Search results

Search for "nanofabrication" in Full Text gives 124 result(s) in Beilstein Journal of Nanotechnology.

Charge transport in organic nanocrystal diodes based on rolled-up robust nanomembrane contacts

  • Vineeth Kumar Bandari,
  • Lakshmi Varadharajan,
  • Longqian Xu,
  • Abdur Rehman Jalil,
  • Mirunalini Devarajulu,
  • Pablo F. Siles,
  • Feng Zhu and
  • Oliver G. Schmidt

Beilstein J. Nanotechnol. 2017, 8, 1277–1282, doi:10.3762/bjnano.8.129

Graphical Abstract
  • our previous reports [19]. The fabrication yield of the devices contacted by rolled-up electrodes on the single chip can achieve more than 95% owing to the reliable parallel nanofabrication when the whole process is carefully performed. To study the charge transport properties of the crystalline
PDF
Album
Letter
Published 19 Jun 2017

A top-down approach for fabricating three-dimensional closed hollow nanostructures with permeable thin metal walls

  • Carlos Angulo Barrios and
  • Víctor Canalejas-Tejero

Beilstein J. Nanotechnol. 2017, 8, 1231–1237, doi:10.3762/bjnano.8.124

Graphical Abstract
  • flexibility and controllability offered by top-down nanofabrication techniques opens the door to the possibility of massive integration of these hollow 3D nano-objects on a chip for applications such as nanocontainers, nanoreactors, nanofluidics, nano-biosensors and photonic devices. Keywords: nanocages
  • ; nanocontainers; nanofabrication; nanophotonics; nanoreactors; optical devices; plasmonics; top-down techniques; Introduction Nanocages, or nanocontainers, are nanostructures with a hollow interior and walls of nanometric thickness, typically designed for housing a specific material (load) and/or to increase
PDF
Album
Full Research Paper
Published 08 Jun 2017

Assembly of metallic nanoparticle arrays on glass via nanoimprinting and thin-film dewetting

  • Sun-Kyu Lee,
  • Sori Hwang,
  • Yoon-Kee Kim and
  • Yong-Jun Oh

Beilstein J. Nanotechnol. 2017, 8, 1049–1055, doi:10.3762/bjnano.8.106

Graphical Abstract
  • Sun-Kyu Lee Sori Hwang Yoon-Kee Kim Yong-Jun Oh Department of Advanced Materials Science and Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon 305-719, South Korea 10.3762/bjnano.8.106 Abstract We propose a nanofabrication process to generate large-area arrays of
PDF
Album
Letter
Published 12 May 2017

Nanoantenna-assisted plasmonic enhancement of IR absorption of vibrational modes of organic molecules

  • Alexander G. Milekhin,
  • Olga Cherkasova,
  • Sergei A. Kuznetsov,
  • Ilya A. Milekhin,
  • Ekatherina E. Rodyakina,
  • Alexander V. Latyshev,
  • Sreetama Banerjee,
  • Georgeta Salvan and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2017, 8, 975–981, doi:10.3762/bjnano.8.99

Graphical Abstract
  • width, height, and the spacing between nanoantennas were assumed as imposed by the nanofabrication technology. Except for the fundamental LSPR mode, the third-order resonance centered at about 2400 cm−1 occurs in the IR spectra. A weaker feature near 1200 cm−1 is assigned to the surface optical mode
PDF
Album
Full Research Paper
Published 03 May 2017

Near-field surface plasmon field enhancement induced by rippled surfaces

  • Mario D’Acunto,
  • Francesco Fuso,
  • Ruggero Micheletto,
  • Makoto Naruse,
  • Francesco Tantussi and
  • Maria Allegrini

Beilstein J. Nanotechnol. 2017, 8, 956–967, doi:10.3762/bjnano.8.97

Graphical Abstract
  • materials ranging from metals to transparent glasses and crystals [16]. As a consequence, the interest in the optical properties of rippled surfaces has a long history [17]. On the nanoscale, nanofabrication techniques, such as conventional lithographic methods or scanning probe techniques, allow for the
  • production of predesigned rough surfaces, where simple and prescribed shapes can be easily produces such as rectangular or sinusoidal shapes, for example. Random surfaces, on the contrary, are stochastic and are a result of a (or several) random process(es). Nanofabrication techniques based on growth
PDF
Album
Supp Info
Full Research Paper
Published 28 Apr 2017

3D Nanoprinting via laser-assisted electron beam induced deposition: growth kinetics, enhanced purity, and electrical resistivity

  • Brett B. Lewis,
  • Robert Winkler,
  • Xiahan Sang,
  • Pushpa R. Pudasaini,
  • Michael G. Stanford,
  • Harald Plank,
  • Raymond R. Unocic,
  • Jason D. Fowlkes and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2017, 8, 801–812, doi:10.3762/bjnano.8.83

Graphical Abstract
  • : additive manufacturing; beam induced processing; 3D printing; direct-write; electron beam induced deposition; microscopy; nanofabrication; pulsed laser; purification; rapid prototyping; Introduction The first fully incorporated 3D transistor logic was reported in 2012 [1]. Further 3D device concepts and
  • was created using conventional nanofabrication methods in order to measure the electrical resistivity of freestanding nanoscale bridges. Geometric constraints (the freestanding nature of the nanobridge) necessitated a two-point probe configuration over the standard four-point measurement. A
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2017

Computing the T-matrix of a scattering object with multiple plane wave illuminations

  • Martin Fruhnert,
  • Ivan Fernandez-Corbaton,
  • Vassilios Yannopapas and
  • Carsten Rockstuhl

Beilstein J. Nanotechnol. 2017, 8, 614–626, doi:10.3762/bjnano.8.66

Graphical Abstract
  • nanofabrication technology made the creation of large volumes of particles with complicated geometries possible [1][2][3][4][5][6]. The latter constitute the base for nanomaterials with advanced properties [7]. This also triggered the need for efficient computational tools to back up experimental findings with
PDF
Album
Correction
Full Research Paper
Published 14 Mar 2017

Nano- and microstructured materials for in vitro studies of the physiology of vascular cells

  • Alexandra M. Greiner,
  • Adria Sales,
  • Hao Chen,
  • Sarah A. Biela,
  • Dieter Kaufmann and
  • Ralf Kemkemer

Beilstein J. Nanotechnol. 2016, 7, 1620–1641, doi:10.3762/bjnano.7.155

Graphical Abstract
  • . Thus, in vitro studies using modified artificial surfaces to induce biological responses in these cells are an important experimental model in vascular cell biology and biomaterial research (Figure 3). In this review, we provide an overview of materials and important micro- and nanofabrication
  • development of micro- and nanofabrication techniques has permitted the manufacturing of precise surface topographies of materials surfaces. Samples with specific surface features haven been widely used for in vitro cell biology studies either to manipulate cell adhesion and resulting cell responses or to give
  • methods [55] process polymeric material and are also applied to fabricate cell culture substrates. However, the substrates resulting from these fabrication methods are in most cases (irregularly) porous, foam-like 3D structures rather than (symmetrical) surface-patterned substrates. 1.3 Nanofabrication
PDF
Album
Review
Published 08 Nov 2016

Localized surface plasmons in structures with linear Au nanoantennas on a SiO2/Si surface

  • Ilya A. Milekhin,
  • Sergei A. Kuznetsov,
  • Ekaterina E. Rodyakina,
  • Alexander G. Milekhin,
  • Alexander V. Latyshev and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2016, 7, 1519–1526, doi:10.3762/bjnano.7.145

Graphical Abstract
  • nanofabrication. The nanoantennas were assigned to have rounded edges with a fillet radius of 15 nm. The thickness hSiO2 of the SiO2 layer was a variable parameter ranging within 0–100 nm. The transverse pitch gy of the nanoantennas was fixed as 5000 nm, while the nanoantenna lengths l of 500, 700, 900, 1100
PDF
Album
Full Research Paper
Published 26 Oct 2016

Dealloying of gold–copper alloy nanowires: From hillocks to ring-shaped nanopores

  • Adrien Chauvin,
  • Cyril Delacôte,
  • Mohammed Boujtita,
  • Benoit Angleraud,
  • Junjun Ding,
  • Chang-Hwan Choi,
  • Pierre-Yves Tessier and
  • Abdel-Aziz El Mel

Beilstein J. Nanotechnol. 2016, 7, 1361–1367, doi:10.3762/bjnano.7.127

Graphical Abstract
  • nanofabrication approaches, which allows for producing nanostructures with complex shapes and morphologies not possible to achieve using classical routes [1]. Physical vapor deposition (PVD) is a very simple and efficient process usually used for the growth of thin films finding application in a wide range of
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2016

Experimental and simulation-based investigation of He, Ne and Ar irradiation of polymers for ion microscopy

  • Lukasz Rzeznik,
  • Yves Fleming,
  • Tom Wirtz and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2016, 7, 1113–1128, doi:10.3762/bjnano.7.104

Graphical Abstract
  • HIM has been developed for high resolution electron microscopy and nanofabrication using the He+ or Ne+-emitting atomic level ion source (ALIS) [4]. Compared to cluster ion bombardment, the use of monoatomic primary ion species (such as Cs+, O−, Ga+) for imaging in SIMS allows significantly higher
PDF
Album
Full Research Paper
Published 02 Aug 2016

Highly compact refractive index sensor based on stripe waveguides for lab-on-a-chip sensing applications

  • Chamanei Perera,
  • Kristy Vernon,
  • Elliot Cheng,
  • Juna Sathian,
  • Esa Jaatinen and
  • Timothy Davis

Beilstein J. Nanotechnol. 2016, 7, 751–757, doi:10.3762/bjnano.7.66

Graphical Abstract
  • Chamanei Perera Kristy Vernon Elliot Cheng Juna Sathian Esa Jaatinen Timothy Davis Science and Engineering Faculty, Queensland University of Technology, Brisbane 4001, Queensland, Australia Australian National Nanofabrication Facility QLD node, University of Queensland, St Lucia 4072, Queensland
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2016

Near-field visualization of plasmonic lenses: an overall analysis of characterization errors

  • Jing Wang,
  • Yongqi Fu,
  • Zongwei Xu and
  • Fengzhou Fang

Beilstein J. Nanotechnol. 2015, 6, 2069–2077, doi:10.3762/bjnano.6.211

Graphical Abstract
  • nanophotonic devices. Keywords: characterization; nanofabrication; near-field; plasmonic lenses; plasmonic structures; Introduction The characteristics of nanophotonic devices that are based on surface plasmon polaritons (SPPs) are appealing because of the extraordinary transmission in free space [1][2][3][4
  • [21]. This plasmonic lens has been selected here as a typical example for the purpose of illustrating and analyzing the characterization errors originated from the nanofabrication process of the plasmonic lenses. The focused spot can be tuned by means of tailoring the long and the short axes of the
  • limit (less than half of the incident wavelength of 532 nm). To verify it experimentally, FIB and NSOM were employed for nanofabrication and near-field characterization, respectively. Figure 3, Figure 4 and Figure 5 are NSOM probing results for the lenses with different ratios σ ranging from 0.7 to 0.9
PDF
Album
Full Research Paper
Published 26 Oct 2015

The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors

  • Rachel M. Thorman,
  • Ragesh Kumar T. P.,
  • D. Howard Fairbrother and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2015, 6, 1904–1926, doi:10.3762/bjnano.6.194

Graphical Abstract
  • induced deposition (FEBID) is a single-step, direct-write nanofabrication technique capable of writing three-dimensional metal-containing nanoscale structures on surfaces using electron-induced reactions of organometallic precursors. Currently FEBID is, however, limited in resolution due to deposition
PDF
Album
Review
Published 16 Sep 2015

Focused particle beam-induced processing

  • Michael Huth and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2015, 6, 1883–1885, doi:10.3762/bjnano.6.191

Graphical Abstract
  • nanofabrication. Along the same path, Gregor Hlawacek, Bene Poelsema and coworkers focused on the interaction of helium ions with metal surfaces (gold in particular) [13][14][15]. In a series of three distinct articles, they concentrate on ion channeling, crystal mapping, and finally, ion-induced modification of
  • polymerization that is a basis for the creation of ultrathin nanomembranes. Finally, André Beyer and coworkers show impressive HIM images of ultrathin carbon nanomembranes [17], which is a clear indication of the potential of the bourgeoning fields of helium ion microscopy and lithography towards nanofabrication
PDF
Editorial
Published 09 Sep 2015

In situ SU-8 silver nanocomposites

  • Søren V. Fischer,
  • Basil Uthuppu and
  • Mogens H. Jakobsen

Beilstein J. Nanotechnol. 2015, 6, 1661–1665, doi:10.3762/bjnano.6.168

Graphical Abstract
  • photoresist; in situ synthesis; metal nanoparticles; micro and nanofabrication; nanocomposite; Findings Noble metal nanoparticles (NPs) have been of high interest for many years as their unique properties make them useable in a large variety of applications [1]. The application of these NPs ranges from
  • optical imaging, optoelectronics and electrochemistry to catalysts [2]. However, it is difficult to use such NPs in conjunction with standard top down micro- and nanofabrication processes as positioning and control of the nanoparticles are impossible to maintain [3]. Homogeneous polymeric thin film metal
  • nanocomposites are therefore of great interest within micro- and nanofabrication [4][5][6]. The nanoparticles encased in a polymeric matrix should maintain their physical properties, while the nanocomposite can be structured by using standard fabrication methods allowing for the development of new optoelectronic
PDF
Album
Letter
Published 30 Jul 2015

Molecular materials – towards quantum properties

  • Mario Ruben

Beilstein J. Nanotechnol. 2015, 6, 1485–1486, doi:10.3762/bjnano.6.153

Graphical Abstract
  • , and a great deal of interest from scientists working in materials science, chemistry, physics, and nanofabrication technologies has been attracted. For example, the company D-wave has demonstrated a quantum annealer that performs certain calculations sufficiently rapidly to have a consortium, which
PDF
Editorial
Published 08 Jul 2015

Structural transitions in electron beam deposited Co–carbonyl suspended nanowires at high electrical current densities

  • Gian Carlo Gazzadi and
  • Stefano Frabboni

Beilstein J. Nanotechnol. 2015, 6, 1298–1305, doi:10.3762/bjnano.6.134

Graphical Abstract
  • of nanotechnology and nanoscience in advanced applications and fundamental research requires nanofabrication techniques that are highly resolved but at the same time flexible and feasible with research laboratory equipment. A promising approach is represented by focused electron beam induced
  • beam path [24]. This approach offers the possibility to deposit and analyze the material free from any substrate contribution, but above all it enables 3D nanofabrication [25]. The SNWs are characterized electrically at high current densities and analyzed structurally by transmission electron
PDF
Album
Full Research Paper
Published 11 Jun 2015

Fabrication of high-resolution nanostructures of complex geometry by the single-spot nanolithography method

  • Alexander Samardak,
  • Margarita Anisimova,
  • Aleksei Samardak and
  • Alexey Ognev

Beilstein J. Nanotechnol. 2015, 6, 976–986, doi:10.3762/bjnano.6.101

Graphical Abstract
  • silicon substrates, gold-coated substrates can also successfully be used for the single-spot nanopattering technique. An explanation of the results related to the resist overexposure was demonstrated using Monte Carlo simulations. Our nanofabrication method significantly accelerates (up to 10 times) the
  • resolution on semiconductor and metallized substrates using the single-spot nanofabrication was demonstrated at low-energy acceleration voltages. The resulting nanostructures have sharp edges and defect-free lines. Arrays of nanoelements or complex nanostructures can be easily scaled to large areas, with the
PDF
Album
Full Research Paper
Published 17 Apr 2015

Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition

  • Brett B. Lewis,
  • Michael G. Stanford,
  • Jason D. Fowlkes,
  • Kevin Lester,
  • Harald Plank and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2015, 6, 907–918, doi:10.3762/bjnano.6.94

Graphical Abstract
  • Brett B. Lewis Michael G. Stanford Jason D. Fowlkes Kevin Lester Harald Plank Philip D. Rack Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996, USA Nanofabrication Research Laboratory, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory
PDF
Album
Full Research Paper
Published 08 Apr 2015

Magnetic properties of self-organized Co dimer nanolines on Si/Ag(110)

  • Lisa Michez,
  • Kai Chen,
  • Fabien Cheynis,
  • Frédéric Leroy,
  • Alain Ranguis,
  • Haik Jamgotchian,
  • Margrit Hanbücken and
  • Laurence Masson

Beilstein J. Nanotechnol. 2015, 6, 777–784, doi:10.3762/bjnano.6.80

Graphical Abstract
  • transition metal nanostructures, it appears interesting to also study the growth of such objects on a non-metallic template. We underline that since self-organized growth allows the fabrication of a high-density of nanostructures with a narrow size distribution, this route of nanofabrication opens up the
PDF
Album
Full Research Paper
Published 19 Mar 2015

Fundamental edge broadening effects during focused electron beam induced nanosynthesis

  • Roland Schmied,
  • Jason D. Fowlkes,
  • Robert Winkler,
  • Phillip D. Rack and
  • Harald Plank

Beilstein J. Nanotechnol. 2015, 6, 462–471, doi:10.3762/bjnano.6.47

Graphical Abstract
  • more complex proximity effects that significantly reduce lateral edge sharpness and thus should be avoided if desiring high lateral resolution. Keywords: focused electron beam induced deposition; nanofabrication; platinum; simulation; Introduction Focused electron beam induced deposition (FEBID) has
  • candidate for an enabling nanofabrication technology. The technique relies on the local nano-synthesis of precursor molecules by a focused electron beam and its subsequent electron emission from the substrate and the deposit itself [1][3][4][5][6]. Typically, a gaseous precursor is brought into the chamber
PDF
Album
Supp Info
Full Research Paper
Published 16 Feb 2015

Synthesis, characterization, monolayer assembly and 2D lanthanide coordination of a linear terphenyl-di(propiolonitrile) linker on Ag(111)

  • Zhi Chen,
  • Svetlana Klyatskaya,
  • José I. Urgel,
  • David Écija,
  • Olaf Fuhr,
  • Willi Auwärter,
  • Johannes V. Barth and
  • Mario Ruben

Beilstein J. Nanotechnol. 2015, 6, 327–335, doi:10.3762/bjnano.6.31

Graphical Abstract
  • years, significant strides have been made in the understanding and the application of nanofabrication from the "bottom-up" perspective [13][14][15][16][17]. The tailored design, controlled formation, and in-depth characterization of self-assembled, molecular and periodic heterostructures (ranging over
PDF
Album
Supp Info
Full Research Paper
Published 29 Jan 2015

Boosting the local anodic oxidation of silicon through carbon nanofiber atomic force microscopy probes

  • Gemma Rius,
  • Matteo Lorenzoni,
  • Soichiro Matsui,
  • Masaki Tanemura and
  • Francesc Perez-Murano

Beilstein J. Nanotechnol. 2015, 6, 215–222, doi:10.3762/bjnano.6.20

Graphical Abstract
  • nanofabrication methods based on scanning probe microscopy have been developed during the last decades. Local anodic oxidation (LAO) is one of such methods: Upon application of an electric field between tip and surface under ambient conditions, oxide patterning with nanometer-scale resolution can be performed
  • scale. Interest of developing SPL-based nanofabrication methods relies on its extraordinary performance in terms of resolution and flexibility, as well as its potential for applications, e.g., in materials/surface science, quantum devices and nanoelectronics [1]. Moreover, SPL has the additional
PDF
Album
Full Research Paper
Published 19 Jan 2015

Properties of plasmonic arrays produced by pulsed-laser nanostructuring of thin Au films

  • Katarzyna Grochowska,
  • Katarzyna Siuzdak,
  • Peter A. Atanasov,
  • Carla Bittencourt,
  • Anna Dikovska,
  • Nikolay N. Nedyalkov and
  • Gerard Śliwiński

Beilstein J. Nanotechnol. 2014, 5, 2102–2112, doi:10.3762/bjnano.5.219

Graphical Abstract
  • mechanisms and final effect. Mechanisms relevant to the laser nanostructuring (LNS) of thin metal films are often discussed in the broader context of the non-equilibrium processes due to pulsed-laser interaction at time scales from micro- to femto-seconds and with nanofabrication by material ablation and
PDF
Album
Review
Published 13 Nov 2014
Other Beilstein-Institut Open Science Activities