G. Embry,
  • Marco A. Garcia and
  • Lawrence J. Hill

Beilstein J. Nanotechnol. 2019, 10, 718–724, doi:10.3762/bjnano.10.71

Graphical Abstract
  • similar morphologies as determined by analysis of TEM images. Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of the elemental ratios in the samples confirmed the similarity of these materials, and we compared photocatalytic performance of these two samples for degradation of
PDF
Album
Supp Info
Letter
Published 14 Mar 2019

Impact of the anodization time on the photocatalytic activity of TiO2 nanotubes

  • Jesús A. Díaz-Real,
  • Geyla C. Dubed-Bandomo,
  • Juan Galindo-de-la-Rosa,
  • Luis G. Arriaga,
  • Janet Ledesma-García and
  • Nicolas Alonso-Vante

Beilstein J. Nanotechnol. 2018, 9, 2628–2643, doi:10.3762/bjnano.9.244

Graphical Abstract
  • along the [004] direction [44], accompanied by a higher photocatalytic performance in the degradation of an organic pollutant [45]. Lee et al. also reported an enhanced photoelectrochemical behavior in photovoltaic devices ascribed to the preferred crystalline orientation due to faster electron
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2018

Hierarchical heterostructures of Bi2MoO6 microflowers decorated with Ag2CO3 nanoparticles for efficient visible-light-driven photocatalytic removal of toxic pollutants

  • Shijie Li,
  • Wei Jiang,
  • Shiwei Hu,
  • Yu Liu,
  • Yanping Liu,
  • Kaibing Xu and
  • Jianshe Liu

Beilstein J. Nanotechnol. 2018, 9, 2297–2305, doi:10.3762/bjnano.9.214

Graphical Abstract
  • regarded as a promising visible-light-driven (VLD) photocatalyst because of its good activity, chemical stability and nontoxicity [15][16][17]. However, the low carrier-separation rate and narrow photo-response range of Bi2MoO6 substantially lower its photocatalytic performance [18][19]. To overcome this
  • /Ag2CO3/Bi2MoO6 [32] and Ag2MoO4/Bi2MoO6 [22]. This result shows that the charge separation efficiency is enhanced in ACO/BMO-30. Photocatalytic performance The efficiency of Ag2CO3/Bi2MoO6 heterostructures in the photocatalytic degradation of industrial dyes (RhB, MO and MB), and the antibiotic TC of the
  • % Bi2MoO6 exhibited a much lower activity than ACO/BMO-30, verifying that the close contact between the components also has a significant influence on the photocatalytic performance of the heterostructures. The pseudo-first-order kinetic plots and rate constants of RhB degradation for various catalysts are
PDF
Album
Supp Info
Full Research Paper
Published 27 Aug 2018

Controllable one-pot synthesis of uniform colloidal TiO2 particles in a mixed solvent solution for photocatalysis

  • Jong Tae Moon,
  • Seung Ki Lee and
  • Ji Bong Joo

Beilstein J. Nanotechnol. 2018, 9, 1715–1727, doi:10.3762/bjnano.9.163

Graphical Abstract
  • indicated that our TiO2 particles photo-chemically degraded the RhB molecule completely under UV–vis light irradiation conditions. The photocatalytic performance of the TiO2 sample towards RhB degradation, determined by monitoring the peak intensity change at 553 nm vs time, was summarized in Figure 6b
  • , 12, 20 and 0.7 m2/g, respectively. Supporting Information File 1, Figure S7 compares the photocatalytic performance of TiO2 samples prepared using different concentrations of HPC followed by calcination at a fixed temperature of 500 °C. The samples TiO2(HPC-1666.67)-500 and TiO2(HPC-416.67)-500
  • crystalline phase transformed to its rutile counterpart, the surface area correspondingly decreased. This study determined the optimum crystallinity and surface area that yields the highest photocatalytic performance towards RhB degradation under UV–vis irradiation. Our systematic investigation may provide a
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2018

Sheet-on-belt branched TiO2(B)/rGO powders with enhanced photocatalytic activity

  • Huan Xing,
  • Wei Wen and
  • Jin-Ming Wu

Beilstein J. Nanotechnol. 2018, 9, 1550–1557, doi:10.3762/bjnano.9.146

Graphical Abstract
  • all three photocatalysts. The TGN-branch 4 h sample demonstrated enhanced photocatalytic performance as compared to TiO2 nanobelts and the TGN sample. Figure S3 in Supporting Information File 1 shows the photodegradation curves in the presence of TGN and TGN-branches with different deposition times
PDF
Album
Supp Info
Full Research Paper
Published 24 May 2018

Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction

  • Rashmi Acharya,
  • Brundabana Naik and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 1448–1470, doi:10.3762/bjnano.9.137

Graphical Abstract
  • electrons from TiO2 are efficiently transported to graphene, leading to enhanced photocatalytic activity (Figure 7). Liu et al. reported that TiO2–RGO composites exhibited enhanced photocatalytic performance for the reduction of Cr(VI) by UV light illumination as compared to pure TiO2 and commercial P25
  • increases with increasing RGO content and reaches a maximum value of 91% for a sample containing 0.8 wt % of RGO. However, upon further increase of the RGO content, the photocatalytic performance deteriorated [125]. This may be due to formation of recombination centers by excess RGO, which facilitates
  • [150]. Hence, ZnO is considered as a suitable semiconductor to be coupled with TiO2 [151][152][153]. Joubani and coworkers reported that a ZnO/TiO2 composite photocatalysts exhibited superior photocatalytic performance by reducing a maximum of 99.99% of Cr(VI) as compared to TiO2 and ZnO, which reduced
PDF
Album
Review
Published 16 May 2018

Ag2WO4 nanorods decorated with AgI nanoparticles: Novel and efficient visible-light-driven photocatalysts for the degradation of water pollutants

  • Shijie Li,
  • Shiwei Hu,
  • Wei Jiang,
  • Yanping Liu,
  • Yu Liu,
  • Yingtang Zhou,
  • Liuye Mo and
  • Jianshe Liu

Beilstein J. Nanotechnol. 2018, 9, 1308–1316, doi:10.3762/bjnano.9.123

Graphical Abstract
  • photocatalytic performance. Keywords: AgI/Ag2WO4; nanocomposites; photocatalysis; visible light; Introduction The development of high-performance novel photocatalysts for the degradation of pollutants has received great interest due to the worsening of environmental pollution [1][2][3][4][5][6][7][8][9][10][11
  • photocatalytic performance for dye degradation under light irradiation [30][31][36][37]. Unfortunately, due to its wide bandgap of about 3.1 eV, Ag2WO4 has limited photocatalytic activity under sunlight, which severely limits its application and illustrates the urgency for optimization of Ag2WO4 to overcome
  • , to enhance the photocatalytic performance of Ag2WO4, AgI (possessing matched energy band levels) was chosen as a suitable component to combine with Ag2WO4, AgI/Ag2WO4 heterojunctions at different mole ratios. These heterojunctions were prepared via an in situ ion-exchange approach, utilizing Ag2WO4
PDF
Album
Supp Info
Full Research Paper
Published 27 Apr 2018

Noble metal-modified titania with visible-light activity for the decomposition of microorganisms

  • Maya Endo,
  • Zhishun Wei,
  • Kunlei Wang,
  • Baris Karabiyik,
  • Kenta Yoshiiri,
  • Paulina Rokicka,
  • Bunsho Ohtani,
  • Agata Markowska-Szczupak and
  • Ewa Kowalska

Beilstein J. Nanotechnol. 2018, 9, 829–841, doi:10.3762/bjnano.9.77

Graphical Abstract
  • wide band gap of titania of 3.0–3.2 eV and the recombination of charge carriers). There are various ways to improve photocatalytic performance of titania photocatalysts: (1) to inhibit the recombination of charge carriers, and (2) to extend its working abilities to the visible-light region, for example
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2018

Facile synthesis of a ZnO–BiOI p–n nano-heterojunction with excellent visible-light photocatalytic activity

  • Mengyuan Zhang,
  • Jiaqian Qin,
  • Pengfei Yu,
  • Bing Zhang,
  • Mingzhen Ma,
  • Xinyu Zhang and
  • Riping Liu

Beilstein J. Nanotechnol. 2018, 9, 789–800, doi:10.3762/bjnano.9.72

Graphical Abstract
  • Bi/Zn molar ratio of 1:3 is the most optimal sample for photocatalytic performance. Other very critical criteria of the photocatalyst for practical application are stability and reusability. Figure 6e presents the recycling test results of the B-4 sample. After being circularly used for five times
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2018

Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices

  • T. Anh Thu Do,
  • Truong Giang Ho,
  • Thu Hoai Bui,
  • Quang Ngan Pham,
  • Hong Thai Giang,
  • Thi Thu Do,
  • Duc Van Nguyen and
  • Dai Lam Tran

Beilstein J. Nanotechnol. 2018, 9, 771–779, doi:10.3762/bjnano.9.70

Graphical Abstract
  • target gases [14][15][16]. In another research strategy to obtain high photocatalytic performance materials, ZnO, a wide-band gap semiconductor (Eg > 3 eV), can also be used as a suitable material for photocatalysts based on the particular plasmonic characteristics of the nanostructures. Herein, it was
  • of ZnO was assumed to play an important role in improving their photocatalytic performance. In detail, high-energy electrons in Au NPs were injected into the conduction band of the ZnO matrix upon illumination. These electrons then drifted to the conduction band of ZnO, producing active oxygen
  • cycles of photocatalytic testing, no significant difference in the photocatalytic degradation process was found, indicating excellent reversibility and stable photocatalytic performance, as shown in Figure 5b. Cascade processes have been previously reported involving the morphology, specific surface and
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2018

Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation

  • Ashish Kumar,
  • Christian Schuerings,
  • Suneel Kumar,
  • Ajay Kumar and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2018, 9, 671–685, doi:10.3762/bjnano.9.62

Graphical Abstract
  • a colorless, non-photosensitizing pollutant, bisphenol A (BPA). The superior photocatalytic performance of the CTCN heterojunction could be attributed to the appropriate band positions, close interfacial contact between the constituents and extended light absorption (both UV and visible region), all
  • is desirable. The physical and chemical properties of a photocatalyst are related to its photocatalytic performance as three crucial factors of photocatalysis (i.e., photon absorption, charge carrier transfer and catalytic surface reactions) are dependent on them [8][9]. Two-dimensional (2D) layered
  • organic semiconductor with tri-s-triazine units, has drawn huge attention from researchers due to its excellent photocatalytic performance and unique properties such as appropriate band structure, visible light absorption and high chemical and thermal stability [2][4]. In addition, g-C3N4 consists of
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2018

Mechanistic insights into plasmonic photocatalysts in utilizing visible light

  • Kah Hon Leong,
  • Azrina Abd Aziz,
  • Lan Ching Sim,
  • Pichiah Saravanan,
  • Min Jang and
  • Detlef Bahnemann

Beilstein J. Nanotechnol. 2018, 9, 628–648, doi:10.3762/bjnano.9.59

Graphical Abstract
  • . This formation is a result of notable contact between noble metal nanoparticles with a semiconductor. Plasmonic effects have been verified to increase the photocatalytic performance due to the intrinsic influences on the semiconductor photocatalyst. Plasmonic effects work to improve harvesting of
  • visible and UV range [93][94][95][96]. Additionally, other noble metals such as Pt and Pd also exhibited a similar photocatalytic performance [97][98]. Ag, Au, Pt and Pd nanoparticles Ag and Au are the most preferred noble metals for interaction with various types of semiconductors due to the strong LSPR
  • mechanism. Reprinted with permission from [35], copyright 2014 Royal Society of Chemistry. Synthesis of Pd/TiO2 photocatalyst via sunlight-assisted photodeposition [50]. Schematic of Au/AgBr-Ag heterostructure mechanism for improved photocatalytic performance. (a) Semiconductor-excited (AgBr) electron
PDF
Album
Review
Published 19 Feb 2018

Influence of the preparation method on the photocatalytic activity of Nd-modified TiO2

  • Patrycja Parnicka,
  • Paweł Mazierski,
  • Tomasz Grzyb,
  • Wojciech Lisowski,
  • Ewa Kowalska,
  • Bunsho Ohtani,
  • Adriana Zaleska-Medynska and
  • Joanna Nadolna

Beilstein J. Nanotechnol. 2018, 9, 447–459, doi:10.3762/bjnano.9.43

Graphical Abstract
  • by the HT method exhibited the lowest photoluminescence intensity, which suggests that the prepared material significantly inhibited the recombination of photogenerated charge carriers, which can improve the photocatalytic performance. A possible reason is the occurrence of numerous Ti–O–Nd bonds
PDF
Album
Full Research Paper
Published 06 Feb 2018

Sugarcane juice derived carbon dot–graphitic carbon nitride composites for bisphenol A degradation under sunlight irradiation

  • Lan Ching Sim,
  • Jing Lin Wong,
  • Chen Hong Hak,
  • Jun Yan Tai,
  • Kah Hon Leong and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2018, 9, 353–363, doi:10.3762/bjnano.9.35

Graphical Abstract
  • [26][27], and degradation of pollutants [28][29][30]. However, the photocatalytic performance of bulk g-C3N4 remains unsatisfactory because of the fast recombination rate of electron pairs and narrower light absorption range over the entire solar spectrum. Turning g-C3N4 into a mesoporous nanorod
  • amount of Ag (3.0 wt %) and CDs (1.0 wt %) resulted in a 10-fold higher degradation rate of naproxen [40]. Much of the work on g-C3N4 has been reported for environmental and energy remediation [41][42]. The above-mentioned research works suggested that the enhancement of the photocatalytic performance
  • absorption spectra after titanium dioxide (TiO2) loading [28] and acid treatment [29], the incorporation of CDs into g-C3N4 consistently red-shifted the absorption spectra towards the visible and NIR region. However, the photocatalytic performance of the composites is possibly limited under NIR light
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2018

Facile synthesis of silver/silver thiocyanate (Ag@AgSCN) plasmonic nanostructures with enhanced photocatalytic performance

  • Xinfu Zhao,
  • Dairong Chen,
  • Abdul Qayum,
  • Bo Chen and
  • Xiuling Jiao

Beilstein J. Nanotechnol. 2017, 8, 2781–2789, doi:10.3762/bjnano.8.277

Graphical Abstract
  • , followed by a UV-light-induced reduction, in which the ratio of Ag to AgSCN can be controlled by simply adjusting the photo-induced reduction time. The degradation of a representative contaminate, oxytetracycline, which often exists in contaminated water, was used to test the photocatalytic performance of
  • ). Photocatalytic performance test The photocatalytic performance of the Ag@AgSCN nanostructures was evaluated by degradation of oxytetracycline (20 mg/L aqueous solution) at ambient temperature and pressure. To establish the adsorption–desorption equilibrium, the dispersion was stirred for 30 min under dark prior
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2017
Other Beilstein-Institut Open Science Activities