Search results

Search for "zinc oxide" in Full Text gives 124 result(s) in Beilstein Journal of Nanotechnology.

Near-infrared light harvesting of upconverting NaYF4:Yb3+/Er3+-based amorphous silicon solar cells investigated by an optical filter

  • Daiming Liu,
  • Qingkang Wang and
  • Qing Wang

Beilstein J. Nanotechnol. 2018, 9, 2788–2793, doi:10.3762/bjnano.9.260

Graphical Abstract
  • prepared (Figure 3a). One a-Si:H layer of ca. 350 nm is sandwiched between two aluminum-doped zinc oxide (AZO) contacts. The thickness of the AZO contacts is approximately 1.5 μm. From Figure 3b, the photoelectric conversion efficiency of the a-Si:H solar cell is calculated to be 6.68% at the maximum power
PDF
Album
Full Research Paper
Published 31 Oct 2018

Oriented zinc oxide nanorods: A novel saturable absorber for lasers in the near-infrared

  • Pavel Loiko,
  • Tanujjal Bora,
  • Josep Maria Serres,
  • Haohai Yu,
  • Magdalena Aguiló,
  • Francesc Díaz,
  • Uwe Griebner,
  • Valentin Petrov,
  • Xavier Mateos and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2018, 9, 2730–2740, doi:10.3762/bjnano.9.255

Graphical Abstract
  • , Applied Physics Department, School of Engineering Sciences, KTH Royal Institute of Technology, Isafjordsgatan 22, SE-164 40 Kista Stockholm, Sweden 10.3762/bjnano.9.255 Abstract Zinc oxide (ZnO) nanorods (NRs) oriented along the crystallographic [001] axis are grown by the hydrothermal method on glass
  • nanorods; Q-switching; saturable absorption; solid-state lasers; zinc oxide; Introduction Zinc oxide (ZnO) is a well-known II–IV group wide-bandgap semiconductor (Eg = 3.37 eV), possessing a hexagonal wurtzite-type (sp. gr. P63mc) structure with unit cell parameters a = 3.25 Å, c = 5.20 Å. In recent years
PDF
Album
Full Research Paper
Published 23 Oct 2018
Graphical Abstract
  • to their outstanding properties such as high electron mobility, good transparency to visible light, and low process temperature with good uniformity [1][2][3][4]. Among the numerous AOS materials, indium gallium zinc oxide (IGZO) is one of the most promising candidates used as the active layer
PDF
Album
Full Research Paper
Published 26 Sep 2018

ZnO-nanostructure-based electrochemical sensor: Effect of nanostructure morphology on the sensing of heavy metal ions

  • Marina Krasovska,
  • Vjaceslavs Gerbreders,
  • Irena Mihailova,
  • Andrejs Ogurcovs,
  • Eriks Sledevskis,
  • Andrejs Gerbreders and
  • Pavels Sarajevs

Beilstein J. Nanotechnol. 2018, 9, 2421–2431, doi:10.3762/bjnano.9.227

Graphical Abstract
  • stream of dry nitrogen and thermally treated at 350 °C for 30 min in air, such that zinc acetate was completely converted into zinc oxide. Subsequently, the samples were slowly cooled to room temperature. The nanostructured layer of the electrode was obtained by the hydrothermal synthesis method using an
PDF
Album
Full Research Paper
Published 11 Sep 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • ], Co3O4 [113][114], iron oxide (Fe2O3) [115][116], tin dioxide (SnO2) [76][117][118][119][120][121][122][123], zinc oxide (ZnO) [124][125][126][127][128][129][130], and indium oxide (In2O3) [78][80][131][132][133][134][135][136][137][138]. Table S2 in Supporting Information File 1 summarizes the sensing
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Fabrication of photothermally active poly(vinyl alcohol) films with gold nanostars for antibacterial applications

  • Mykola Borzenkov,
  • Maria Moros,
  • Claudia Tortiglione,
  • Serena Bertoldi,
  • Nicola Contessi,
  • Silvia Faré,
  • Angelo Taglietti,
  • Agnese D’Agostino,
  • Piersandro Pallavicini,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2018, 9, 2040–2048, doi:10.3762/bjnano.9.193

Graphical Abstract
  • studies have reported the preparation and the antibacterial efficacy of PVA films containing plant extracts, silver nanoparticles or zinc oxide nanoparticles [17][18][19][20][21][22]. However, when bacteria start to form biofilms they become resistant and conventional antibiotics do not eradicate biofilms
PDF
Album
Supp Info
Full Research Paper
Published 23 Jul 2018

Nonlinear effect of carrier drift on the performance of an n-type ZnO nanowire nanogenerator by coupling piezoelectric effect and semiconduction

  • Yuxing Liang,
  • Shuaiqi Fan,
  • Xuedong Chen and
  • Yuantai Hu

Beilstein J. Nanotechnol. 2018, 9, 1917–1925, doi:10.3762/bjnano.9.183

Graphical Abstract
  • -axis; piezoelectric potential; semiconductor; zinc oxide (ZnO); Introduction An acoustic wave propagating in piezoelectric semiconductors usually stimulates electric fields that bring charge carriers into motion, and conversely, the carrier motion will produce an opposite effect on the electric fields
PDF
Album
Full Research Paper
Published 04 Jul 2018

Nitrogen-doped carbon nanotubes coated with zinc oxide nanoparticles as sulfur encapsulator for high-performance lithium/sulfur batteries

  • Yan Zhao,
  • Zhengjun Liu,
  • Liancheng Sun,
  • Yongguang Zhang,
  • Yuting Feng,
  • Xin Wang,
  • Indira Kurmanbayeva and
  • Zhumabay Bakenov

Beilstein J. Nanotechnol. 2018, 9, 1677–1685, doi:10.3762/bjnano.9.159

Graphical Abstract
  • carbon nanotubes coated with zinc oxide nanoparticles (ZnO@NCNT) were prepared via a sol–gel route as sulfur encapsulator for lithium/sulfur (Li/S) batteries. The electrochemical properties of the S/ZnO@NCNT composite cathode were evaluated in Li/S batteries. It delivered an initial capacity of 1032
  • providing pathways for ion and electron transport. The as-prepared S/ZnO@NCNT composite is a promising cathode material for Li/S batteries. Keywords: batteries; nanocomposites; sol–gel processes; sulfur; zinc oxide (ZnO); Introduction Due to its high theoretical specific capacity of 1672 mAh·g−1 and
  • this work, we synthesized nanocomposites of zinc oxide-coated nitrogen-doped carbon nanotubes with sulfur (S/ZnO@NCNT). ZnO was chosen because it is cheap, non-toxic and stable [14][15]. More importantly, ZnO demonstrates a strong affinity to polysulfides. In addition, NCNT was used due to its good
PDF
Album
Full Research Paper
Published 06 Jun 2018

Light extraction efficiency enhancement of flip-chip blue light-emitting diodes by anodic aluminum oxide

  • Yi-Ru Huang,
  • Yao-Ching Chiu,
  • Kuan-Chieh Huang,
  • Shao-Ying Ting,
  • Po-Jui Chiang,
  • Chih-Ming Lai,
  • Chun-Ping Jen,
  • Snow H. Tseng and
  • Hsiang-Chen Wang

Beilstein J. Nanotechnol. 2018, 9, 1602–1612, doi:10.3762/bjnano.9.152

Graphical Abstract
  • with Ga-doped zinc oxide (GZO)/GaN as the base layer and then reducing the total reflectivity by changing the shape, thickness, and density of the microstructure through dry etching [12]. Li et al. increased the LEE of an InGaN-monolayer quantum-well LED by 1.8–1.9 times relative to that of a
PDF
Album
Full Research Paper
Published 30 May 2018

Room-temperature single-photon emitters in titanium dioxide optical defects

  • Kelvin Chung,
  • Yu H. Leung,
  • Chap H. To,
  • Aleksandra B. Djurišić and
  • Snjezana Tomljenovic-Hanic

Beilstein J. Nanotechnol. 2018, 9, 1085–1094, doi:10.3762/bjnano.9.100

Graphical Abstract
  • types of single-photon emitters that include molecules [3], trapped atoms [4], quantum dots [5] and defects in diamond [6]. More recently point defects of wide-bandgap semiconductors, such as zinc oxide (ZnO) [7][8][9] and silicon carbide [10], were shown to exhibit room-temperature single-photon
PDF
Album
Full Research Paper
Published 04 Apr 2018

Cyclodextrin inhibits zinc corrosion by destabilizing point defect formation in the oxide layer

  • Abdulrahman Altin,
  • Maciej Krzywiecki,
  • Adnan Sarfraz,
  • Cigdem Toparli,
  • Claudius Laska,
  • Philipp Kerger,
  • Aleksandar Zeradjanin,
  • Karl J. J. Mayrhofer,
  • Michael Rohwerder and
  • Andreas Erbe

Beilstein J. Nanotechnol. 2018, 9, 936–944, doi:10.3762/bjnano.9.86

Graphical Abstract
  • reactions, forming precipitates such as hydrated zinc oxide [15]. ZnO is naturally an n-type semiconductor with a band gap of 3.4 eV [20]. Oxides formed in an aerated corrosion process are typically defect-rich oxides [21], especially in the presence of Cl− [15]. Consequently, the products remain initially
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2018

Facile synthesis of a ZnO–BiOI p–n nano-heterojunction with excellent visible-light photocatalytic activity

  • Mengyuan Zhang,
  • Jiaqian Qin,
  • Pengfei Yu,
  • Bing Zhang,
  • Mingzhen Ma,
  • Xinyu Zhang and
  • Riping Liu

Beilstein J. Nanotechnol. 2018, 9, 789–800, doi:10.3762/bjnano.9.72

Graphical Abstract
  • degradation [3][4][5][6], nitrogen fixation [7][8], to solar fuel production [9]. The metal oxides, such as CdO [10], Al2O3 [11], and CuO [12][13], has attracted a lot of interest in photocatalytic applications. And among all of these metal oxides, it is titanium dioxide and zinc oxide (TiO2 and ZnO) that are
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2018

Mechanistic insights into plasmonic photocatalysts in utilizing visible light

  • Kah Hon Leong,
  • Azrina Abd Aziz,
  • Lan Ching Sim,
  • Pichiah Saravanan,
  • Min Jang and
  • Detlef Bahnemann

Beilstein J. Nanotechnol. 2018, 9, 628–648, doi:10.3762/bjnano.9.59

Graphical Abstract
  • , the carrier concentration of aluminium-doped zinc oxide (AZO) can be shifted from 0.5 to 10 × 1020 cm–3 by varying the concentration of Al, thus contributing to the wide-range SPR (2200–880 nm) [144]. Despite the tunable plasmonic features of semiconductors, some plasmonic semiconductors are
PDF
Album
Review
Published 19 Feb 2018

Facile synthesis of ZnFe2O4 photocatalysts for decolourization of organic dyes under solar irradiation

  • Arjun Behera,
  • Debasmita Kandi,
  • Sanjit Manohar Majhi,
  • Satyabadi Martha and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 436–446, doi:10.3762/bjnano.9.42

Graphical Abstract
  • fabrication cost [14]. ZnFe2O4 is an n-type semiconductor having a direct band gap with suitable band edge positions for various photocatalytic processes. It is a solid solution of ferric oxide and zinc oxide, which greatly enhances the charge carrier separation. To date, various methods such as refluxing
PDF
Album
Full Research Paper
Published 05 Feb 2018

Sugarcane juice derived carbon dot–graphitic carbon nitride composites for bisphenol A degradation under sunlight irradiation

  • Lan Ching Sim,
  • Jing Lin Wong,
  • Chen Hong Hak,
  • Jun Yan Tai,
  • Kah Hon Leong and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2018, 9, 353–363, doi:10.3762/bjnano.9.35

Graphical Abstract
  • -driven photocatalysis. Prasannan and Imae reported a simple and facile one-pot synthesis of fluorescent CDs from orange waste peels using the hydrothermal carbonization method. As prepared CDs were combined with zinc oxide (ZnO) to degrade naphthol blue–black azo dye under UV irradiation, and the
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2018

Gas-sensing behaviour of ZnO/diamond nanostructures

  • Marina Davydova,
  • Alexandr Laposa,
  • Jiri Smarhak,
  • Alexander Kromka,
  • Neda Neykova,
  • Josef Nahlik,
  • Jiri Kroutil,
  • Jan Drahokoupil and
  • Jan Voves

Beilstein J. Nanotechnol. 2018, 9, 22–29, doi:10.3762/bjnano.9.4

Graphical Abstract
  • : density functional theory (DFT); gas sensor; interdigital electrodes; nanocrystalline diamond; sensitivity; zinc oxide (ZnO); Introduction Currently, a number of studies have been focused on developing gas sensors based on nanomaterials and/or nanostructures. Metal oxides are the most common sensing
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2018

Low uptake of silica nanoparticles in Caco-2 intestinal epithelial barriers

  • Dong Ye,
  • Mattia Bramini,
  • Delyan R. Hristov,
  • Sha Wan,
  • Anna Salvati,
  • Christoffer Åberg and
  • Kenneth A. Dawson

Beilstein J. Nanotechnol. 2017, 8, 1396–1406, doi:10.3762/bjnano.8.141

Graphical Abstract
  • been achieved [19][20][21]. Caco-2 cells have been used in the literature to investigate the potential toxic effects of a range of nanoparticles, including microporous silicon [22], silica [23][24][25][26][27][28] and zinc oxide [25]. Though such studies have mainly been performed on undifferentiated
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2017

Metal oxide nanostructures: preparation, characterization and functional applications as chemical sensors

  • Dario Zappa,
  • Angela Bertuna,
  • Elisabetta Comini,
  • Navpreet Kaur,
  • Nicola Poli,
  • Veronica Sberveglieri and
  • Giorgio Sberveglieri

Beilstein J. Nanotechnol. 2017, 8, 1205–1217, doi:10.3762/bjnano.8.122

Graphical Abstract
  • conventional thin film counterparts, to see if the discerning ability of the electronic nose is affected by the integration of nanostructured active materials. In particular, we decided to integrate tin dioxide and zinc oxide devices, since these are the most widely used and studied materials for chemical
  • ), tin dioxide (SnO2) and zinc oxide (ZnO) nanowires was performed by evaporation–condensation on alumina substrates [50]. It consists of a controlled evaporation of metal oxide powder followed by a condensation of vapor on a catalyzing substrate. The main parameters to optimize during evaporation
PDF
Album
Full Research Paper
Published 06 Jun 2017

ZnO nanoparticles sensitized by CuInZnxS2+x quantum dots as highly efficient solar light driven photocatalysts

  • Florian Donat,
  • Serge Corbel,
  • Halima Alem,
  • Steve Pontvianne,
  • Lavinia Balan,
  • Ghouti Medjahdi and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2017, 8, 1080–1093, doi:10.3762/bjnano.8.110

Graphical Abstract
  • acetate (Zn(OAc)2, 99.99%, Sigma), copper iodide (CuI, 99.999%, Sigma), dodecanethiol (DDT, >98%, Sigma), oleylamine (OA, 70%, Sigma), 1-octadecene (ODE, 90%, Sigma), zinc oxide (ZnO, 99%, Alfa Aesar), disodium terephthalate (DST, 99+%, Alfa), nitrotetrazolium blue chloride (NBT, >98%, Sigma), leuco
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2017

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • scalable and relatively cost effective [14][15][16]. In particular, among all the TMO NPs, titanium dioxide [17], manganese oxide [18], iron oxide [19] and zinc oxide [20] have attracted the most attention due to their particular interesting and advantageous properties. By changing the reaction conditions
  • hybrids by a rapid, facile microwave-assisted hydrothermal method for LIB applications [218]. CuO–graphene nanostructures were used as nonenzymatic glucose sensors [219], humidity sensors [220], for CO2 mineralisation [221], as supercapacitors [222], and as pseudo-capacitor electrode materials [223]. Zinc
  • oxide (ZnO)–graphene hybrids Most of the reports of graphene hybrid systems are related to ZnO NPs, as it is very easy to control the size and morphology of ZnO NPs as well as the properties of the material. ZnO is an important II–VI semiconductor with large direct band gap of 3.37 eV and large exciton
PDF
Album
Review
Published 24 Mar 2017

Study of the surface properties of ZnO nanocolumns used for thin-film solar cells

  • Neda Neykova,
  • Jiri Stuchlik,
  • Karel Hruska,
  • Ales Poruba,
  • Zdenek Remes and
  • Ognen Pop-Georgievski

Beilstein J. Nanotechnol. 2017, 8, 446–451, doi:10.3762/bjnano.8.48

Graphical Abstract
  • -Si) solar cells, used for mass production, is composed of a transparent conductive oxide with roughness at the nanoscale on the front (TCO), e.g., tin oxide (SnO2) or zinc oxide (ZnO), followed by p–i–n Si layers (amorphous and/or nanocrystalline) in the cell and a back reflector [1][2]. In such a
  • developed solar cells based on a three dimensional (3-D) design, in which periodically ordered zinc oxide nanocolumns (ZnO NCs) are used as a front electrode, have been of great interest, because they would exceed in the ultimate light trapping and provide excellent charge separation [5][6][7]. Due to the
PDF
Album
Supp Info
Full Research Paper
Published 16 Feb 2017

Template-controlled piezoactivity of ZnO thin films grown via a bioinspired approach

  • Nina J. Blumenstein,
  • Fabian Streb,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Zaklina Burghard and
  • Joachim Bill

Beilstein J. Nanotechnol. 2017, 8, 296–303, doi:10.3762/bjnano.8.32

Graphical Abstract
  • . Keywords: piezoresponse force microscopy; template-controlled deposition; ZnO; Introduction Zinc oxide is a wide band gap semiconductor. Thin films of it can be applied in, e.g., LEDs [1][2][3] or transistors [4][5][6]. Furthermore, due to its piezoelectricity, it can be incorporated in actuators [7] or
PDF
Album
Full Research Paper
Published 30 Jan 2017

Performance of natural-dye-sensitized solar cells by ZnO nanorod and nanowall enhanced photoelectrodes

  • Saif Saadaoui,
  • Mohamed Aziz Ben Youssef,
  • Moufida Ben Karoui,
  • Rached Gharbi,
  • Emanuele Smecca,
  • Vincenzina Strano,
  • Salvo Mirabella,
  • Alessandra Alberti and
  • Rosaria A. Puglisi

Beilstein J. Nanotechnol. 2017, 8, 287–295, doi:10.3762/bjnano.8.31

Graphical Abstract
  • cells (DSSCs). Fourier transform infrared (FTIR) spectra of the extract revealed the presence of anchoring groups and coloring constituents. Two different structures were prepared by chemical bath deposition (CBD) using zinc oxide (ZnO) layers to obtain ZnO nanowall (NW) or nanorod (NR) layers employed
  • semiconductor in DSSCs [2][3][4][5]. Besides, the TiO2 offers high electronic mobility for photogenerated electron collection, a suitable band gap, which adapts to the injection of the electrons of most studied dyes, and high surface area to enhance the dye loading by anchoring the dye [6][7]. Zinc oxide (ZnO
PDF
Album
Full Research Paper
Published 30 Jan 2017

Organoclay hybrid materials as precursors of porous ZnO/silica-clay heterostructures for photocatalytic applications

  • Marwa Akkari,
  • Pilar Aranda,
  • Abdessalem Ben Haj Amara and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2016, 7, 1971–1982, doi:10.3762/bjnano.7.188

Graphical Abstract
  • photocatalytic degradation of organic pollutants [3][4][5][6]. It should be remembered that nanoparticulated zinc oxide is a wide-band gap II–VI semiconductor with a band-gap energy of around 3.4 eV, which is of great interest for photocatalytic applications [7]. ZnO nanoparticles (NP) have been assembled to
PDF
Album
Full Research Paper
Published 12 Dec 2016

Ferromagnetic behaviour of ZnO: the role of grain boundaries

  • Boris B. Straumal,
  • Svetlana G. Protasova,
  • Andrei A. Mazilkin,
  • Eberhard Goering,
  • Gisela Schütz,
  • Petr B. Straumal and
  • Brigitte Baretzky

Beilstein J. Nanotechnol. 2016, 7, 1936–1947, doi:10.3762/bjnano.7.185

Graphical Abstract
  • influence the magnetic behaviour of such a material. Especially attractive is that zinc oxide is cheap. It is widely used for various applications from sunblock creams to varistors for power electronics [3][4]. The various technologies of deposition of pure and doped ZnO films, sintering of ZnO ceramics and
  • qualitatively) where and when the ferromagnetism appears in zinc oxide. We supposed that ferromagnetic behaviour of pure and doped ZnO is controlled by grain boundaries (GBs) and appears only if the grain boundary network (the “ferromagnetic foam”) is dense enough [7]. Our first results concerning the role of
  • ferromagnetic behaviour of zinc oxide and developed our own method for the synthesis of pure and doped nanocrystalline ZnO films. The obtained data are summarized in Figure 1 for pure ZnO and ZnO doped with manganese, cobalt, iron and nickel [6][7][8][9]. The full list of used references can be found in [6][7
PDF
Album
Review
Published 07 Dec 2016
Other Beilstein-Institut Open Science Activities