Search results

Search for "binding energies" in Full Text gives 179 result(s) in Beilstein Journal of Nanotechnology.

Soybean-derived blue photoluminescent carbon dots

  • Shanshan Wang,
  • Wei Sun,
  • Dong-sheng Yang and
  • Fuqian Yang

Beilstein J. Nanotechnol. 2020, 11, 606–619, doi:10.3762/bjnano.11.48

Graphical Abstract
  • measurement shown in Figure 7. This result confirms again the important role of nitrogen in the PL response of the soybean-derived CDs. Figure 8b–f shows the deconvoluted high-resolution spectra of O 1s, N 1s and C 1s in the soybean-derived CDs. The binding energies of O 1s are 532, 533, and 533 eV for the
  • HTC-CDs, annealed-CDs and LA-CDs-10%, respectively, which are deconvoluted to C–O and C=O bonds. For the HTC-CDs, the binding energies of N 1s determined from the deconvoluted high-resolution spectrum of N 1s are 398.1, 399.3, 401.5, and 402.1 eV, which are assigned to pyridinic, amine, pyrrolic and
  • graphitic nitrogen, respectively [49][50]. For the LA-CDs-10%, the binding energies of the corresponding N 1s are 398.7, 399.6, 401.0 and 402.1 eV, respectively. Thus, both of the HTC-CDs and the LA-CDs-10% likely possess the same types of surface-functional groups but with different fractions. The
PDF
Album
Supp Info
Full Research Paper
Published 09 Apr 2020

Evolution of Ag nanostructures created from thin films: UV–vis absorption and its theoretical predictions

  • Robert Kozioł,
  • Marcin Łapiński,
  • Paweł Syty,
  • Damian Koszelow,
  • Wojciech Sadowski,
  • Józef E. Sienkiewicz and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2020, 11, 494–507, doi:10.3762/bjnano.11.40

Graphical Abstract
  • of 4 mm was used for analyzing the emitted photoelectrons. The binding energies were corrected using the background C 1s line (285.0 eV). XPS spectra were analyzed with the Casa-XPS software using a Shirley background subtraction and Gaussian–Lorentzian curves as fitting algorithm. The theoretical
PDF
Album
Full Research Paper
Published 25 Mar 2020

DFT calculations of the structure and stability of copper clusters on MoS2

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2020, 11, 391–406, doi:10.3762/bjnano.11.30

Graphical Abstract
  • monolayer is presented by Rawal et al. [25] to study the effect of defects in MoS2 on the catalytic activity of the supported nanoparticles. They observe that the magnitude of binding energy and charge transfer follows the trend Cu > Ag > Au. On the pristine surface the binding energies of the nanoparticles
  • investigate how Cu begins to nucleate on a monolayer of MoS2, we start by adsorbing small Cun (n = 1–4) species on a MoS2 monolayer. All binding energies for the different structures calculated from Equation 1 are shown in Table 1. Binding energies calculated with Equation 2 are shown in Table 2 and addition
  • and Figure 4, respectively. The binding energies shown in these images are the binding energies per atom from Equation 1. When a single Cu atom adsorbs at each of the three adsorption sites, Cu binds exothermically with adsorption energies of −0.81, −1.32 and −1.18 eV at sites 1, 2 and 3, respectively
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2020

Size effects of graphene nanoplatelets on the properties of high-density polyethylene nanocomposites: morphological, thermal, electrical, and mechanical characterization

  • Tuba Evgin,
  • Alpaslan Turgut,
  • Georges Hamaoui,
  • Zdenko Spitalsky,
  • Nicolas Horny,
  • Matej Micusik,
  • Mihai Chirtoc,
  • Mehmet Sarikanat and
  • Maria Omastova

Beilstein J. Nanotechnol. 2020, 11, 167–179, doi:10.3762/bjnano.11.14

Graphical Abstract
  • (C 1s at ≈284.6 eV) and contained a small amount of oxygen (O 1s at ≈531–534 eV). The C 1s peak centered at ≈284.6 eV, with an asymmetry towards higher binding energies, which is characteristic for an sp2 carbon atom. The broad peak observed at ca. 291 eV (labeled ‘Pi–Pi*’ in Figure 2b) occurred due
PDF
Album
Supp Info
Full Research Paper
Published 14 Jan 2020

Fabrication of Ag-modified hollow titania spheres via controlled silver diffusion in Ag–TiO2 core–shell nanostructures

  • Bartosz Bartosewicz,
  • Malwina Liszewska,
  • Bogusław Budner,
  • Marta Michalska-Domańska,
  • Krzysztof Kopczyński and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2020, 11, 141–146, doi:10.3762/bjnano.11.12

Graphical Abstract
  • ]. The peak associated with silver oxide appears at lower binding energies than the peak of metallic silver [26][27]. Due to the very small offset for different forms of silver oxide, only one peak located between 367.27 and 367.58 eV with a half-width of 1.03–1.07 eV was modeled in the spectra. The
PDF
Album
Supp Info
Letter
Published 10 Jan 2020

Design and facile synthesis of defect-rich C-MoS2/rGO nanosheets for enhanced lithium–sulfur battery performance

  • Chengxiang Tian,
  • Juwei Wu,
  • Zheng Ma,
  • Bo Li,
  • Pengcheng Li,
  • Xiaotao Zu and
  • Xia Xiang

Beilstein J. Nanotechnol. 2019, 10, 2251–2260, doi:10.3762/bjnano.10.217

Graphical Abstract
  •  4c). The two peaks of pristine MoS2 at 228.9 and 232.1 eV in Figure 4d are assigned to binding energies of Mo 3d5/2 and 3d3/2 for Mo4+, respectively, corresponding to the 2H phase of MoS2[20]. The two peaks at 162.78 and 161.7 eV are attributed to the S 2p1/2 and S 2p3/2 orbital of divalent sulfide
  • in order to utilize its defect sites to catalyze the conversion of polysulfides and to improve the energy storage performance. The binding energies of Mo 3d5/2 and Mo 3d3/2 in C-MoS2/rGO composite shift to 228.6 and 231.8 eV, respectively (Figure 4d). Similarly, the binding energies of S 2p3/2 and S
  • 2p1/2 in the C-MoS2/rGO composite shift to lower energies by about 0.2 eV relative to pristine MoS2. This can be attributed to the interactions of MoS2, amorphous carbon and rGO, which weakens the binding energy of Mo and S [39]. However, after annealing, the binding energies of Mo 3d5/2, Mo 3d3/2, S
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

Ultrathin Ni1−xCoxS2 nanoflakes as high energy density electrode materials for asymmetric supercapacitors

  • Xiaoxiang Wang,
  • Teng Wang,
  • Rusen Zhou,
  • Lijuan Fan,
  • Shengli Zhang,
  • Feng Yu,
  • Tuquabo Tesfamichael,
  • Liwei Su and
  • Hongxia Wang

Beilstein J. Nanotechnol. 2019, 10, 2207–2216, doi:10.3762/bjnano.10.213

Graphical Abstract
  • 2p1/2 and Ni 2p3/2 (Figure 2b) with binding energies of 855.9 eV and 873.3 eV are observed, respectively, with an energy gap of 17.4 eV. Two satellite (indicated as “Sat.”) peaks are also observed at 859.9 eV and 878.4 eV. Thus, the existence of Ni2+ is confirmed in the sulfurised resultants [30][31
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2019

Improved adsorption and degradation performance by S-doping of (001)-TiO2

  • Xiao-Yu Sun,
  • Xian Zhang,
  • Xiao Sun,
  • Ni-Xian Qian,
  • Min Wang and
  • Yong-Qing Ma

Beilstein J. Nanotechnol. 2019, 10, 2116–2127, doi:10.3762/bjnano.10.206

Graphical Abstract
  • °C were measured, and Figure 4 representatively shows the results for 2-S1 and 2-S3. The chemical states of Ti, O and S, the corresponding binding energies (BE) and the CS ratios derived for 2-S0, 2-S0.5, 2-S1, 2-S2, 2-S3, 2-S4 and 2-S5 are listed in Table 3. For all samples synthesized at 250 °C
  • dispersions, (e, f, g, h) DMPO–•O2− formed in methanol dispersion. The unit cell parameters a, c and the c/a value for S-doped (001)-TiO2 at 250 °C. Position of the FTIR absorption peaks and the corresponding vibrational modes. The chemical states (CSs) of Ti, O and S and the corresponding binding energies
PDF
Album
Full Research Paper
Published 01 Nov 2019

Review of advanced sensor devices employing nanoarchitectonics concepts

  • Katsuhiko Ariga,
  • Tatsuyuki Makita,
  • Masato Ito,
  • Taizo Mori,
  • Shun Watanabe and
  • Jun Takeya

Beilstein J. Nanotechnol. 2019, 10, 2014–2030, doi:10.3762/bjnano.10.198

Graphical Abstract
  • binding energies that are controlled by external stimuli. This can also be regarded as the origination of molecular function control by external stimuli. It shares working principles with molecular machines which are usually operated by switching between several states [186][187][188]. Unlike these
PDF
Album
Review
Published 16 Oct 2019

Synthesis of nickel/gallium nanoalloys using a dual-source approach in 1-alkyl-3-methylimidazole ionic liquids

  • Ilka Simon,
  • Julius Hornung,
  • Juri Barthel,
  • Jörg Thomas,
  • Maik Finze,
  • Roland A. Fischer and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2019, 10, 1754–1767, doi:10.3762/bjnano.10.171

Graphical Abstract
  • Information File 1, Figure S6) indicates only one Ga species, but we note that the binding energies of the different Ga oxidation states are within 1 eV [50], which does not allow for an unequivocal assignment. The O 1s peaks at 531.30 eV and 531.18 eV clearly show only the presence of organic oxygen and no
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2019

TiO2/GO-coated functional separator to suppress polysulfide migration in lithium–sulfur batteries

  • Ning Liu,
  • Lu Wang,
  • Taizhe Tan,
  • Yan Zhao and
  • Yongguang Zhang

Beilstein J. Nanotechnol. 2019, 10, 1726–1736, doi:10.3762/bjnano.10.168

Graphical Abstract
  • analysis (SDTQ600) was taken under air flow (RT to 800 °C, 10 °C min−1). The N2 adsorption/desorption tests were analyzed using Brunauer–Emmett–Teller (BET) theory on a Micromeritics ASAP 2020 device. The surface composition was analyzed by XPS (VG ESCALAB MK II USA). The binding energies of all the
PDF
Album
Full Research Paper
Published 19 Aug 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • functional group, the recognition energy was monitored as a function of the relative location. The most stable relative distance was estimated from the energy minimum in the energy diagram, and the binding energies and binding constants were calculated at those interfacial positions. A series of calculations
PDF
Album
Review
Published 30 Jul 2019

High-temperature resistive gas sensors based on ZnO/SiC nanocomposites

  • Vadim B. Platonov,
  • Marina N. Rumyantseva,
  • Alexander S. Frolov,
  • Alexey D. Yapryntsev and
  • Alexander M. Gaskov

Beilstein J. Nanotechnol. 2019, 10, 1537–1547, doi:10.3762/bjnano.10.151

Graphical Abstract
  • convolution functions with simultaneous optimization of the background parameters. The background was simulated using a combination of a Shirley and a Tougaard background. The binding energies (BE) were corrected for the charge shift using the C 1s peak of graphitic carbon (BE = 284.8 eV) as a reference. Gas
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2019

Rapid thermal annealing for high-quality ITO thin films deposited by radio-frequency magnetron sputtering

  • Petronela Prepelita,
  • Ionel Stavarache,
  • Doina Craciun,
  • Florin Garoi,
  • Catalin Negrila,
  • Beatrice Gabriela Sbarcea and
  • Valentin Craciun

Beilstein J. Nanotechnol. 2019, 10, 1511–1522, doi:10.3762/bjnano.10.149

Graphical Abstract
  • energies (0–1150 eV), which revealed the presence of all the intended elements on the surface. The data was calibrated relative to the standard peak of adventitious C 1s with an energy of 284.8 eV. The binding energies of the XPS core peaks (O 1s, In 3d, and Sn 3d), for the as-deposited and RTA-treated
  • exhibited a different electrical charge, so it is reasonable to assume that the associated binding energies are slightly higher. The amount of oxides decreases in the treated samples as compared to untreated ones (Table 3). Separate phases of In2O3 and SnO2, respectively, are observed in all studied samples
  • the increase in the crystallite size (Table 2) and the reduction of structural defects. To evaluate the chemical composition of the surface for the as-deposited and RTA-processed films, the XPS spectra were recorded, as shown in Figure 3a–c. The spectra were recorded over a wide range of binding
PDF
Album
Full Research Paper
Published 25 Jul 2019

Synthesis of P- and N-doped carbon catalysts for the oxygen reduction reaction via controlled phosphoric acid treatment of folic acid

  • Rieko Kobayashi,
  • Takafumi Ishii,
  • Yasuo Imashiro and
  • Jun-ichi Ozaki

Beilstein J. Nanotechnol. 2019, 10, 1497–1510, doi:10.3762/bjnano.10.148

Graphical Abstract
  • are donated to the π-electron system. These differences in the number of electrons supplied to the π-electron system result in differences in the N 1s peak binding energies. Strelko et al. conducted quantum chemical calculations to characterize N-doped graphene, revealing that the electronic states of
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2019

Selective gas detection using Mn3O4/WO3 composites as a sensing layer

  • Yongjiao Sun,
  • Zhichao Yu,
  • Wenda Wang,
  • Pengwei Li,
  • Gang Li,
  • Wendong Zhang,
  • Lin Chen,
  • Serge Zhuivkov and
  • Jie Hu

Beilstein J. Nanotechnol. 2019, 10, 1423–1433, doi:10.3762/bjnano.10.140

Graphical Abstract
  • -resolution XPS spectrum of W 4f is shown in Figure 5b, which exhibits two symmetric peaks with binding energies around 35.4 eV and at 37.6 eV, originating from W 4f7/2 and W 4f5/2, respectively. These values are indicative of stoichiometric WO3, indicating the presence of W6+ ions [17]. The detailed O 1s XPS
  • spectrum is enlarged in Figure 5c. As shown, the O 1s spectrum is fitted by three peaks with binding energies at ≈529.5 eV, ≈530.6 eV and ≈531.6 eV, which could be assigned to lattice oxygen, surface-adsorbed oxygen and hydroxyl on the surface of Mn3O4/WO3, respectively [18]. As can be seen in Figure 5d
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2019

Construction of a 0D/1D composite based on Au nanoparticles/CuBi2O4 microrods for efficient visible-light-driven photocatalytic activity

  • Weilong Shi,
  • Mingyang Li,
  • Hongji Ren,
  • Feng Guo,
  • Xiliu Huang,
  • Yu Shi and
  • Yubin Tang

Beilstein J. Nanotechnol. 2019, 10, 1360–1367, doi:10.3762/bjnano.10.134

Graphical Abstract
  • heterojunction was formed in the composite photocatalyst. The chemical and electronic states of the elements on the Au/CBO surface were characterized by XPS. In the Au 4f XPS spectrum (Figure 5a) peaks at binding energies of 84.1 and 87.7 eV pertaining to Au 4f7/2 and Au 4f5/2, respectively, indicate that the
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2019

A biomimetic nanofluidic diode based on surface-modified polymeric carbon nitride nanotubes

  • Kai Xiao,
  • Baris Kumru,
  • Lu Chen,
  • Lei Jiang,
  • Bernhard V. K. J. Schmidt and
  • Markus Antonietti

Beilstein J. Nanotechnol. 2019, 10, 1316–1323, doi:10.3762/bjnano.10.130

Graphical Abstract
  • × 10−9 mbar. The binding energies were referenced to the C 1s line at 284.8 eV from adventitious carbon. A scanning electron microscope (SEM) JSM-7500F (JEOL) at an accelerating voltage of 3 kV was used to get the top view of the CNNs. X-ray diffraction (XRD) patterns were recorded with a Bruker D8
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2019

A silver-nanoparticle/cellulose-nanofiber composite as a highly effective substrate for surface-enhanced Raman spectroscopy

  • Yongxin Lu,
  • Yan Luo,
  • Zehao Lin and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2019, 10, 1270–1279, doi:10.3762/bjnano.10.126

Graphical Abstract
  • corresponding high-resolution spectrum of the Ag 3d region, where the two peaks located at 368.4 and 374.4 eV are attributed to the binding energies of Ag 3d5/2 and Ag 3d3/2 of metallic silver, respectively [60]. This result indicates metallic silver in the as-prepared paper-based SERS substrate, which is in
PDF
Album
Supp Info
Full Research Paper
Published 24 Jun 2019

Alloyed Pt3M (M = Co, Ni) nanoparticles supported on S- and N-doped carbon nanotubes for the oxygen reduction reaction

  • Stéphane Louisia,
  • Yohann R. J. Thomas,
  • Pierre Lecante,
  • Marie Heitzmann,
  • M. Rosa Axet,
  • Pierre-André Jacques and
  • Philippe Serp

Beilstein J. Nanotechnol. 2019, 10, 1251–1269, doi:10.3762/bjnano.10.125

Graphical Abstract
  • the Pt3Ni series is also around 2 nm, highlighting the effectiveness of the synthetic procedure followed in this work. Moreover, these binding energies are also dependent on the nature of the metal. These observations could explain the strong differences between Pt3Co and Pt3Ni catalysts. In both
  • -distributed NPs are the result of the good interaction between the transition metal and the nitrogen-doped CNT. It is known that high binding energies between the transition metal and the carbon support modify the electronic properties of the NPs and can facilitate the adsorption of the O2. However, XPS data
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2019

Playing with covalent triazine framework tiles for improved CO2 adsorption properties and catalytic performance

  • Giulia Tuci,
  • Andree Iemhoff,
  • Housseinou Ba,
  • Lapo Luconi,
  • Andrea Rossin,
  • Vasiliki Papaefthimiou,
  • Regina Palkovits,
  • Jens Artz,
  • Cuong Pham-Huu and
  • Giuliano Giambastiani

Beilstein J. Nanotechnol. 2019, 10, 1217–1227, doi:10.3762/bjnano.10.121

Graphical Abstract
  • Information File 1, Figures S2D–E and D′–E′). The N 1s XPS spectra recorded for all new CTF samples are fitted with two main components and a minor shoulder at binding energies (BE) between 398.5 ± 0.2, and 402.5 ± 0.5 eV. (see Supporting Information File 1, Figure S3A–E and Figure S4). While the former
  • treatment [30][47][48][49]. Minor shoulders at higher binding energies for all N 1s profiles are finally attributed to a certain extent of N–O species in the samples [50] (Table 1). Notably, all materials prepared from the DCI (III) monomer as such (CTF3) or in mixture with p-DCB (I) (CTF4) or DCBP (II
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2019

Glucose-derived carbon materials with tailored properties as electrocatalysts for the oxygen reduction reaction

  • Rafael Gomes Morais,
  • Natalia Rey-Raap,
  • José Luís Figueiredo and
  • Manuel Fernando Ribeiro Pereira

Beilstein J. Nanotechnol. 2019, 10, 1089–1102, doi:10.3762/bjnano.10.109

Graphical Abstract
  • * transitions in aromatic rings (peak V) at 290.6 ± 0.5 eV [43]. Carbon sp2 (peak I) is an asymmetric peak consisting of a tail towards higher binding energies that represents ≈80% of surface carbon, which does not show significant differences for activated and carbonized samples. However, noticeable
  • detected for N-doped carbons prepared by the ball milling method, as an additional peak is detected at higher binding energies corresponding to N–O–C bonds (peak IV), which is in agreement with the oxidized nitrogen peak also shown in the N 1s spectra. In addition, different contributions of the oxygen
  • the contribution of the various surface groups due to overlaps in their binding energies. Therefore, the contribution of oxygen-containing surface groups in undoped samples was further analysed by TPD. The CO and CO2 measurements obtained for undoped activated and carbonized samples are presented in
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2019

Structural and optical properties of penicillamine-protected gold nanocluster fractions separated by sequential size-selective fractionation

  • Xiupei Yang,
  • Zhengli Yang,
  • Fenglin Tang,
  • Jing Xu,
  • Maoxue Zhang and
  • Martin M. F. Choi

Beilstein J. Nanotechnol. 2019, 10, 955–966, doi:10.3762/bjnano.10.96

Graphical Abstract
  • very small particles and bulk materials, and that the dimensionally dependent changes in the electronic structure produce unusual characteristics [32]. The binding energies of the latter fraction are higher than those of the former fraction, further indicating that the gold cores of the latter were
  • -protected AuNC product and the sequential size-selected fractions (B) F36%, (C) F54%, (D) F72%, (E) F90%, and (F) F0%. The right panels display the Au 4f7/2 and Au 4f5/2 binding energies and Au/S ratio of the samples determined by XPS. XPS spectra in the S 2p region of the (A) crude penicillamine-protected
  • AuNC product and the sequential size-selected fractions (B) F36%, (C) F54%, (D) F72%, (E) F90%, and (F) F0%. The right panel displays the S 2p3/2 and S 2p1/2 binding energies of the samples. (A) UV–visible absorption and (B) corrected photoluminescence spectra (excited at 380 nm) of the (0) crude
PDF
Album
Full Research Paper
Published 25 Apr 2019

Synthesis of novel C-doped g-C3N4 nanosheets coupled with CdIn2S4 for enhanced photocatalytic hydrogen evolution

  • Jingshuai Chen,
  • Chang-Jie Mao,
  • Helin Niu and
  • Ji-Ming Song

Beilstein J. Nanotechnol. 2019, 10, 912–921, doi:10.3762/bjnano.10.92

Graphical Abstract
  • , N, Cd, In, and S, also verifying the coexistence of CCN nanosheets and CdIn2S4 nanocrystals in the composite. The C 1s spectrum in Figure 5b shows some new peaks with binding energies at 284.8 eV, 286.0 eV and 288.1 eV. According to the reported literature, the peak located at 284.8 eV belongs to
PDF
Album
Full Research Paper
Published 18 Apr 2019

Synthesis of MnO2–CuO–Fe2O3/CNTs catalysts: low-temperature SCR activity and formation mechanism

  • Yanbing Zhang,
  • Lihua Liu,
  • Yingzan Chen,
  • Xianglong Cheng,
  • Chengjian Song,
  • Mingjie Ding and
  • Haipeng Zhao

Beilstein J. Nanotechnol. 2019, 10, 848–855, doi:10.3762/bjnano.10.85

Graphical Abstract
  • results of XRD (Figure 2). X-ray photoelectron spectroscopy The XPS spectra of the as-prepared catalysts are given in Figure 4. The elements Mn, Cu, Fe, C, and O were detected in the XPS full-scan spectrum of Figure 4A. For the Mn 2p spectrum of 4% MnO2–CuO–Fe2O3/CNTs (Figure 4B), the binding energies at
  • of XRD and NO conversion measurements. The binding energies of Cu 2p1/2 and Cu 2p3/2 of the 4% MnO2–CuO–Fe2O3/CNTs catalyst (Figure 4C) are located at 954.3 and 934.4 eV, respectively, along with satellites at higher energies, indicating the formation of CuO [28]. The energy separation between Cu 2p1
  • 724.7 and 711.2 eV, respectively, can be attributed to Fe2O3 [32]. The energy separation of 13.5 eV is typical for Fe2O3 [33]. The two satellites at 732.7 and 718.4 eV also verify the formation of Fe2O3 [34]. In spectrum b of Figure 4E, the binding energies of Fe 2p1/2 and Fe 2p3/2 (724.4 and 711.0 eV
PDF
Album
Supp Info
Full Research Paper
Published 11 Apr 2019
Other Beilstein-Institut Open Science Activities