Search results

Search for "surfaces" in Full Text gives 1269 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Thickness dependent oxidation in CrCl3: a scanning X-ray photoemission and Kelvin probe microscopies study

  • Shafaq Kazim,
  • Rahul Parmar,
  • Maryam Azizinia,
  • Matteo Amati,
  • Muhammad Rauf,
  • Andrea Di Cicco,
  • Seyed Javid Rezvani,
  • Dario Mastrippolito,
  • Luca Ottaviano,
  • Tomasz Klimczuk,
  • Luca Gregoratti and
  • Roberto Gunnella

Beilstein J. Nanotechnol. 2025, 16, 749–761, doi:10.3762/bjnano.16.58

Graphical Abstract
  • investigates interfaces made by dry transfer of CrCl3 flakes in an atmospheric environment. Cl vacancies and the formation of O/CrCl3 are induced, serving as dissociation centers that facilitate the migration of Cl vacancies between the top and bottom surfaces. By manipulating 2D atomic layers via surface
  • showed that oxygen adsorption on cleaved surfaces facilitates the formation of a stable structure with charge transfer signatures, as identified by high-resolution photoemission spectroscopy [8]. It remains unclear whether similar effects occur in exfoliated thin flakes. Like in other materials, the
  • effect) [19][20][21]. A well-known and suitable technique to investigate the electronic structure of surfaces is X-ray photoemission spectro-microscopy [22][6]; in order to obtain the necessary spatial resolution, the beam size must be reduced to tens of nanometers. The Electron Spectroscopy for Chemical
PDF
Album
Supp Info
Full Research Paper
Published 02 Jun 2025

Nanostructured materials characterized by scanning photoelectron spectromicroscopy

  • Matteo Amati,
  • Alexey S. Shkvarin,
  • Alexander I. Merentsov,
  • Alexander N. Titov,
  • María Taeño,
  • David Maestre,
  • Sarah R. McKibbin,
  • Zygmunt Milosz,
  • Ana Cremades,
  • Rainer Timm and
  • Luca Gregoratti

Beilstein J. Nanotechnol. 2025, 16, 700–710, doi:10.3762/bjnano.16.54

Graphical Abstract
  • surfaces. The characterization of the building blocks is of paramount importance to deeply understand their functionalities and mutual interactions when they are part of a nanostructured body. The building blocks may differ in their atomic structure, crystallographic orientation, chemical composition, and
  • enhanced sensitivities are examples of capabilities that modern techniques of characterization in nanotechnology must possess. X-ray photoelectron spectroscopy (XPS) is still one of the fundamental tools for chemical and electronic characterization of surfaces and subsurface layers. In the last three to
  • promising, their performance is often limited by surface properties of the III–V semiconductor material, which furthermore can vary for individual nanowires. This includes native oxides on semiconductor surfaces and their possible removal, surface passivation, and interface defects [27]. Therefore, in-depth
PDF
Album
Review
Published 23 May 2025

Colloidal few layered graphene–tannic acid preserves the biocompatibility of periodontal ligament cells

  • Teissir Ben Ammar,
  • Naji Kharouf,
  • Dominique Vautier,
  • Housseinou Ba,
  • Nivedita Sudheer,
  • Philippe Lavalle and
  • Vincent Ball

Beilstein J. Nanotechnol. 2025, 16, 664–677, doi:10.3762/bjnano.16.51

Graphical Abstract
  • hydrogen bonds and coat various surfaces [23]. Our results are compatible with a model where adsorbed TA molecules create a partially active antioxidant layer on the FLG surface, maintaining bioactivity while enhancing graphene colloid stability. Unfortunately, the zeta potential of the FLG–TA material in
  • . The cellular response on different graphene surfaces was previously studied, and it was demonstrated that substrate characteristics such as surface roughness, surface chemistry, and electronic properties can influence cell response [38]. The implications of these results are particularly significant
  • surfaces as observed through SEM, we undertook additional confocal microscopy analyses concentrating on the actin cytoskeleton, which is a pivotal determinant of cellular structural integrity and adhesion capability, as well as overall cell viability [39][40]. The arrangement of actin filaments is
PDF
Album
Supp Info
Full Research Paper
Published 20 May 2025

Polyurethane/silk fibroin-based electrospun membranes for wound healing and skin substitute applications

  • Iqra Zainab,
  • Zohra Naseem,
  • Syeda Rubab Batool,
  • Muhammad Waqas,
  • Ahsan Nazir and
  • Muhammad Anwaar Nazeer

Beilstein J. Nanotechnol. 2025, 16, 591–612, doi:10.3762/bjnano.16.46

Graphical Abstract
  • , SF, cellulose, and collagen, along with their composites and derivatives can be electrospun [58]. Electrospinning has emerged as a versatile technique investigated across various fields, including tissue engineering, drug delivery, filtration, wound dressings, self-cleaning surfaces, biotechnology
  • , environmental engineering, and green chemistry [59]. This method facilitates the creation of highly porous 3D structures with an extensive surface area and desirable chemical and physical properties, making the resulting nanofibers ideal for applications such as biosensors, antimicrobial surfaces, scaffolds
PDF
Album
Review
Published 24 Apr 2025

Nanomaterials in targeting amyloid-β oligomers: current advances and future directions for Alzheimer's disease diagnosis and therapy

  • Shiwani Randhawa,
  • Trilok Chand Saini,
  • Manik Bathla,
  • Rahul Bhardwaj,
  • Rubina Dhiman and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2025, 16, 561–580, doi:10.3762/bjnano.16.44

Graphical Abstract
  • promising alternative with NPs specifically designed for AD diagnosis and AβO inhibition. These NPs possess unique properties, including variable size and shape and readily modifiable surfaces. These features allow for targeted and effective therapeutic strategies. In this section, we discuss NPs
  • MNSs was further modified with oligomer-specific antibodies, creating a stable nanobioconjugate for both in vitro and in vivo applications. The MNSs could detect toxic AβOs present on nerve cell surfaces in vitro, demonstrating their specificity and effectiveness. Additionally, upon intranasal delivery
  • physicochemical properties, diverse structural forms, and potential applications in combating NDs. The unique characteristics of CNMs, including their hydrophobic surfaces and variable dimensions, enable them to interact effectively with biomolecules, making them valuable tools in biomedical research and
PDF
Album
Review
Published 22 Apr 2025

Performance optimization of a microwave-coupled plasma-based ultralow-energy ECR ion source for silicon nanostructuring

  • Joy Mukherjee,
  • Safiul Alam Mollick,
  • Tanmoy Basu and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2025, 16, 484–494, doi:10.3762/bjnano.16.37

Graphical Abstract
  • generating ion beams in a microwave-coupled plasma-based ultralow-energy electron cyclotron resonance ion source, generally used for nanostructuring solid surfaces. The investigation focuses on developing, accelerating, and extracting Ar ions from a magnetron-coupled plasma cup utilizing a three-grid ion
  • extraction-based ion sources. Plasma physics principles are employed to interpret the observed variations in the beam current with various parameters. The optimized beam current is used to investigate the inert ion-induced nanopatterning of silicon surfaces, at various ion fluences and incidence angles. The
  • pre- and post-bombardment changes in optical properties, resulting from nanopatterned surfaces, are investigated using UV–vis reflectivity measurements and correlated with the dimensions of the nanopatterns. This manuscript highlights the potential applications arising from these findings, emphasizing
PDF
Album
Full Research Paper
Published 31 Mar 2025

Impact of adsorbate–substrate interaction on nanostructured thin films growth during low-pressure condensation

  • Alina V. Dvornichenko,
  • Vasyl O. Kharchenko and
  • Dmitrii O. Kharchenko

Beilstein J. Nanotechnol. 2025, 16, 473–483, doi:10.3762/bjnano.16.36

Graphical Abstract
  • neglected (e.g., during deposition of Al atoms on TiN surfaces, the lattice mismatch is about 4%) [40]. From Equation 3, it follows that these interactions do not affect the lateral flux J ∝ ∇U. At the same time, for systems with strong lattice mismatch, strong adatom–substrate bonding makes desorption
PDF
Album
Full Research Paper
Published 28 Mar 2025

Biomimetics and bioinspired surfaces: from nature to theory and applications

  • Rhainer Guillermo Ferreira,
  • Thies H. Büscher,
  • Manuela Rebora,
  • Poramate Manoonpong,
  • Zhendong Dai and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2025, 16, 418–421, doi:10.3762/bjnano.16.32

Graphical Abstract
  • ; microstructures; nanostructures; wettability; The surfaces of living organisms are continuously interacting with their surroundings. As a result, they encounter a variety of challenges arising from both external and internal stimuli. Consequently, these surfaces must be multifunctional and adapt to numerous
  • environmental pressures. Such pressures involve intricate interactions between surface structures and the environment across different scales, including nano-, micro-, and macroscales. Biomimetics aims at making use of understanding how these adaptations and the particular material properties of these surfaces
  • . Bioinspired nanotechnology plays a crucial role by harnessing nanoscale properties and processes to create highly effective surfaces and interfaces at various scales. In May 2023, the Beilstein Nanotechnology Symposium “Functional Micro- and Nanostructured Surfaces: from Biology to Biomimetics” gathered
PDF
Album
Editorial
Published 26 Mar 2025

ReactorAFM/STM – dynamic reactions on surfaces at elevated temperature and atmospheric pressure

  • Tycho Roorda,
  • Hamed Achour,
  • Matthijs A. van Spronsen,
  • Marta E. Cañas-Ventura,
  • Sander B. Roobol,
  • Willem Onderwaater,
  • Mirthe Bergman,
  • Peter van der Tuijn,
  • Gertjan van Baarle,
  • Johan W. Bakker,
  • Joost W. M. Frenken and
  • Irene M. N. Groot

Beilstein J. Nanotechnol. 2025, 16, 397–406, doi:10.3762/bjnano.16.30

Graphical Abstract
  • in counts while between 490 and 550 K. The added ability to scan various surfaces with combined AFM/STM while monitoring the reaction products demonstrates the versatility offered by the ReactorAFM/STM to study catalysts under realistic industrial conditions. Keywords: combined AFM/STM; conductive
PDF
Album
Full Research Paper
Published 21 Mar 2025

Engineered PEG–PCL nanoparticles enable sensitive and selective detection of sodium dodecyl sulfate: a qualitative and quantitative analysis

  • Soni Prajapati and
  • Ranjana Singh

Beilstein J. Nanotechnol. 2025, 16, 385–396, doi:10.3762/bjnano.16.29

Graphical Abstract
  • PEG–PCL NPs have smooth and homogenous surfaces with small pore sizes. The nanoparticles demonstrated high uniformity and were predominantly quasi-spherical in shape, with an average size of 53.7 ± 10 nm. This quasi-spherical morphology is advantageous for many applications, as it provides a high
PDF
Album
Full Research Paper
Published 20 Mar 2025

Development of a mucoadhesive drug delivery system and its interaction with gastric cells

  • Ahmet Baki Sahin,
  • Serdar Karakurt and
  • Deniz Sezlev Bilecen

Beilstein J. Nanotechnol. 2025, 16, 371–384, doi:10.3762/bjnano.16.28

Graphical Abstract
  • ) nanoparticles, topography, surface composition, size, and charge distribution of the delivery system were determined. The topography of the nanoparticles was studied with SEM (Figure 1). Both Alg and EudAlg nanoparticles are spherical with smooth surfaces (Figure 1A,B). It should be noted that during SEM
  • particles is also very important. The zeta potential of Alg nanoparticles is negative (−25.85 ± 7.7 mV), as expected, because of the presence of –COOH and –OH groups in the polymer. This may hinder its interaction with negatively charged surfaces like mucus because of charge repulsion [42]; in contrast
PDF
Album
Supp Info
Full Research Paper
Published 13 Mar 2025

Pulsed laser in liquid grafting of gold nanoparticle–carbon support composites

  • Madeleine K. Wilsey,
  • Teona Taseska,
  • Qishen Lyu,
  • Connor P. Cox and
  • Astrid M. Müller

Beilstein J. Nanotechnol. 2025, 16, 349–361, doi:10.3762/bjnano.16.26

Graphical Abstract
  • synthesis–attachment are long preparation times, the generation of hazardous organic solvent and ligand waste [15], and poor electrical contact at the nanoparticle–support interface, particularly for nanoparticles with surfactant-terminated surfaces [16]. Conventionally made nanoparticles rely on
  • nanoparticles and supports, lowering electrical contact fidelity and energy efficiency of the composite electrodes. Surfactants alter nanoparticle surfaces, complicating understanding and often lowering catalytic performance by blocking active sites. Surfactants (like binders) partake in electrochemical
  • that the carbon support is wettable by water. Making macroscopic carbon surfaces hydrophilic necessitates carbon surface oxygenates that are thermodynamically stable only at graphitic edges spaced closely enough to retain adsorbed water [22]. This precludes glassy carbon and basal-plane highly ordered
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2025

Correction: AFM-IR investigation of thin PECVD SiOx films on a polypropylene substrate in the surface-sensitive mode

  • Hendrik Müller,
  • Hartmut Stadler,
  • Teresa de los Arcos,
  • Adrian Keller and
  • Guido Grundmeier

Beilstein J. Nanotechnol. 2025, 16, 252–253, doi:10.3762/bjnano.16.19

Graphical Abstract
  • Hendrik Muller Hartmut Stadler Teresa de los Arcos Adrian Keller Guido Grundmeier Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany Bruker Nano Surfaces and Metrology Division, Östliche Rheinbrückenstr. 49, 76187 Karlsruhe, Germany 10.3762
PDF
Original
Article
Correction
Published 20 Feb 2025

Radiosensitizing properties of dual-functionalized carbon nanostructures loaded with temozolomide

  • Radmila Milenkovska,
  • Nikola Geskovski,
  • Dushko Shalabalija,
  • Ljubica Mihailova,
  • Petre Makreski,
  • Dushko Lukarski,
  • Igor Stojkovski,
  • Maja Simonoska Crcarevska and
  • Kristina Mladenovska

Beilstein J. Nanotechnol. 2025, 16, 229–251, doi:10.3762/bjnano.16.18

Graphical Abstract
  • dual functionalization of MWCNTs (Figure 1a–d) was visible by enlarged tubes/thicker walls and non-uniform surfaces of the tubes. The images of PEGylated and dual-functionalized hybrid MWCNTs-G (Figure 1e–h) showed, in addition to the thicker side walls and rounded ends of the tubes, spherical
  • the successful introduction of functional groups on their surfaces, that is, chemical modification of their outer layers [62]. The spectra of covalently functionalized MWCNTs-G with PEG6000 follow this behavior and are also accompanied by a broadening of the G band. The broadening and its intensity
  • for the surface charge (−38 vs −33 mV), and the smaller length of the hybrid CN (less than 10 vs 10–30 µm, data from the producers), one can say that the higher fraction of flat surfaces in the hybrid CN, that is, the more intense contact with the cells and the length of the hybrid CN are dominant
PDF
Album
Full Research Paper
Published 19 Feb 2025

Recent advances in photothermal nanomaterials for ophthalmic applications

  • Jiayuan Zhuang,
  • Linhui Jia,
  • Chenghao Li,
  • Rui Yang,
  • Jiapeng Wang,
  • Wen-an Wang,
  • Heng Zhou and
  • Xiangxia Luo

Beilstein J. Nanotechnol. 2025, 16, 195–215, doi:10.3762/bjnano.16.16

Graphical Abstract
  • the dielectric environment present during their synthesis (see below in Figure 2b) [48][49]. Because of the direct occurrence of photothermal conversion on the surfaces of LSPR metals and its rapid nature, combined with the metals’ inherent high thermal conductivity and strong hydrophilicity, LSPR
  • , and can be easily removed post-laser treatment. The spatially selective single-cell killing capability of iron oxide PLA bubble films has great potential for ocular tumor therapy. However, clinical treatment of tumors requires the application of films on surfaces with “odd” tissues. Using a
PDF
Album
Review
Published 17 Feb 2025

A review of metal-organic frameworks and polymers in mixed matrix membranes for CO2 capture

  • Charlotte Skjold Qvist Christensen,
  • Nicholas Hansen,
  • Mahboubeh Motadayen,
  • Nina Lock,
  • Martin Lahn Henriksen and
  • Jonathan Quinson

Beilstein J. Nanotechnol. 2025, 16, 155–186, doi:10.3762/bjnano.16.14

Graphical Abstract
  • densities of OMSs on their channel pore surfaces [61], with a volumetric density of accessible metal sites of 7.5–7.7 mmol·cm−3 [62]. The CO2 binding strength and selectivity are influenced by the nature of the metal center, with Mg2+ ions identified as the preferential adsorption site according to density
PDF
Album
Supp Info
Review
Published 12 Feb 2025

Advanced atomic force microscopy techniques V

  • Philipp Rahe,
  • Ilko Bald,
  • Nadine Hauptmann,
  • Regina Hoffmann-Vogel,
  • Harry Mönig and
  • Michael Reichling

Beilstein J. Nanotechnol. 2025, 16, 54–56, doi:10.3762/bjnano.16.6

Graphical Abstract
  • software tool (”unDrift”), which allows reliable and fast drift correction. Dickbreder et al. demonstrate the robust performance of the software tool by AFM data recorded under varying conditions (vacuum or liquid environment) on calcite surfaces with recording times up to several hours. The work by Nony
  • monolayers (SAMs) and conducting AFM [10]. The authors find that rougher surfaces lead to stronger variations in conductivity, and it is suggested that a correlation of topography and conductivity maps is carried out to identify suitable areas for a representative averaging of conductivity values. Müller et
  • al. present the application of AFM-based infrared nanospectroscopy to coated polymer surfaces [11]. The authors prepare thin films of SiOx on polypropylene surfaces by plasma-enhanced chemical vapor deposition (PE-CVD), which is commonly done to improve gas barrier properties of polypropylene. They
PDF
Editorial
Published 21 Jan 2025

Precursor sticking coefficient determination from indented deposits fabricated by electron beam induced deposition

  • Alexander Kuprava and
  • Michael Huth

Beilstein J. Nanotechnol. 2025, 16, 35–43, doi:10.3762/bjnano.16.4

Graphical Abstract
  • . Firstly, the sticking coefficient of the molecules stemming from directed and diffuse flow will be different due to the different kinetic energies, as precursor gas from the gas injection system and precursor gas from surrounding surfaces are at different equilibrium temperatures. In other work involving
  • coefficient and residence time, may be different for metallic surfaces such as that of the chamber wall and internal installations. The aforementioned considerations can partially explain the substantially lower sticking coefficients determined here for FEBID-precursors than those determined for lighter
PDF
Album
Supp Info
Full Research Paper
Published 13 Jan 2025

Bioinspired nanofilament coatings for scale reduction on steel

  • Siad Dahir Ali,
  • Mette Heidemann Rasmussen,
  • Jacopo Catalano,
  • Christian Husum Frederiksen and
  • Tobias Weidner

Beilstein J. Nanotechnol. 2025, 16, 25–34, doi:10.3762/bjnano.16.3

Graphical Abstract
  • , Danish Technical University, 2800 Kongens Lyngby, Denmark 10.3762/bjnano.16.3 Abstract Scaling of steel surfaces, prevalent in various industrial applications, results in significant operational inefficiencies and maintenance costs. Inspired by the natural hydrophobicity of springtail (Collembola) skin
  • , which employs micro- and nanostructures to repel water, we investigate the application of silicone nanofilaments (SNFs) as a coating on steel surfaces to mitigate scaling. Silicone nanofilaments, previously successful on polymers, textiles, and glass, are explored for their hydrophobic properties and
  • stability on steel. Our study demonstrates the successful coating of stainless steel with SNFs, achieving super-hydrophobicity and resilience under high shear stress and explosion/decompression tests. Scaling experiments reveal a 75.5% reduction in calcium carbonate deposition on SNF-coated steel surfaces
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2025

Biomimetic nanocarriers: integrating natural functions for advanced therapeutic applications

  • Hugo Felix Perini,
  • Beatriz Sodré Matos,
  • Carlo José Freire de Oliveira and
  • Marcos Vinicius da Silva

Beilstein J. Nanotechnol. 2024, 15, 1619–1626, doi:10.3762/bjnano.15.127

Graphical Abstract
  • main solutions that biomimetics addresses (Figure 2C). This approach has demonstrated that complex nanocarrier drug delivery systems need to exhibit compatible surfaces with target cells to enhance their functional capabilities [19]. Biomimetic Nanocarriers in Human Health The field of nanocarriers for
PDF
Album
Perspective
Published 16 Dec 2024

Natural nanofibers embedded in the seed mucilage envelope: composite hydrogels with specific adhesive and frictional properties

  • Agnieszka Kreitschitz and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2024, 15, 1603–1618, doi:10.3762/bjnano.15.126

Graphical Abstract
  • important biological functions, such as supporting seed germination, protecting seeds against pathogens and predators, and allowing the seed to attach to diverse surfaces (e.g., soil or animals). The attachment properties of mucilage are thus responsible for seed dispersal. Mucilage represents a hydrophilic
  • ][28]. Hydrated mucilage can very strongly adhere to surfaces (e.g., stone or glass) when completely dried out after contact, with pull-off forces reaching values around 6.5 N [29]. Such strong adhesion can enable seed attachment to the soil, preventing removal and damage by other organisms [16][30
  • in the mucilage, the diaspore can be removed from surfaces (animal fur or feathers). However, even in the fully hydrated state, the mucilage is sticky to ensure the first contact to the surface. Losing the water from mucilage causes stronger adhesion [26][27]; finally, dry mucilage can be strongly
PDF
Album
Review
Published 13 Dec 2024

Facile synthesis of size-tunable L-carnosine-capped silver nanoparticles and their role in metal ion sensing and catalytic degradation of p-nitrophenol

  • Akash Kumar,
  • Ridhima Chadha,
  • Abhishek Das,
  • Nandita Maiti and
  • Rayavarapu Raja Gopal

Beilstein J. Nanotechnol. 2024, 15, 1576–1592, doi:10.3762/bjnano.15.124

Graphical Abstract
  • 94.33 mg/g at a pH of 8.5 and 0.4 g/L adsorbent [16]. These studies confirmed that ʟ-carnosine adsorbed on metal surfaces has widespread environmental applications. However, magnetic nanoparticles or MOFs coated with ʟ-carnosine were applicable only for environmental remediation but were incapable of
  • towards the positively charged surfaces of silver. The morphology and size of silver nanoparticles capped with ʟ-carnosine were measured using TEM (Figure 3b–f). The TEM micrograph of ʟ-car-AgNP1 (Figure 3b) indicates the formation of spherical particles with high monodispersity and is consistent with the
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2024

Ultrablack color in velvet ant cuticle

  • Vinicius Marques Lopez,
  • Wencke Krings,
  • Juliana Reis Machado,
  • Stanislav Gorb and
  • Rhainer Guillermo-Ferreira

Beilstein J. Nanotechnol. 2024, 15, 1554–1565, doi:10.3762/bjnano.15.122

Graphical Abstract
  • examples observed in some organisms, scientists are committed to unraveling the mechanisms underlying the development of ultrablack technical surfaces, seeking to replicate such structures in synthetic and natural materials with equivalent properties [3][4][5][6][7][8]. Ultrablack colors are a rare
  • light [10][13]. The ultrablack surfaces found in certain organisms present a remarkable adaptation shaped by selective pressures in their respective environments. For example, combining conspicuous visual cues with ultrablack colors may provide heightened internal visual contrast, thus highlighting
  • assisted absorption to reduce specular reflectance. This demonstrates how organisms have developed sophisticated mechanisms to modulate the interaction between light and biological surfaces, resulting in highly absorptive and minimally reflective colors. These adaptations play a role in animal survival and
PDF
Album
Supp Info
Full Research Paper
Published 02 Dec 2024

Effect of radiation-induced vacancy saturation on the first-order phase transformation in nanoparticles: insights from a model

  • Aram Shirinyan and
  • Yuriy Bilogorodskyy

Beilstein J. Nanotechnol. 2024, 15, 1453–1472, doi:10.3762/bjnano.15.117

Graphical Abstract
  • based on the fact that the movement of dislocations is impeded by particle surfaces (grain boundaries) quite rapidly. For example, a transmission electron microscopy study (irradiation with Kr ions at 1 MeV at room temperature and an average defect generation rate of about 2 × 10−3 dpa·s−1) showed that
  • irradiation, which generate vacancies and interstitial atoms in both the interior and on the surfaces of the nanoparticle. Our approach utilizes thermodynamic calculations to determine the Gibbs free energy of a nanoparticle in various phase states with vacancy-type defects. Additionally, we consider the size
  • point defects in HDCMs under irradiation are mainly vacancies inside the nanoparticle, and the movement of interstitials from their initial positions to the surfaces is assumed to be rapid [17][22][23][24]. Additionally, the nanoparticles are considered isolated, with no exchange of atoms between them
PDF
Album
Full Research Paper
Published 21 Nov 2024

Lithium niobate on insulator: an emerging nanophotonic crystal for optimized light control

  • Midhun Murali,
  • Amit Banerjee and
  • Tanmoy Basu

Beilstein J. Nanotechnol. 2024, 15, 1415–1426, doi:10.3762/bjnano.15.114

Graphical Abstract
  • implantation, the wafer is bonded to a SiO2 (or TiO2) substrate using direct bonding techniques, which involves bringing the surfaces into close contact and applying pressure or heat to form a strong bond. The wafer is then subjected to thermal annealing, which activates the splitting process along the
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2024
Other Beilstein-Institut Open Science Activities