Search results

Search for "relaxation" in Full Text gives 375 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Pulsed laser synthesis of highly active Ag–Rh and Ag–Pt antenna–reactor-type plasmonic catalysts

  • Kenneth A. Kane and
  • Massimo F. Bertino

Beilstein J. Nanotechnol. 2019, 10, 1958–1963, doi:10.3762/bjnano.10.192

Graphical Abstract
  • of femtoseconds before relaxation, which is sufficient for chemical transformation or additional vibrational energy to be transferred to the adsorbate, leading to reaction [14]. There are two mechanisms that can lead to the electronic excitation in the adsorbate–metal complex. The first is the
PDF
Album
Supp Info
Letter
Published 26 Sep 2019

First principles modeling of pure black phosphorus devices under pressure

  • Ximing Rong,
  • Zhizhou Yu,
  • Zewen Wu,
  • Junjun Li,
  • Bin Wang and
  • Yin Wang

Beilstein J. Nanotechnol. 2019, 10, 1943–1951, doi:10.3762/bjnano.10.190

Graphical Abstract
  • found that the armchair BP device can be used as a pressure sensor, while the zigzag BP device cannot be used in that way when the pressure ratio is less than 15%. This is the core conclusion of this work. To examine the influence of structural relaxation, the conductance of two fully relaxed zigzag and
PDF
Album
Full Research Paper
Published 24 Sep 2019

Charge-transfer interactions between fullerenes and a mesoporous tetrathiafulvalene-based metal–organic framework

  • Manuel Souto,
  • Joaquín Calbo,
  • Samuel Mañas-Valero,
  • Aron Walsh and
  • Guillermo Mínguez Espallargas

Beilstein J. Nanotechnol. 2019, 10, 1883–1893, doi:10.3762/bjnano.10.183

Graphical Abstract
  • details). We initially modelled the fullerene C60 guest in the middle of the MUV-2 mesopore. After several relaxation steps, the C60 was able to accommodate in one of the three cavities to interact favourably with the TTF-based ligand. We explored two possible conformations for the host–guest C60@MUV-2
PDF
Album
Supp Info
Full Research Paper
Published 18 Sep 2019

Fabrication and characterization of Si1−xGex nanocrystals in as-grown and annealed structures: a comparative study

  • Muhammad Taha Sultan,
  • Adrian Valentin Maraloiu,
  • Ionel Stavarache,
  • Jón Tómas Gudmundsson,
  • Andrei Manolescu,
  • Valentin Serban Teodorescu,
  • Magdalena Lidia Ciurea and
  • Halldór Gudfinnur Svavarsson

Beilstein J. Nanotechnol. 2019, 10, 1873–1882, doi:10.3762/bjnano.10.182

Graphical Abstract
  • incidence X-ray diffraction (GIXRD) and high-resolution transmission electron microscopy (HRTEM). Strain relaxation and its effect on the formation of NCs and the resulting interface integrity was studied and compared with structures having a thicker (ca. 200 nm) SiGe layer [23], deposited by radio
  • facilitate nucleation. In order to demonstrate the effect of the SiGe layer thickness on the relaxation processes, Figure 6 depicts micrographs of the previously studied structures [23], where the thickness of the SiGe films was approximately 200 nm. The NCs in the thicker films show a lens-like morphology
  • the specimen area, the shearing defects are superposed and more complicated, as detailed in our previous study [23]. These defects appear only in relatively thick SiGe films in MLs as the only relaxation process taking place. In the thin SiGe films explored here (ca. 20 nm, comparable with the size of
PDF
Album
Full Research Paper
Published 17 Sep 2019

Engineered superparamagnetic iron oxide nanoparticles (SPIONs) for dual-modality imaging of intracranial glioblastoma via EGFRvIII targeting

  • Xianping Liu,
  • Chengjuan Du,
  • Haichun Li,
  • Ting Jiang,
  • Zimiao Luo,
  • Zhiqing Pang,
  • Daoying Geng and
  • Jun Zhang

Beilstein J. Nanotechnol. 2019, 10, 1860–1872, doi:10.3762/bjnano.10.181

Graphical Abstract
  • , gadolinium (Gd)-based agents (often Gd-diethylenetriaminepentaacetic acid (DTPA)) and superparamagnetic iron oxide nanoparticles (SPIONs) are the paramagnetic materials generally used as contrast agents to impact the relaxation time T1 or T2, thus generating bright or dark images via MR imaging. Gd-DTPA, as
  • signal intensities of NPs and PNPs decreased with increasing Fe concentration (Figure 2a). After linear fitting, a good linear correlation between T2 relaxation (r2) and the Fe concentration was established. The r2 of the PNP nanoprobe was 52.35 mM−1 s−1, which was slightly lower than that of the NPs
PDF
Album
Full Research Paper
Published 11 Sep 2019

Toxicity and safety study of silver and gold nanoparticles functionalized with cysteine and glutathione

  • Barbara Pem,
  • Igor M. Pongrac,
  • Lea Ulm,
  • Ivan Pavičić,
  • Valerije Vrček,
  • Darija Domazet Jurašin,
  • Marija Ljubojević,
  • Adela Krivohlavek and
  • Ivana Vinković Vrček

Beilstein J. Nanotechnol. 2019, 10, 1802–1817, doi:10.3762/bjnano.10.175

Graphical Abstract
  • ). The chemical shifts were expressed in parts per million (ppm) and are referenced to the residual water signal. All spectra were recorded at 25 °C. For all experiments, a recycle delay of 5 s was used, which was sufficiently greater than the relaxation time T1. To suppress the solvent signal, the WET
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2019

Growth dynamics and light scattering of gold nanoparticles in situ synthesized at high concentration in thin polymer films

  • Corentin Guyot,
  • Philippe Vandestrick,
  • Ingrid Marenne,
  • Olivier Deparis and
  • Michel Voué

Beilstein J. Nanotechnol. 2019, 10, 1768–1777, doi:10.3762/bjnano.10.172

Graphical Abstract
  • ) refer to the evaporation of residual solvent, to the relaxation of thickness and to the changes of the refractive index, respectively. Correlation plot between the standard deviation of the ellipsometric angles Ψ and Δ during film annealing (open circles: experimental data, lines: linear fits). The
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2019

Direct observation of oxygen-vacancy formation and structural changes in Bi2WO6 nanoflakes induced by electron irradiation

  • Hong-long Shi,
  • Bin Zou,
  • Zi-an Li,
  • Min-ting Luo and
  • Wen-zhong Wang

Beilstein J. Nanotechnol. 2019, 10, 1434–1442, doi:10.3762/bjnano.10.141

Graphical Abstract
  • : breaking of bonds in the Bi–O layers induced by electron-beam irradiation, relaxation of W–O layers and reconstruction of the WO3 phase. List of diffraction peaks used to perform ab initio indexing of the wide lattice fringes. Note: the characteristic diffraction spot at 3.738 Å was constrained to (110) in
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2019

On the relaxation time of interacting superparamagnetic nanoparticles and implications for magnetic fluid hyperthermia

  • Andrei Kuncser,
  • Nicusor Iacob and
  • Victor E. Kuncser

Beilstein J. Nanotechnol. 2019, 10, 1280–1289, doi:10.3762/bjnano.10.127

Graphical Abstract
  • Andrei Kuncser Nicusor Iacob Victor E. Kuncser National Institute of Materials Physics, P.O. Box MG 7, 077125, Magurele, Romania 10.3762/bjnano.10.127 Abstract A critical discussion on the presently available models for the relaxation time of magnetic nanoparticles approaching the
  • performed on ferrofluids of different volume fractions. The theoretical support for the specific evolution of the relaxation time constant and the anisotropy energy barrier versus the interparticle interactions in a perturbation approach of the simple Néel expression for the relaxation time is provided via
  • static and time-dependent micromagnetic simulations. Keywords: magnetic hyperthermia; magnetic nanoparticles; magnetic relaxation time; micromagnetic simulation; Introduction Magnetic relaxation phenomena in nanoparticulate systems are under intensive investigation today, especially due to their
PDF
Album
Full Research Paper
Published 24 Jun 2019

Imaging the surface potential at the steps on the rutile TiO2(110) surface by Kelvin probe force microscopy

  • Masato Miyazaki,
  • Huan Fei Wen,
  • Quanzhen Zhang,
  • Yuuki Adachi,
  • Jan Brndiar,
  • Ivan Štich,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2019, 10, 1228–1236, doi:10.3762/bjnano.10.122

Graphical Abstract
  • labeled as Os in Figure 4 might be an oxygen vacancy (Osv) [24][25][35], causing another Ti atom to be exposed enhancing the upward local atomic dipole. According to Sasahara et al. [29], the dipole moments are formed in the central direction (horizontal direction) of the upper step by relaxation into the
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2019

Electroluminescence and current–voltage measurements of single-(In,Ga)N/GaN-nanowire light-emitting diodes in a nanowire ensemble

  • David van Treeck,
  • Johannes Ledig,
  • Gregor Scholz,
  • Jonas Lähnemann,
  • Mattia Musolino,
  • Abbes Tahraoui,
  • Oliver Brandt,
  • Andreas Waag,
  • Henning Riechert and
  • Lutz Geelhaar

Beilstein J. Nanotechnol. 2019, 10, 1177–1187, doi:10.3762/bjnano.10.117

Graphical Abstract
  • , the intensity of which changes in a characteristic way with current. This phenomenon is caused by the N polarity of the NWs and the three-dimensional strain profile resulting from elastic relaxation at the free sidewall surfaces, as previously shown in [7]. I–V curves acquired for single-NW LEDs
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2019

Synthesis and characterization of quaternary La(Sr)S–TaS2 misfit-layered nanotubes

  • Marco Serra,
  • Erumpukuthickal Ashokkumar Anumol,
  • Dalit Stolovas,
  • Iddo Pinkas,
  • Ernesto Joselevich,
  • Reshef Tenne,
  • Andrey Enyashin and
  • Francis Leonard Deepak

Beilstein J. Nanotechnol. 2019, 10, 1112–1124, doi:10.3762/bjnano.10.111

Graphical Abstract
  • also attributed to the relaxation of the interlayer forces. DFT calculations of the approximant (SrxLa1−xS)1.11TaS2 showed that the amount of charge transfer from the rock-salt SrxLa1−xS lattice to the hexagonal TaS2 lattice goes through a shallow minimum at 20 atom % Sr substitution. Furthermore, the
PDF
Album
Supp Info
Full Research Paper
Published 24 May 2019

Scavenging of reactive oxygen species by phenolic compound-modified maghemite nanoparticles

  • Małgorzata Świętek,
  • Yi-Chin Lu,
  • Rafał Konefał,
  • Liliana P. Ferreira,
  • M. Margarida Cruz,
  • Yunn-Hwa Ma and
  • Daniel Horák

Beilstein J. Nanotechnol. 2019, 10, 1073–1088, doi:10.3762/bjnano.10.108

Graphical Abstract
  • a Bruker Avance III 600 spectrometer (Billerica, MA, USA) with a 90° width, 10 μs pulse, 10 s relaxation delay, 2.18 s acquisition time, and 100 scans. DCl (2 wt %) in D2O was used as a solvent. The chemical shift was calibrated from the 4,4-dimethyl-4-silapentane-1-sulfonic acid signal at δ = 0 ppm
PDF
Album
Full Research Paper
Published 20 May 2019

Structural and optical properties of penicillamine-protected gold nanocluster fractions separated by sequential size-selective fractionation

  • Xiupei Yang,
  • Zhengli Yang,
  • Fenglin Tang,
  • Jing Xu,
  • Maoxue Zhang and
  • Martin M. F. Choi

Beilstein J. Nanotechnol. 2019, 10, 955–966, doi:10.3762/bjnano.10.96

Graphical Abstract
  • F36%). This is qualitatively consistent with rotational spin relaxation (T2); that is, the larger 3.0 nm average core size AuNCs (Figure 5, spectrum 3) are significantly slower than the smallest 1.2 nm average core size (Figure 5, spectrum 6) [26]. Further expansion of the packing density gradient
PDF
Album
Full Research Paper
Published 25 Apr 2019

Co-doped MnFe2O4 nanoparticles: magnetic anisotropy and interparticle interactions

  • Bagher Aslibeiki,
  • Parviz Kameli,
  • Hadi Salamati,
  • Giorgio Concas,
  • Maria Salvador Fernandez,
  • Alessandro Talone,
  • Giuseppe Muscas and
  • Davide Peddis

Beilstein J. Nanotechnol. 2019, 10, 856–865, doi:10.3762/bjnano.10.86

Graphical Abstract
  • is the anisotropy energy of the single particle, kB the Boltzmann constant and τ0 the characteristic relaxation time. The fit to the Arrhenius law led to unphysical values of the characteristic relaxation time and anisotropy constant. Since this model describes a non-interacting system, the results
PDF
Album
Supp Info
Full Research Paper
Published 12 Apr 2019

Electronic properties of several two dimensional halides from ab initio calculations

  • Mohamed Barhoumi,
  • Ali Abboud,
  • Lamjed Debbichi,
  • Moncef Said,
  • Torbjörn Björkman,
  • Dario Rocca and
  • Sébastien Lebègue

Beilstein J. Nanotechnol. 2019, 10, 823–832, doi:10.3762/bjnano.10.82

Graphical Abstract
  • electronic structure is important for the fabrication of transistors. Therefore, we have used a similar strategy to tune the bandgap of the different monolayers, with electric fields up to 1.0 V/Å applied perpendicularly. A full relaxation of the structure was conducted under the electric field. Notice that
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2019

The effect of translation on the binding energy for transition-metal porphyrines adsorbed on Ag(111) surface

  • Luiza Buimaga-Iarinca and
  • Cristian Morari

Beilstein J. Nanotechnol. 2019, 10, 706–717, doi:10.3762/bjnano.10.70

Graphical Abstract
  • are detailed here as resulted from DFT calculations. Van der Waals interactions as well as the strong correlation in 3d orbitals of transition metals were taken into account in all calculations, including the structural relaxation. For each system we investigate four relative positions of the metallic
  • structures and relaxation procedure for molecule are presented in the next section. The exchange–correlation (xc) functionals used in DFT are plagued by one- and many-electron self-interaction error (SIE) [59]. In the case of correlated electrons this effect may lead to significant errors. One of the most
  • atoms. Further relaxation of the positions of nitrogen atoms will probably diminish these values, which should be considered as the maximum possible values. It is interesting to observe that the dependence on the adsorption position is weaker from left to right in the panels of Figure 1, suggesting that
PDF
Album
Supp Info
Full Research Paper
Published 13 Mar 2019

Outstanding chain-extension effect and high UV resistance of polybutylene succinate containing amino-acid-modified layered double hydroxides

  • Adam A. Marek,
  • Vincent Verney,
  • Christine Taviot-Gueho,
  • Grazia Totaro,
  • Laura Sisti,
  • Annamaria Celli and
  • Fabrice Leroux

Beilstein J. Nanotechnol. 2019, 10, 684–695, doi:10.3762/bjnano.10.68

Graphical Abstract
  • ][31]. This work, however, used a different LDH platelet composition (Zn2Al) that is known to present some UV screening due to Zn2+ cations. However, hydrotalcite-type Mg2Al (as used in this work) has yet to be investigated. The temperature and frequency-dependent mechanical relaxation data for the
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2019

A carrier velocity model for electrical detection of gas molecules

  • Ali Hosseingholi Pourasl,
  • Sharifah Hafizah Syed Ariffin,
  • Mohammad Taghi Ahmadi,
  • Razali Ismail and
  • Niayesh Gharaei

Beilstein J. Nanotechnol. 2019, 10, 644–653, doi:10.3762/bjnano.10.64

Graphical Abstract
  • configurations were considered. Several orientations of the C–O bond above the AGNR plane were tested. After a complete relaxation of the structure, the optimal configuration for the CO molecule above the AGNR was found, where the C–O bond was parallel to the substrate and the molecular distance from the AGNR
PDF
Album
Full Research Paper
Published 04 Mar 2019

Enhancement in thermoelectric properties due to Ag nanoparticles incorporated in Bi2Te3 matrix

  • Srashti Gupta,
  • Dinesh Chandra Agarwal,
  • Bathula Sivaiah,
  • Sankarakumar Amrithpandian,
  • Kandasami Asokan,
  • Ajay Dhar,
  • Binaya Kumar Panigrahi,
  • Devesh Kumar Avasthi and
  • Vinay Gupta

Beilstein J. Nanotechnol. 2019, 10, 634–643, doi:10.3762/bjnano.10.63

Graphical Abstract
  • electrons is caused by the existence of an electrostatic potential at the interface. The Seebeck coefficient depends on the energy derivative of the relaxation time at the Fermi energy. Thus the electron-energy filtering, in which high-energy electrons remain unaffected, strongly enhances Seebeck
PDF
Album
Full Research Paper
Published 04 Mar 2019

Review of time-resolved non-contact electrostatic force microscopy techniques with applications to ionic transport measurements

  • Aaron Mascaro,
  • Yoichi Miyahara,
  • Tyler Enright,
  • Omur E. Dagdeviren and
  • Peter Grütter

Beilstein J. Nanotechnol. 2019, 10, 617–633, doi:10.3762/bjnano.10.62

Graphical Abstract
  • relaxation times [31]. Nonetheless, this complicates time-domain measurements of ionic transport as the functional form of the relaxation must be fully captured in order to reliably extract the relevant parameters, namely τ* and β. With slow ionic relaxation times (longer than milliseconds) and typical
  • operating (scanning) parameters (bandwidth of ca. 100 Hz) the PLL response will not affect the extracted values obtained from directly fitting the data. However, as the relaxation time approaches the response time of the PLL, the output signal will become a convolution of the PLL response function and the
  • ionic relaxation. This makes any quantification of the transport properties challenging. To investigate the effect of τPLL on the ability to extract parameters from measured signals, a digitially synthesized voltage waveform varying in time as a stretched exponential (Equation 1, β = 0.7) was applied
PDF
Album
Supp Info
Review
Published 01 Mar 2019

Direct observation of the CVD growth of monolayer MoS2 using in situ optical spectroscopy

  • Claudia Beatriz López-Posadas,
  • Yaxu Wei,
  • Wanfu Shen,
  • Daniel Kahr,
  • Michael Hohage and
  • Lidong Sun

Beilstein J. Nanotechnol. 2019, 10, 557–564, doi:10.3762/bjnano.10.57

Graphical Abstract
  • the interband transitions transpiring near the critical point of Γ, where the valance and conduction bands are nested [30]. The relaxation of the transitions A and B gives strong PL emission, which is plotted in Figure 1f. The strong PL emission corroborates the monolayer thickness of the MoS2 layer
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2019

Nanocomposite–parylene C thin films with high dielectric constant and low losses for future organic electronic devices

  • Marwa Mokni,
  • Gianluigi Maggioni,
  • Abdelkader Kahouli,
  • Sara M. Carturan,
  • Walter Raniero and
  • Alain Sylvestre

Beilstein J. Nanotechnol. 2019, 10, 428–441, doi:10.3762/bjnano.10.42

Graphical Abstract
  • of the permittivity. In particular, β-relaxation is affected by the addition of nanoparticles as well as the dissipation factor, which is even improved. A dielectric constant of 5 ± 1 with a dissipation factor of less than 0.045 in the range from 0.1 Hz to 1 MHz is obtained for a 2.7 µm thick NCPC
  • relaxation of the C–Cl bond (β-relaxation) [34]. Compared to the pure parylene sample (O) all other samples present a higher dielectric constant over the whole frequency range. Many factors could explain this result: 1. An increase in polymer thickness sometimes leads to an increase in the dielectric
  • parameter modifying the frequency trend of the β-relaxation is the dielectric strength Δε = ε’LF − ε’HF [62], where ε’LF is the low-frequency dielectric constant (measured at 0.1 Hz in our case) and ε’HF is the high-frequency dielectric constant (measured at 1 MHz in our case). Δε is associated to the
PDF
Album
Full Research Paper
Published 12 Feb 2019

Intuitive human interface to a scanning tunnelling microscope: observation of parity oscillations for a single atomic chain

  • Sumit Tewari,
  • Jacob Bakermans,
  • Christian Wagner,
  • Federica Galli and
  • Jan M. van Ruitenbeek

Beilstein J. Nanotechnol. 2019, 10, 337–348, doi:10.3762/bjnano.10.33

Graphical Abstract
  • temperature difference with the reference temperature T0 with an adjustable coupling to a heat bath: where τB is the temperature relaxation time, related to the strength of the coupling. The velocities of all atoms are rescaled at every timestep (Δt) with the same factor: A typical value for τB in condensed
  • structural relaxation step in a system analogous to the one shown in Figure 3 and checked the difference in the final total energy of the relaxed state between our method and a conventional approach. We found that the error in final total energy induced by the cutoff radii and the lookup table is very small
  • unwanted adsorbates that may be present in the UHV chamber, most likely hydrogen. In fact we have observed this jump to contact when approaching a Au adatom from the top in more than 80% of the times and we attribute it to the relaxation [42] of tip and surface atoms. Recent work [43][44], albeit not
PDF
Album
Supp Info
Full Research Paper
Published 04 Feb 2019

Mechanism of silica–lysozyme composite formation unravelled by in situ fast SAXS

  • Tomasz M. Stawski,
  • Daniela B. van den Heuvel,
  • Rogier Besselink,
  • Dominique J. Tobler and
  • Liane G. Benning

Beilstein J. Nanotechnol. 2019, 10, 182–197, doi:10.3762/bjnano.10.17

Graphical Abstract
  • of the protein molecules are considerably smaller than the native dimensions of lysozyme in any possible orientation. Hence, this suggests that initially the binding of silica NPs by lysozyme involves a severe deformation/unfolding of the protein molecules, followed in time by a relaxation and
  • model to link the evolution in the measured structure factor to the lysozyme molecule, and we found that the aggregation processes involve severe deformation of the protein molecules, which is then followed by the relaxation towards the original dimensions. Appendix Derivation of Equation 17 The
PDF
Album
Supp Info
Full Research Paper
Published 14 Jan 2019
Other Beilstein-Institut Open Science Activities