Search results

Search for "polymerization" in Full Text gives 215 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Cytotoxicity of doxorubicin-conjugated poly[N-(2-hydroxypropyl)methacrylamide]-modified γ-Fe2O3 nanoparticles towards human tumor cells

  • Zdeněk Plichta,
  • Yulia Kozak,
  • Rostyslav Panchuk,
  • Viktoria Sokolova,
  • Matthias Epple,
  • Lesya Kobylinska,
  • Pavla Jendelová and
  • Daniel Horák

Beilstein J. Nanotechnol. 2018, 9, 2533–2545, doi:10.3762/bjnano.9.236

Graphical Abstract
  • added and the polymerization was started by heating at 60 °C for 16 h. Ethanol (5 mL) was removed on a rotary evaporator, the resulting poly[N-(2-hydroxypropyl)methacrylamide-co-2-(N-methylmethacrylamido)acetate] [P(HPMA-MMAA)] was precipitated in diethyl ether, separated by centrifugation, repeatedly
  • γ-Fe2O3 with PHPMA and P(HPMA-MMAA)-Dox First, PHPMA was prepared by precipitation polymerization and used as a coating of γ-Fe2O3 nanoparticles. Briefly, in an 100 mL Erlenmeyer flask, HPMA (2 g) freshly crystalized from ethyl acetate and AIBN (10 mg) were dissolved in ethyl acetate (18 mL) under
  • Ar atmosphere and the polymerization proceeded at 60 °C for 16 h. The resulting PHPMA was washed with ethyl acetate and separated by filtration yielding 1.92 g of the polymer (Mn = 177 kDa). Aqueous solution of PHPMA (2 mL; 0.1 g PHPMA/mL) was then added to the γ-Fe2O3 colloid (2 mL; 0.1 g of γ-Fe2O3
PDF
Album
Full Research Paper
Published 25 Sep 2018

Non-agglomerated silicon–organic nanoparticles and their nanocomplexes with oligonucleotides: synthesis and properties

  • Asya S. Levina,
  • Marina N. Repkova,
  • Nadezhda V. Shikina,
  • Zinfer R. Ismagilov,
  • Svetlana A. Yashnik,
  • Dmitrii V. Semenov,
  • Yulia I. Savinovskaya,
  • Natalia A. Mazurkova,
  • Inna A. Pyshnaya and
  • Valentina F. Zarytova

Beilstein J. Nanotechnol. 2018, 9, 2516–2525, doi:10.3762/bjnano.9.234

Graphical Abstract
  • particle size detected by AFM. Reasonable results on the diameter of the studied particles were obtained by dynamic light scattering (Table 1 and Table 2), which allows measurement of the particle size in solution (without effects of the drying process, which most likely leads to polymerization and
PDF
Album
Full Research Paper
Published 21 Sep 2018

Nanocellulose: Recent advances and its prospects in environmental remediation

  • Katrina Pui Yee Shak,
  • Yean Ling Pang and
  • Shee Keat Mah

Beilstein J. Nanotechnol. 2018, 9, 2479–2498, doi:10.3762/bjnano.9.232

Graphical Abstract
  • organisms through enzymatic polymerization of organic substrates such as sugar and glycerol [11][31]. The main difference between BC and other plant-derived CNFs is the absence of certain functional groups (except alcohol) and polymers (lignin, hemicellulose, and pectin) in BC [32]. Therefore, BC is known
  • multiple carboxy functional groups for the adsorption of uranium(VI) and cobalt(II). The co-polymerization of itaconic acid and methacrylic acid was able to introduce three carboxy functionalities which increased reactivity and hydrophilicity for effective removal of the metal ions from the aqueous
PDF
Album
Review
Published 19 Sep 2018

Block copolymers for designing nanostructured porous coatings

  • Roberto Nisticò

Beilstein J. Nanotechnol. 2018, 9, 2332–2344, doi:10.3762/bjnano.9.218

Graphical Abstract
  • . In the work of Glassner et al. [62], they reported the synthesis of PS-b-PEO copolymers by coupling the reversible addition fragmentation chain transfer (RAFT) polymerization and the hetero Diels–Alder cycloaddition followed by subsequent retro-hetero Diels–Alder mechanisms by a heating/washing
  • peculiar characteristic can be coupled with sol–gel processes to produce well-ordered oxidic architectures [95][96]. The sol–gel process involves various chemical reactions such as hydrolysis, condensation, and consequently, polymerization involving the monomers (for inorganic systems, either metal
  • linear AB diblock copolymers. Reprinted with permission from [42], copyright 2014 The Royal Society of Chemistry. f: volume fraction of one block; χ: Flory–Huggins interaction parameter; N: degree of polymerization; L: lamellae; H: hexagonally packed cylinders; Q230: double-gyroid phase; Q229: body
PDF
Album
Review
Published 29 Aug 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Synthesis of rare-earth metal and rare-earth metal-fluoride nanoparticles in ionic liquids and propylene carbonate

  • Marvin Siebels,
  • Lukas Mai,
  • Laura Schmolke,
  • Kai Schütte,
  • Juri Barthel,
  • Junpei Yue,
  • Jörg Thomas,
  • Bernd M. Smarsly,
  • Anjana Devi,
  • Roland A. Fischer and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2018, 9, 1881–1894, doi:10.3762/bjnano.9.180

Graphical Abstract
  • the polymerization of olefins [15][16] and as precursors in chemical vapor (CVD) processes of rare-earth materials such as oxides and nitrides [17][18][19]. It is especially advantageous that the decomposition products from the amidinate ligand are gaseous so that product contamination is minimized
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2018

Uniform cobalt nanoparticles embedded in hexagonal mesoporous nanoplates as a magnetically separable, recyclable adsorbent

  • Can Zhao,
  • Yuexiao Song,
  • Tianyu Xiang,
  • Wenxiu Qu,
  • Shuo Lou,
  • Xiaohong Yin and
  • Feng Xin

Beilstein J. Nanotechnol. 2018, 9, 1770–1781, doi:10.3762/bjnano.9.168

Graphical Abstract
  • (LDH). A uniform PDA coating initially covers the surface of LDH by dopamine self-polymerization under mild conditions. Well-dispersed Co nanoparticles are formed in the NPLs by the partial reduction of cobalt from Co2+ to Co0 with surface carbon during the heat treatment process. The surface
  • used as an adsorbent for efficient removal of RhB dye from aqueous solutions. As illustrated in Scheme 1, firstly, CoAl LDH is synthesized with urea through a hydrothermal method. Subsequently, the LDH@PDA composite is obtained by coating CoAl LDH with PDA through self-polymerization of dopamine in
  • ) solution. The pH of the above mixture was adjusted by 1 M HCl to 8.5, which resulted in the polymerization of dopamine. After vigorously stirring for 12 h, the dark precipitate (LDH@PDA) was carefully collected by centrifugation and washed with deionized water several times to remove unreacted dopamine
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2018

Preparation of micro/nanopatterned gelatins crosslinked with genipin for biocompatible dental implants

  • Reika Makita,
  • Tsukasa Akasaka,
  • Seiichi Tamagawa,
  • Yasuhiro Yoshida,
  • Saori Miyata,
  • Hirofumi Miyaji and
  • Tsutomu Sugaya

Beilstein J. Nanotechnol. 2018, 9, 1735–1754, doi:10.3762/bjnano.9.165

Graphical Abstract
  • topographical scaffolds [27][28][29]. Different patterns of coated collagen/gelatin have been used to control cell attachment and subsequent cellular function. Numerous methods have been used to control the patterning of collagen/gelatin surfaces. These include, polymerization of gelatin methacrylate (GelMA
  • surface patterning material or crosslinking agent used can also subsequently influence cytotoxicity and cell behavior [32][33]. Rizwan et al. have reported that micro/nanopillars comprised of gelatin could be fabricated through a combination of molding and polymerization of the gelatin with methacrylate
  • , 333 to 650 nm wide, have been successfully fabricated using crosslinking with carbodiimide [46]. Gelatin pillars with a diameter of 250 nm to 1 µm have also been patterned using polymerization with GelMA. The swelling ratio of these pillars could be successfully controlled by changing the GelMA
PDF
Album
Full Research Paper
Published 11 Jun 2018

Nanocomposites comprised of homogeneously dispersed magnetic iron-oxide nanoparticles and poly(methyl methacrylate)

  • Sašo Gyergyek,
  • David Pahovnik,
  • Ema Žagar,
  • Alenka Mertelj,
  • Rok Kostanjšek,
  • Miloš Beković,
  • Marko Jagodič,
  • Heinrich Hofmann and
  • Darko Makovec

Beilstein J. Nanotechnol. 2018, 9, 1613–1622, doi:10.3762/bjnano.9.153

Graphical Abstract
  • analysis, a small amount of the nanoparticles were isolated from the suspension of NP-PMMA-3 immediately after the polymerization by centrifugation at 20,000g for 20 min. Any free polymer was washed from the sample by dispersing the sediment in acetone, centrifugation at 20,000g for 20 min and discarding
  • the supernatant. The dispersion/centrifugation cycle was repeated four times. The isolated NP-PMMA-3 sample was oven dried at 60 °C. Pure PMMA (sPMMA) was prepared by polymerization of the MMA under identical conditions. The bonding of the MMA to RA (RA-MMA) and copolymerization of the RA-MMA with MMA
  • probably the result of the depletion layer surrounding the nanoparticles, causing their flocculation to decrease the excluded volume of polymer chains [19][20][21][29]. To test if any of the added compounds stabilize the suspension of NPs in the PMMA polymer solution, the polymerization of MMA was
PDF
Album
Supp Info
Full Research Paper
Published 01 Jun 2018

Optical near-field mapping of plasmonic nanostructures prepared by nanosphere lithography

  • Gitanjali Kolhatkar,
  • Alexandre Merlen,
  • Jiawei Zhang,
  • Chahinez Dab,
  • Gregory Q. Wallace,
  • François Lagugné-Labarthet and
  • Andreas Ruediger

Beilstein J. Nanotechnol. 2018, 9, 1536–1543, doi:10.3762/bjnano.9.144

Graphical Abstract
  • with a femtosecond laser, thereby inducing polymerization at the hot spots. In another approach, based on confocal fluorescence microscopy, a dye solution is deposited on the samples, and the higher fluorescence magnitude originating from the hot spots is measured [19]. However, these last four
PDF
Album
Full Research Paper
Published 23 May 2018
Graphical Abstract
  • matrix of OTS showed minimal areas of nonspecific adsorption. The AFM studies provide insight into the mechanism of the self-polymerization of CMPS as a platform for constructing porphyrin heterostructures. Keywords: atomic force microscopy (AFM); nanostructures; particle lithography; porphyrin; self
  • subsequently grew to form multiple layers of CMPS through self-polymerization [37][39]. In a recent report, we have shown that changes in the parameters of temperature and solvent affect the growth of CMPS nanostructures prepared within a matrix film of organosilanes prepared with particle lithography [40]. In
  • . The center-to-center spacing of each nanostructure measures 500 nm which matches to the diameter of the original surface mask of Si spheres. The areas with CMPS have self-polymerized to form multilayer nanostructures. The OTS resist confines the multilayer polymerization of CMPS to form within the
PDF
Album
Supp Info
Full Research Paper
Published 17 Apr 2018

Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation

  • Ashish Kumar,
  • Christian Schuerings,
  • Suneel Kumar,
  • Ajay Kumar and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2018, 9, 671–685, doi:10.3762/bjnano.9.62

Graphical Abstract
  • polymerization reaction and was kept at 120 °C for 24 h in an oven to obtain a black mass. The obtained xerogel was grounded into a powder and calcinated at 700 °C for 8 h, finally yielding white-colored CT nanoflakes. Synthesis of g-C3N4 nanosheets The g-C3N4 nanosheets were synthesized by heating dicyandiamide
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2018

Single-step process to improve the mechanical properties of carbon nanotube yarn

  • Maria Cecilia Evora,
  • Xinyi Lu,
  • Nitilaksha Hiremath,
  • Nam-Goo Kang,
  • Kunlun Hong,
  • Roberto Uribe,
  • Gajanan Bhat and
  • Jimmy Mays

Beilstein J. Nanotechnol. 2018, 9, 545–554, doi:10.3762/bjnano.9.52

Graphical Abstract
  • polyacrylonitrile (PAN) from the literature (Figure 1c). This process relies on the fundamentals of radiation grafting polymerization. The advantage of the process is that an initiator is not required, avoiding the formation of free radicals on the substrate backbone/monomer, contamination and problems with local
  • immobilized on the MWNT surface and this produces trapped radicals on the surface of the MWNTs. As a result, the trapped radicals on the MWNTs surface act as initiators for graft polymerization of AN on the MWNT surface. On the other hand, the unsaturated C=C from vinyl monomers degrades easily under the
  • radiation process. An excess of inhibitor may lead to diffusion through the yarn and the Fe2+ ions may deactivate the free radicals trapped on the MWNT surface. At this point, it should be noted that, to date, there are some previous reports on the use of radiation grafting polymerization to functionalize
PDF
Album
Full Research Paper
Published 13 Feb 2018

Photocatalytic and adsorption properties of TiO2-pillared montmorillonite obtained by hydrothermally activated intercalation of titanium polyhydroxo complexes

  • Mikhail F. Butman,
  • Nikolay L. Ovchinnikov,
  • Nikita S. Karasev,
  • Nataliya E. Kochkina,
  • Alexander V. Agafonov and
  • Alexandr V. Vinogradov

Beilstein J. Nanotechnol. 2018, 9, 364–378, doi:10.3762/bjnano.9.36

Graphical Abstract
  • hydrothermally treated samples is probably due to the processes of polymerization of the hydroxo complexes mentioned in [25][26] in the interlayer space of MM already at the stage of intercalation. It is interesting to note that the basal distance retains its value both in samples subjected to hydrothermal
  • . Conclusion TiO2-pillared MM was obtained by hydrothermally intensified intercalation of titanium polyhydroxo complexes, i.e., products of TiCl4 controlled hydrolysis. The porous structure of the material is thermally stable due to polymerization of titanium polycations and aggregation of pillars in the
PDF
Album
Full Research Paper
Published 31 Jan 2018

Review: Electrostatically actuated nanobeam-based nanoelectromechanical switches – materials solutions and operational conditions

  • Liga Jasulaneca,
  • Jelena Kosmaca,
  • Raimonds Meija,
  • Jana Andzane and
  • Donats Erts

Beilstein J. Nanotechnol. 2018, 9, 271–300, doi:10.3762/bjnano.9.29

Graphical Abstract
PDF
Album
Review
Published 25 Jan 2018

Vapor-based polymers: from films to nanostructures

  • Meike Koenig and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2017, 8, 2219–2220, doi:10.3762/bjnano.8.221

Graphical Abstract
  • poly(p-xylylenes) via the Gorham process, has been of industrial use in the fabrication of isolating or protective coatings in electronics and biomaterials for many years [1][2]. More recently, vapor deposition polymerization has been extended to a broad variety of reactive polymers [3], additionally
  • using techniques such as plasma-, initiated-, or oxidative chemical vapor deposition polymerization [4][5]. The reason for the ongoing interest in this research field is that, analogue to the deposition of inorganic coatings by chemical vapor deposition, the deposition of polymer coatings from the vapor
PDF
Editorial
Published 24 Oct 2017

Ester formation at the liquid–solid interface

  • Nguyen T. N. Ha,
  • Thiruvancheril G. Gopakumar,
  • Nguyen D. C. Yen,
  • Carola Mende,
  • Lars Smykalla,
  • Maik Schlesinger,
  • Roy Buschbeck,
  • Tobias Rüffer,
  • Heinrich Lang,
  • Michael Mehring and
  • Michael Hietschold

Beilstein J. Nanotechnol. 2017, 8, 2139–2150, doi:10.3762/bjnano.8.213

Graphical Abstract
  • imaging in different stages of the reaction has been demonstrated in such cases where the molecular entities changed their appearance due to structural and electronic changes during different reaction steps. Examples for this are the polymerization reaction of brominated copper-2,3,7,8,12,13,17,18
  • -octabromo-5,10,15,20-tetraphenylporphyrin (CuTPPBr8) at an Au(111) substrate [2] or the polymerization of 1,3,6,8-tetrabromopyrene on Cu(111) and Au(111) substrates [3]. Characteristic for all these studies is that they are performed at an almost ideal monocrystalline surface in ultra-high vacuum (UHV). On
PDF
Album
Supp Info
Full Research Paper
Published 12 Oct 2017

Advances and challenges in the field of plasma polymer nanoparticles

  • Andrei Choukourov,
  • Pavel Pleskunov,
  • Daniil Nikitin,
  • Valerii Titov,
  • Artem Shelemin,
  • Mykhailo Vaidulych,
  • Anna Kuzminova,
  • Pavel Solař,
  • Jan Hanuš,
  • Jaroslav Kousal,
  • Ondřej Kylián,
  • Danka Slavínská and
  • Hynek Biederman

Beilstein J. Nanotechnol. 2017, 8, 2002–2014, doi:10.3762/bjnano.8.200

Graphical Abstract
  • plasma polymerization of volatile monomers or via radio frequency (RF) magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a
  • used as precursors for plasma polymerization [43][44][45][46][47][48][49][50][51][52]. Depending on the experimental conditions, plasma polymerization can be forced to proceed in a gas phase which results in the formation of NPs of different chemical and physical properties and with different size
  • a result of plasma polymerization of n-hexane and hexamethyldisiloxane (HMDSO) [53] or as a result of RF magnetron sputtering of nylon [54] and poly(tetrafluoroethylene) (PTFE) [55]. One can readily judge the diversity of shape and morphology of the NPs with diameters ranging from tens to hundreds
PDF
Album
Review
Published 25 Sep 2017

Bi-layer sandwich film for antibacterial catheters

  • Gerhard Franz,
  • Florian Schamberger,
  • Hamideh Heidari Zare,
  • Sara Felicitas Bröskamp and
  • Dieter Jocham

Beilstein J. Nanotechnol. 2017, 8, 1982–2001, doi:10.3762/bjnano.8.199

Graphical Abstract
  • (Figure 3). Following Gorham, PPX is deposited by thermally cracking the precursor di(parylene N) (DPX) at 700 °C [27][28] (Figure 4). According to Figure 4, the radical polymerization reaction occurs at the two methylene groups in para-position of the benzene ring. This is one of the very rare reactions
  • polymerization can be forced back or can even be suppressed by an increase of temperature, if the temperature is raised beyond the so-called ceiling temperature [34]. This is the basis for the construction of a temperature seesaw (Figure 7). It consists of a metallic rail with a semi-circular groove cut, which
  • sccm. The monomer is highly diluted with argon (flows between 2 and 4 sccm), approaching epitaxial conditions, i.e., volume polymerization is suppressed to favor surface polymerization (Figure 10). For a flow of 10 sccm argon, the pressure would rise to 156 mTorr, and the residence time in the reactor
PDF
Album
Full Research Paper
Published 22 Sep 2017

Fabrication of carbon nanospheres by the pyrolysis of polyacrylonitrile–poly(methyl methacrylate) core–shell composite nanoparticles

  • Dafu Wei,
  • Youwei Zhang and
  • Jinping Fu

Beilstein J. Nanotechnol. 2017, 8, 1897–1908, doi:10.3762/bjnano.8.190

Graphical Abstract
  • nanoparticles. Firstly, PAN–PMMA nanoparticles at high concentration and low surfactant content were controllably synthesized by a two-stage azobisisobutyronitrile (AIBN)-initiated semicontinuous emulsion polymerization. The carbon nanospheres were obtained after the PAN core domain was converted into carbon
  • –shell nanoparticles; emulsion polymerization; polyacrylonitrile; Introduction Due to their high specific surface area, chemical inertness, good mechanical stability and unique electrical properties, carbon nanospheres have numerous potential applications in nanocomposites [1], gas storage [2], lithium
  • efficiency of micellization make the method unappealing to the industrial community. Emulsion polymerization is a facile and efficient route to synthesize polymer particles. By combining the emulsion polymerization with the pyrolysis, the production efficiency of PAN-based carbon nanospheres can be improved
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2017

Application of visible-light photosensitization to form alkyl-radical-derived thin films on gold

  • Rashanique D. Quarels,
  • Xianglin Zhai,
  • Neepa Kuruppu,
  • Jenny K. Hedlund,
  • Ashley A. Ellsworth,
  • Amy V. Walker,
  • Jayne C. Garno and
  • Justin R. Ragains

Beilstein J. Nanotechnol. 2017, 8, 1863–1877, doi:10.3762/bjnano.8.187

Graphical Abstract
  • arenediazonium ion can accept a single electron from a cathode to generate aryl radical and N2 at relatively high potentials. Rapid covalent bonding [11][12][13][14] of aryl radical to surfaces followed by further attachment of radicals to already-grafted arenes results in polymerization and generates dense
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2017

(Metallo)porphyrins for potential materials science applications

  • Lars Smykalla,
  • Carola Mende,
  • Michael Fronk,
  • Pablo F. Siles,
  • Michael Hietschold,
  • Georgeta Salvan,
  • Dietrich R. T. Zahn,
  • Oliver G. Schmidt,
  • Tobias Rüffer and
  • Heinrich Lang

Beilstein J. Nanotechnol. 2017, 8, 1786–1800, doi:10.3762/bjnano.8.180

Graphical Abstract
  • use discrete (metallo)porphyrins for the formation of (sub)monolayers by surface-confined polymerization, of monolayers formed by supramolecular recognition and of thin films formed by sublimation techniques. Selected physical properties of these systems are reported as well. The application potential
  • of those ensembles of (metallo)porphyrins in materials science is discussed. Keywords: atomic force microscopy; magneto-optical Kerr effect spectroscopy; scanning tunnelling microscopy and spectroscopy; self-assembly; surface-confined 2D polymerization; transport properties; Review Introduction
  • . It would be thus fascinating to create covalently bonded ensembles on surfaces, or, even more challenging, to induce a 2D surface polymerization. Despite the difficulties to control covalent bond formation on surface, a small number of such studies already exist [34][35][36][37][38][39], including
PDF
Album
Review
Published 29 Aug 2017

Surface functionalization of 3D-printed plastics via initiated chemical vapor deposition

  • Christine Cheng and
  • Malancha Gupta

Beilstein J. Nanotechnol. 2017, 8, 1629–1636, doi:10.3762/bjnano.8.162

Graphical Abstract
  • engineering applications [18]. In another example of surface functionalization, Wang et al. reported a method for modifying the surfaces of 3DP structures fabricated via SLA by using a UV-curable resin with an embedded alkyl bromide initiator from which atom transfer radical polymerization was initiated [19
  • ][20]. They demonstrated that complex 3D-printed structures could be coated with hydrophobic polymers and various metals. However, this coating technique is limited to photocurable resins into which the polymerization initiator has already been incorporated, which restricts surface modification to only
  • to substrates on a cooled stage where polymerization occurs. The molecular weight increases with decreasing substrate temperature and typical molecular weights are in the range of 50,000 to 200,000 [23][24]. The iCVD process is solventless and therefore effects of surface tension are avoided
PDF
Album
Full Research Paper
Published 08 Aug 2017

Oxidative stabilization of polyacrylonitrile nanofibers and carbon nanofibers containing graphene oxide (GO): a spectroscopic and electrochemical study

  • İlknur Gergin,
  • Ezgi Ismar and
  • A. Sezai Sarac

Beilstein J. Nanotechnol. 2017, 8, 1616–1628, doi:10.3762/bjnano.8.161

Graphical Abstract
  • hydrophilicity of the PAN precursor but also catalyze the cyclization of nitrile groups during the stabilization process by forming a ladder structure. In our previous studies, copolymers of AN have been synthesized by free radical polymerization, and electrospun nanofibers were obtained with different AN co
PDF
Album
Full Research Paper
Published 07 Aug 2017

Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

  • Suneel Kumar,
  • Ashish Kumar,
  • Ashish Bahuguna,
  • Vipul Sharma and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2017, 8, 1571–1600, doi:10.3762/bjnano.8.159

Graphical Abstract
PDF
Album
Review
Published 03 Aug 2017
Other Beilstein-Institut Open Science Activities