Search results

Search for "environmental" in Full Text gives 572 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Biomimetics on the micro- and nanoscale – The 25th anniversary of the lotus effect

  • Matthias Mail,
  • Kerstin Koch,
  • Thomas Speck,
  • William M. Megill and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2023, 14, 850–856, doi:10.3762/bjnano.14.69

Graphical Abstract
  • epicuticular wax coverage on leaves of Deschampsia antarctica as a possible adaptation to severe environmental conditions”, used cryo-scanning electron microscopy to study surfaces of D. antarctica, one of the only two flowering plants native to Antarctica. The results show that the two-layered wax, which
  • densely covers both leaf surfaces, contributes to the plant's adaptation to severe environmental conditions in Antarctica by increasing its resistance to cold temperatures, icing, harmful UV radiation, and dehydration. In the paper “Micro-structures, nanomechanical properties and flight performance of
  • production technologies allow for application-specific modification to develop adjustable, bioactive materials as shown in this review article. In the paper "Design of a biomimetic, small-scale artificial leaf surface for the study of environmental interactions" by Huth et al. [10], the authors developed wax
PDF
Album
Editorial
Published 03 Aug 2023

Ultralow-energy amorphization of contaminated silicon samples investigated by molecular dynamics

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2023, 14, 834–849, doi:10.3762/bjnano.14.68

Graphical Abstract
  • very sensitive to contaminations [16] and environmental changes during preparation to the point where an oxide layer formed on the surface of the lamella could complicate analysis [17][18]. While this oxide layer has a substantial impact, ion-induced damage contributes even more to the degradation of
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2023

Silver-based SERS substrates fabricated using a 3D printed microfluidic device

  • Phommachith Sonexai,
  • Minh Van Nguyen,
  • Bui The Huy and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2023, 14, 793–803, doi:10.3762/bjnano.14.65

Graphical Abstract
  • the potential to be a valuable analytical tool for monitoring environmental contaminants. Keywords: 3D printing; microfluidic droplet; SERS substrate; silver nanoparticle; smartphone detection; Introduction Surface-enhanced Raman spectroscopy (SERS) has emerged as a powerful optical trace detection
  • excellent analytical performance of the PS@Ag SERS substrate, making it a promising tool for detecting environmental pollutants and ensuring food safety. Photograph of the as-fabricated droplet-based microfluidic device. Images and absorbance spectra of Ag NPs synthesized using silver nitrate and sodium
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2023

Silver nanoparticles loaded on lactose/alginate: in situ synthesis, catalytic degradation, and pH-dependent antibacterial activity

  • Nguyen Thi Thanh Tu,
  • T. Lan-Anh Vo,
  • T. Thu-Trang Ho,
  • Kim-Phuong T. Dang,
  • Van-Dung Le,
  • Phan Nhat Minh,
  • Chi-Hien Dang,
  • Vinh-Thien Tran,
  • Van-Su Dang,
  • Tran Thi Kim Chi,
  • Hieu Vu-Quang,
  • Radek Fajgar,
  • Thi-Lan-Huong Nguyen,
  • Van-Dat Doan and
  • Thanh-Danh Nguyen

Beilstein J. Nanotechnol. 2023, 14, 781–792, doi:10.3762/bjnano.14.64

Graphical Abstract
  • activity. These findings suggest that this nanocomposite has the potential to be tailored for specific applications in environmental and medicinal treatments, making it a highly promising material. Keywords: alginate; bacterial activity; catalysis; lactose; silver nanoparticles; synthesis; Introduction
  • also valuable catalysts for the removal of environmental contaminants in aqueous solutions. The high surface-to-volume ratio of AgNPs provides many active sites, thereby, enhancing their catalytic activity [32]. The catalytic activity of AgNPs is also influenced by the morphology and the use of capping
  • surface properties of silver nanoparticles. The highest bioactivity was observed at pH 6. These findings suggest that the nanocomposite may be customized for specific applications in environmental and medicinal treatments, making it a promising material. Experimental Materials The following chemicals and
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2023

Carboxylic acids and light interact to affect nanoceria stability and dissolution in acidic aqueous environments

  • Matthew L. Hancock,
  • Eric A. Grulke and
  • Robert A. Yokel

Beilstein J. Nanotechnol. 2023, 14, 762–780, doi:10.3762/bjnano.14.63

Graphical Abstract
  • acid coating to the particle surface [22]. Nanoceria partially dissolved in the presence of organic acids in radish root exudates [23]. Nanoceria agglomeration was reported in algae growth medium beyond 28 h of exposure [24]. Collin et al. [25] urged future studies to look into environmental exposures
  • absorption edge in the UVA region [43]. Studying the effects of UV irradiation on nanoceria would be informative for environmental applications. In biological systems, colloidal nanoceria dispersions were found to be non-toxic to fibroblasts and were capable of preventing damage from UV irradiation [44
  • structures. The authors thank Marsha Ensor for her contribution. This report is based on the following: Hancock, M. L. The Fabrication and Characterization of Metal Oxide Nanoparticles Employed in Environmental Toxicity and Polymeric Nanocomposite Applications. Doctoral Dissertation, University of Kentucky
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2023

In situ magnesiothermic reduction synthesis of a Ge@C composite for high-performance lithium-ion batterie anodes

  • Ha Tran Huu,
  • Ngoc Phi Nguyen,
  • Vuong Hoang Ngo,
  • Huy Hoang Luc,
  • Minh Kha Le,
  • Minh Thu Nguyen,
  • My Loan Phung Le,
  • Hye Rim Kim,
  • In Young Kim,
  • Sung Jin Kim,
  • Van Man Tran and
  • Vien Vo

Beilstein J. Nanotechnol. 2023, 14, 751–761, doi:10.3762/bjnano.14.62

Graphical Abstract
  • various negative environmental consequences of using fossil fuel energy, such as water pollution, increasing emissions of greenhouse gases, and air pollution [1]. Therefore, research regarding eco-friendly and renewable energy resources has emerged [2]. One of the best alternatives to fossil fuels are
PDF
Album
Full Research Paper
Published 26 Jun 2023

Nanoarchitectonics for advanced applications in energy, environment and biology: Method for everything in materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 738–740, doi:10.3762/bjnano.14.60

Graphical Abstract
  • ], but also from applied fields such as catalysis [20][21], sensors [22][23], devices [24][25], environmental research [26][27], energy [28][29], and biomedical [30][31] fields. In this thematic issue entitled “Nanoarchitectonics for advanced applications in energy, environment and biology”, the authors
  • concept, it can be regarded as method for everything in materials science as shown in the manuscripts published in this thematic issue. By using nanoarchitectonics one can create new functional materials, help with societal development, and solve various problems, such as environmental issues, for
PDF
Album
Editorial
Published 19 Jun 2023

Nanomaterials for photocatalysis and applications in environmental remediation and renewable energy

  • Viet Van Pham and
  • Wee-Jun Ong

Beilstein J. Nanotechnol. 2023, 14, 722–724, doi:10.3762/bjnano.14.58

Graphical Abstract
  • primary sources of environmental [2]. A Global Warming Potential (GWP) measurement was used to compare the global warming effects of different gases. It has been calculated to reflect how long gases remain in the atmosphere, on average, and how strongly it absorbs energy [3]. Besides, the discharge of
  • persistent organic pollutants (POPs) also contributes to water pollution, increasing global environmental pollution. Recently, the reduction and conversion of CO2 into fuel as valuable hydrocarbon products has been drawing attention from scientists in materials science, chemical engineering, nanotechnology
  • appropriate for treating pollutants, even in atmospheric conditions [9][10][11]. Moreover, the photocatalysis method is also a potential solution for environmental remediation, carbon emission reduction, and renewable energy production [12][13][14]. Combining photocatalysts and sunlight irradiation is a
PDF
Album
Editorial
Published 13 Jun 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • was around 1400 tons [1]. Due to their complicated structural makeup, the majority of antibiotics are eliminated unaltered in urine and faeces, which ultimately contaminate natural water sources and soil [2][3][4][5][6]. In environmental samples, antibiotics are currently being found at levels between
  • current trend in the abuse of antibiotics persists, 300 million people will die prematurely globally over the next 28 years [17]. Considering these environmental and health concerns, a number of regulatory bodies and nations, including the EU, have prohibited the use of chemicals and pharmaceuticals with
  • to increased global antibiotic consumption and the usage of various hormones that promote health [18][19]. Therefore, research efforts have been concentrated on monitoring and detecting antibiotics and hormones in environmental, clinical, food, and biological samples due to the bioaccumulation
PDF
Album
Review
Published 01 Jun 2023

Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk–shell and sepiolite nanomaterials

  • Celia Martín-Morales,
  • Jorge Fernández-Méndez,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2023, 14, 522–534, doi:10.3762/bjnano.14.43

Graphical Abstract
  • and Figure 3D show that several yeast cells are embedded in the transparent silica matrix, featuring a visible interface resulting from the shellization process. The G57-4 silica gel materials with embedded yeasts were studied in further detail using the environmental SEM/EDS equipment described below
  • an environmental SEM equipment at different magnifications. (C) Top: Composite image of the silica gel matrix with embedded yeast yolk–shell structures obtained by superimposing the various images of the elements distribution mapping (smaller pictures at the bottom). Schematic representation of the
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2023

A mid-infrared focusing grating coupler with a single circular arc element based on germanium on silicon

  • Xiaojun Zhu,
  • Shuai Li,
  • Ang Sun,
  • Yongquan Pan,
  • Wen Liu,
  • Yue Wu,
  • Guoan Zhang and
  • Yuechun Shi

Beilstein J. Nanotechnol. 2023, 14, 478–484, doi:10.3762/bjnano.14.38

Graphical Abstract
  • -silicon; mid-infrared; Introduction The mid-infrared (MIR) spectrum region covers the absorption band of most organic and inorganic matter. Thus, it has a broad application prospect in gas detection, environmental monitoring, lidar, free space optical communication, and remote sensing technologies [1][2
PDF
Album
Full Research Paper
Published 06 Apr 2023

Mixed oxides with corundum-type structure obtained from recycling can seals as paint pigments: color stability

  • Dienifer F. L. Horsth,
  • Julia de O. Primo,
  • Nayara Balaba,
  • Fauze J. Anaissi and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 467–477, doi:10.3762/bjnano.14.37

Graphical Abstract
  • . Keywords: circular economy; colorimetry; sustainability; Introduction The growing interest in industrial products that do not harm the environment triggered the development of diverse strategies to optimize recycling and green syntheses of materials. It is possible to combine economic and environmental
  • a reduction to 5% in greenhouse gas emissions compared to the direct synthesis, reducing the environmental impact. Besides, one ton of recycled aluminium saves up to eight metric tons of bauxite [3][4]. The amount of recycled aluminium packaging depends on individual national recycling policies
  • and physical stability of the pigments, ensuring greater durability. Furthermore, it reduces environmental problems because it avoids consuming natural raw materials, saving primary resources [10][11]. Inorganic pigments, generally, are less affected by light, ambient temperature, chemicals, and harsh
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2023

New trends in nanobiotechnology

  • Pau-Loke Show,
  • Kit Wayne Chew,
  • Wee-Jun Ong,
  • Sunita Varjani and
  • Joon Ching Juan

Beilstein J. Nanotechnol. 2023, 14, 377–379, doi:10.3762/bjnano.14.32

Graphical Abstract
  • Pau-Loke Show Kit Wayne Chew Wee-Jun Ong Sunita Varjani Joon Ching Juan Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates Centre for Energy and Environmental Sustainability, Lucknow, India Nanotechnology & Catalysis Research Centre (NanoCat
  • Engineering, SIMATS, Chennai, 602105, India Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia School of Chemistry, Chemical Engineering and Biotechnology, Nanyang
  • such as nanomaterials applied in biotechnology; nanoparticles used in environmental science and technology; nanosensors used in biosystems; nanomedicine in the context of biochemical engineering; micro- and nanofluidics; micro- and nano-electromechanical systems; nanoscience and nanotoxicology
PDF
Editorial
Published 27 Mar 2023

Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities

  • Akif Hakan Kurt,
  • Elif Berna Olutas,
  • Fatma Avcioglu,
  • Hamza Karakuş,
  • Mehmet Ali Sungur,
  • Cansu Kara Oztabag and
  • Muhammet Yıldırım

Beilstein J. Nanotechnol. 2023, 14, 362–376, doi:10.3762/bjnano.14.31

Graphical Abstract
  • , especially chitosan–silver nanocomposites, which yield a new type of nanoparticles, has raised more attention regarding eco-friendly properties and applications in nanomedicine and environmental remediation. Syntheses of chitosan, silver, and quercetin alone or in binary combinations, that is, chitosan
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2023

Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles

  • Magdalena Lasak and
  • Karol Ciepluch

Beilstein J. Nanotechnol. 2023, 14, 329–338, doi:10.3762/bjnano.14.28

Graphical Abstract
  • vascular endothelial dysfunction include physiological processes (e.g., aging) or environmental factors such as a high-fat diet. These conditions are accompanied by an increased generation of reactive oxygen species (ROS), which, combined with impaired efficiency of antioxidant systems are one of the most
PDF
Album
Review
Published 08 Mar 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • geopolitical factors. Nevertheless, there is a growing need for the efficient removal of environmental pollutants and the proper treatment of industrial wastes to allowable discharge limits, which are crucial for preserving human life and protecting the environment. Numerous techniques have been employed to
  • . Different materials based on bismuth have been developed and used for a range of environmental remediation applications. For instance, Mu et al. [46] synthesised a Bi2S3/Bi4O7 heterostructure via an in situ sulfidation approach and utilised it for the degradation of rhodamine B dye under visible-light
  • [71], and environmental remediation via photocatalysis [25]. Bi-based semiconductors, in particular, are thought to be able to surpass the limitation of the solar light-harvesting capacity of TiO2-based photocatalytic materials because of their smaller bandgaps. Because of its highly anisotropic Fermi
PDF
Album
Review
Published 03 Mar 2023

Batch preparation of nanofibers containing nanoparticles by an electrospinning device with multiple air inlets

  • Dong Wei,
  • Chengwei Ye,
  • Adnan Ahmed and
  • Lan Xu

Beilstein J. Nanotechnol. 2023, 14, 141–150, doi:10.3762/bjnano.14.15

Graphical Abstract
  • the jet formed during the EMAI spinning process when ignoring air resistance and environmental interference. The spinning solution was assumed to be an incompressible ideal fluid [22]. According to previous studies [23], under a high voltage electric field, in point A there is the joint action of mass
PDF
Album
Full Research Paper
Published 23 Jan 2023

Combining physical vapor deposition structuration with dealloying for the creation of a highly efficient SERS platform

  • Adrien Chauvin,
  • Walter Puglisi,
  • Damien Thiry,
  • Cristina Satriano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 83–94, doi:10.3762/bjnano.14.10

Graphical Abstract
  • sensors are promising for various applications in chemical (e.g., explosive [3] or chemical warfare agents [4]) or biological (e.g., lipid or protein [5]) sensing, environmental monitoring [6] as well as in food safety through the detection of pollutants such as phenol [3][7] or rhodamine [8]. The SERS
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2023

Non-stoichiometric magnetite as catalyst for the photocatalytic degradation of phenol and 2,6-dibromo-4-methylphenol – a new approach in water treatment

  • Joanna Kisała,
  • Anna Tomaszewska and
  • Przemysław Kolek

Beilstein J. Nanotechnol. 2022, 13, 1531–1540, doi:10.3762/bjnano.13.126

Graphical Abstract
  • ; Introduction Water is one of the most important natural resources on Earth. It helps to maintain environmental balance, but most of all, it is essential for human life and health. Although water covers more than 70% of our planet’s surface, only 2.5% is freshwater and less than 1% is accessible [1][2]. In the
  • context of water consumption, there is an environmental indicator called the water footprint, which represents the sum of direct water consumption and virtual consumption (i.e., the amount of water needed to produce food and other consumer goods) [3]. Water consumption calculated in this way may amount to
  • , BFRs), wood preservatives, and components in the polymer industry [4][5]. Bromophenols from various industries can cause severe contamination of soil, sediment, and water [6][7]. The United States Environmental Protection Agency (US EPA) has listed BPs as hazardous waste with strict environmental
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2022

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • under solar irradiation. Keywords: multi-wall carbon nanotubes (MWCNTs); nanomaterials; photoelectrochemical; TiO2; water splitting; Introduction TiO2 is an excellent photochemical catalyst for environmental and chemical applications due to its good activity regarding numerous reduction and oxidation
PDF
Album
Full Research Paper
Published 14 Dec 2022

Double-layer symmetric gratings with bound states in the continuum for dual-band high-Q optical sensing

  • Chaoying Shi,
  • Jinhua Hu,
  • Xiuhong Liu,
  • Junfang Liang,
  • Jijun Zhao,
  • Haiyan Han and
  • Qiaofen Zhu

Beilstein J. Nanotechnol. 2022, 13, 1408–1417, doi:10.3762/bjnano.13.116

Graphical Abstract
  • ]. Particularly, the QBIC sensor enables highly accurate detection of environmental changes by reading variations in the spectrum. However, numerous research works have focused on the BIC mechanism of single-mode resonance [26][28], which may limit its application. In this work, we proposed a double-layer
PDF
Album
Full Research Paper
Published 25 Nov 2022

LED-light-activated photocatalytic performance of metal-free carbon-modified hexagonal boron nitride towards degradation of methylene blue and phenol

  • Nirmalendu S. Mishra and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2022, 13, 1380–1392, doi:10.3762/bjnano.13.114

Graphical Abstract
  • Nirmalendu S. Mishra Pichiah Saravanan Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad-826004, Jharkhand, India 10.3762/bjnano.13.114 Abstract The present study outlines the transformation of non
  • percentage of carbon introduced. This demonstrates the potential of HBN to be used as a photocatalytic material. However the studies in the sense of exploring its photocatalytic ablity intented for environmental applications is very limited [15][16][17]. This has motivated us to extend our study on the
PDF
Album
Full Research Paper
Published 22 Nov 2022

Supramolecular assembly of pentamidine and polymeric cyclodextrin bimetallic core–shell nanoarchitectures

  • Alexandru-Milentie Hada,
  • Nina Burduja,
  • Marco Abbate,
  • Claudio Stagno,
  • Guy Caljon,
  • Louis Maes,
  • Nicola Micale,
  • Massimiliano Cordaro,
  • Angela Scala,
  • Antonino Mazzaglia and
  • Anna Piperno

Beilstein J. Nanotechnol. 2022, 13, 1361–1369, doi:10.3762/bjnano.13.112

Graphical Abstract
  • University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania Department of Biomolecular Physics, Faculty of Physics, Babes-Bolyai University, M Kogalniceanu Str. 1, 400084 Cluj-Napoca, Romania Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno
  • d'Alcontres 31, 98166 Messina, Italy National Council of Research, Institute for the Study of Nanostructured Materials (CNR-ISMN), URT of Messina c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • environmental restoration and energy conversion is photocatalysis powered by solar light. Traditional photocatalysts have limited practical uses due to inadequate light absorption, charge separation, and unknown reaction mechanisms. Discovering new visible-light photocatalysts and investigating their
  • photocatalysts, upgrading the photocatalytic ability, and understanding essential reactions of the photocatalytic process. This paper provides insights into the characteristics of Bi-based photocatalysts, making them a promising future nanomaterial for environmental remediation. The current review discusses the
  • fabrication techniques and enhancement in Bi-based semiconductor photocatalysts. Various environmental applications, such as H2 generation and elimination of water pollutants, are also discussed in terms of semiconductor photocatalysis. Future developments will be guided by the uses, issues, and possibilities
PDF
Album
Review
Published 11 Nov 2022
Other Beilstein-Institut Open Science Activities