Search results

Search for "REACH" in Full Text gives 704 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Antibacterial activity of a berberine nanoformulation

  • Hue Thi Nguyen,
  • Tuyet Nhung Pham,
  • Anh-Tuan Le,
  • Nguyen Thanh Thuy,
  • Tran Quang Huy and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2022, 13, 641–652, doi:10.3762/bjnano.13.56

Graphical Abstract
  • 156 nm at a concentration of 2.0 mg/mL, measured by dynamic light scattering. After nanoformulation, the concentration of BBR NPs could reach up to 5.0 mg/mL, which is much higher than the saturation concentration without treatment. Results show a strongly enhanced antibacterial activity of BBR NPs
  • BBR NPs was significantly enhanced. Thus, the concentration of BBR NPs could reach up to 5.0 mg/mL, which was much higher than the saturation concentration of pure BBR. The diameter of the BBR NPs measured with dynamic light scattering was 156 nm at a concentration of 2.0 mg/mL. BBR NPs at a
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2022

Approaching microwave photon sensitivity with Al Josephson junctions

  • Andrey L. Pankratov,
  • Anna V. Gordeeva,
  • Leonid S. Revin,
  • Dmitry A. Ladeynov,
  • Anton A. Yablokov and
  • Leonid S. Kuzmin

Beilstein J. Nanotechnol. 2022, 13, 582–589, doi:10.3762/bjnano.13.50

Graphical Abstract
  • lifetime at 50 mK. This may indicate that we do not reach the true quantum regime, and the lifetime stops changing with decreasing temperature due to either residual low-frequency interference or overheating. Additional experiments are planned to determine this issue. The absorption of a photon increases
PDF
Album
Full Research Paper
Published 04 Jul 2022

Revealing local structural properties of an atomically thin MoSe2 surface using optical microscopy

  • Lin Pan,
  • Peng Miao,
  • Anke Horneber,
  • Alfred J. Meixner,
  • Pierre-Michel Adam and
  • Dai Zhang

Beilstein J. Nanotechnol. 2022, 13, 572–581, doi:10.3762/bjnano.13.49

Graphical Abstract
  • , pulse duration: 89.8 fs) is used for the optical excitation. To reach a diffraction-limited focus, we use a parabolic mirror with a numerical aperture up to 0.998 in air for light focusing and emission signal collection. The SHG signals are selected using a 10 nm band pass filter and detected by micro
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2022

Ciprofloxacin-loaded dissolving polymeric microneedles as a potential therapeutic for the treatment of S. aureus skin infections

  • Sharif Abdelghany,
  • Walhan Alshaer,
  • Yazan Al Thaher,
  • Maram Al Fawares,
  • Amal G. Al-Bakri,
  • Saja Zuriekat and
  • Randa SH. Mansour

Beilstein J. Nanotechnol. 2022, 13, 517–527, doi:10.3762/bjnano.13.43

Graphical Abstract
  • layer of Parafilm, which means that the microneedles can reach 130 µm, as shown in Figure 5 and Table 1. However, CIP_MN2 showed significantly fewer perforations compared to the CIP_MN1; the first layer of Parafilm was perforated only by 85 needles. Although PVA hydrogel has shown satisfactory
  • generally less than 10–80 µm. Microneedles that can reach deeper than 80 µm can potentially deliver the incorporated drug for the treatment of local and systemic infections [55]. The dermis is a viable layer that is rich in water, blood capillaries, and connective tissues including collagen and elastin [56
PDF
Album
Full Research Paper
Published 15 Jun 2022

Design and characterization of polymeric microneedles containing extracts of Brazilian green propolis

  • Camila Felix Vecchi,
  • Rafaela Said dos Santos,
  • Jéssica Bassi da Silva and
  • Marcos Luciano Bruschi

Beilstein J. Nanotechnol. 2022, 13, 503–516, doi:10.3762/bjnano.13.42

Graphical Abstract
  • viable epidermis, without reaching the nerve endings that are in the dermis [4][5]. The perforation of the stratum corneum enables the release of bioactive molecules in the epidermis, which then reach the dermis and blood capillaries by diffusion [6]. This entire process occurs in a non-invasive
  • with the depth of the master mold. This is related to solvent evaporation as described in the literature for other biopolymeric MNs prepared by solvent casting [37][38]. The above sizes allow the MNs to rupture the stratum corneum but not reach the blood vessels, creating ducts that facilitate the flow
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2022

Ethosomal (−)-epigallocatechin-3-gallate as a novel approach to enhance antioxidant, anti-collagenase and anti-elastase effects

  • Çiğdem Yücel,
  • Gökçe Şeker Karatoprak,
  • Sena Yalçıntaş and
  • Tuğba Eren Böncü

Beilstein J. Nanotechnol. 2022, 13, 491–502, doi:10.3762/bjnano.13.41

Graphical Abstract
  • high amounts of ethanol that can carry both hydrophilic and lipophilic drug molecules. They are also highly deformable and reach deep skin layers [18][19]. ETHs are similar to the lipid bilayer composition of cells in the epidermis, due to the presence of phospholipids in their structure, and thus
  • synergistic effect of phospholipids and ethanol enables the ETHs and drug molecules to reach the deeper layers of the skin [19][22][23]. The skin penetration mechanism of drug-loaded ETHs is explained by both the ETH effect and the ethanol effect. While ethanol increases drug penetration by increasing the
PDF
Album
Full Research Paper
Published 31 May 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • chemical enhancement from the electronic interaction between the analyte and the nanosurface [59]. The electromagnetic enhancement factor (EF) can reach up to eleven orders of magnitude in the “hot spots” of the nanosubstrate [60][61], while the chemical EF usually has a value between 10 and 103. Since the
PDF
Album
Review
Published 27 May 2022

Investigation of electron-induced cross-linking of self-assembled monolayers by scanning tunneling microscopy

  • Patrick Stohmann,
  • Sascha Koch,
  • Yang Yang,
  • Christopher David Kaiser,
  • Julian Ehrens,
  • Jürgen Schnack,
  • Niklas Biere,
  • Dario Anselmetti,
  • Armin Gölzhäuser and
  • Xianghui Zhang

Beilstein J. Nanotechnol. 2022, 13, 462–471, doi:10.3762/bjnano.13.39

Graphical Abstract
  • beam current was measured by using a Faraday cup. The SAMs were irradiated with beam currents ranging from 200–600 pA. Prior to electron irradiation, the STM tip was retracted and moved away from the surface location of interest, such that the electrons could pass the tip and reach the surface location
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2022

A chemiresistive sensor array based on polyaniline nanocomposites and machine learning classification

  • Jiri Kroutil,
  • Alexandr Laposa,
  • Ali Ahmad,
  • Jan Voves,
  • Vojtech Povolny,
  • Ladislav Klimsa,
  • Marina Davydova and
  • Miroslav Husak

Beilstein J. Nanotechnol. 2022, 13, 411–423, doi:10.3762/bjnano.13.34

Graphical Abstract
  • data by principal component analysis to be a highly accurate method reach to 99% of the classification of six different gases. Keywords: feature extraction; gas sensor; pattern recognition; sensor array; Introduction The control and monitoring of toxic gaseous substances, such as ammonia, nitrogen
  • been used for the classification of gas sensor data using a 10-fold cross-validation to reach the highest classification rate. Results and Discussion The sensors layers were investigated by scanning electron microcopy (SEM), Raman spectroscopy, current–voltage and temperature analysis, and gas sensing
PDF
Album
Full Research Paper
Published 27 Apr 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
PDF
Album
Review
Published 11 Apr 2022

Selected properties of AlxZnyO thin films prepared by reactive pulsed magnetron sputtering using a two-element Zn/Al target

  • Witold Posadowski,
  • Artur Wiatrowski,
  • Jarosław Domaradzki and
  • Michał Mazur

Beilstein J. Nanotechnol. 2022, 13, 344–354, doi:10.3762/bjnano.13.29

Graphical Abstract
  • the results of the electrical measurements as thin films deposited at X ≥ 50 mm are conducting, with resistivities as low as ca. 10−3 Ω·cm. The results of the Al content in the deposited thin films showed that the Al/Zn ratio can even reach ca. 0.16 depending on X. Typically, AZO thin films consist of
  • . Clearly, only a limited number of particles reach the back surface (some condense on the front substrate surface, some on the inside of the deposition chamber), which leads to the observed lower thickness of the deposited film (Figure 6). Because of the reduced effect of the destructive bombardment with
PDF
Album
Full Research Paper
Published 31 Mar 2022

A broadband detector based on series YBCO grain boundary Josephson junctions

  • Egor I. Glushkov,
  • Alexander V. Chiginev,
  • Leonid S. Kuzmin and
  • Leonid S. Revin

Beilstein J. Nanotechnol. 2022, 13, 325–333, doi:10.3762/bjnano.13.27

Graphical Abstract
  • received power Pabsorbed/Pincident as function of the frequency for the three different antenna geometries from Figure 1. It can be seen that this value does not reach 1 due to the mismatch of the antenna impedance (about 50 Ω) and the port impedance. The differences in the results for the three antenna
PDF
Album
Full Research Paper
Published 28 Mar 2022

Plasma modes in capacitively coupled superconducting nanowires

  • Alex Latyshev,
  • Andrew G. Semenov and
  • Andrei D. Zaikin

Beilstein J. Nanotechnol. 2022, 13, 292–297, doi:10.3762/bjnano.13.24

Graphical Abstract
  • ultrathin superconducting wires are typically much smaller than kinetic ones and, hence, can be safely neglected as compared to . On the contrary, the mutual capacitance Cm can easily reach values comparable with C1,2 and for this reason it needs to be explicitly accounted for within the framework of our
PDF
Album
Full Research Paper
Published 04 Mar 2022

Photothermal ablation of murine melanomas by Fe3O4 nanoparticle clusters

  • Xue Wang,
  • Lili Xuan and
  • Ying Pan

Beilstein J. Nanotechnol. 2022, 13, 255–264, doi:10.3762/bjnano.13.20

Graphical Abstract
  • viability to 39.3%. NPCs alone tended to decrease cell viability at higher dosages but did not reach statistical significance, whereas cells exposed to saline + NIR remained unchanged. In this sense, the PTT efficiency of the current NPCs was greater than that of our previously synthesized Fe3O4
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
  • dominant. When the voltage is high enough for the electrostatic forces of the Taylor cone to overcome the surface tension and viscous force, jet initiation happens, and a polymer jet will reach the ground collector completing the circuit. Polymers with high molecular weight will form ultrafine fibers due
PDF
Album
Review
Published 31 Jan 2022

Effect of lubricants on the rotational transmission between solid-state gears

  • Huang-Hsiang Lin,
  • Jonathan Heinze,
  • Alexander Croy,
  • Rafael Gutiérrez and
  • Gianaurelio Cuniberti

Beilstein J. Nanotechnol. 2022, 13, 54–62, doi:10.3762/bjnano.13.3

Graphical Abstract
  • MD simulations. For the force fields, we choose the adaptive intermolecular reactive empirical bond order (AIREBO) potential [59]. This potential was designed for hydrocarbon systems and can reach reasonable densities for the molecules we will use later. We have used two different protocols. For
PDF
Album
Supp Info
Full Research Paper
Published 05 Jan 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
  • the number of species that will reach the substrate surface per time unit and unit area, but also the kinetic energy of the sputtered species, as well as other parameters (e.g., flux and wavelength of the light emitted by the plasma). Because all research groups carry out experiments in different
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Heating ability of elongated magnetic nanoparticles

  • Elizaveta M. Gubanova,
  • Nikolai A. Usov and
  • Vladimir A. Oleinikov

Beilstein J. Nanotechnol. 2021, 12, 1404–1412, doi:10.3762/bjnano.12.104

Graphical Abstract
  • demonstrates that for assemblies of both types the shape of the hysteresis loops depends significantly on the transverse particle diameter D = 2b. It is interesting to note that the areas of the hysteresis loops reach a maximum at the same value of the transverse particle diameter, D = 15 nm. However, the
  • cluster, η = 0.04–0.2, in comparison with an oriented assembly of non-interacting nanoparticles, η = 0. According to Figure 4a, for given ac magnetic field parameters the SAR of the oriented assembly of non-interacting nanoparticles can reach a maximum of about 1500–1600 W/g. However, with an increase in
PDF
Album
Full Research Paper
Published 28 Dec 2021

Identifying diverse metal oxide nanomaterials with lethal effects on embryonic zebrafish using machine learning

  • Richard Liam Marchese Robinson,
  • Haralambos Sarimveis,
  • Philip Doganis,
  • Xiaodong Jia,
  • Marianna Kotzabasaki,
  • Christiana Gousiadou,
  • Stacey Lynn Harper and
  • Terry Wilkins

Beilstein J. Nanotechnol. 2021, 12, 1297–1325, doi:10.3762/bjnano.12.97

Graphical Abstract
  • models developed here for excess lethality at 120 hpf and improved models for mortality at 24 hpf.) It is possible that our findings reflect the fact that toxicity up to 24 hpf requires dermal penetration to reach the site of biological action, since swallowing does not start until around 72 hpf [31
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2021

Nonmonotonous temperature dependence of Shapiro steps in YBCO grain boundary junctions

  • Leonid S. Revin,
  • Dmitriy V. Masterov,
  • Alexey E. Parafin,
  • Sergey A. Pavlov and
  • Andrey L. Pankratov

Beilstein J. Nanotechnol. 2021, 12, 1279–1285, doi:10.3762/bjnano.12.95

Graphical Abstract
  • ), the optimal signal detection regime is shifted. That is, for temperatures of 80 K and 70 K and the frequency of 72 GHz, the condition ωmw ≈ ωc is satisfied, and the step heights reach ≈Ic and ≈0.9 Ic, respectively. At 50 K, maxΔI1 ≈ Icωmw/ωc = IcFmw/Fc = 3 mA × 72 GHz/330 GHz = 0.65 mA, and at 20 K
PDF
Album
Full Research Paper
Published 23 Nov 2021

A review on slip boundary conditions at the nanoscale: recent development and applications

  • Ruifei Wang,
  • Jin Chai,
  • Bobo Luo,
  • Xiong Liu,
  • Jianting Zhang,
  • Min Wu,
  • Mingdan Wei and
  • Zhuanyue Ma

Beilstein J. Nanotechnol. 2021, 12, 1237–1251, doi:10.3762/bjnano.12.91

Graphical Abstract
  • the no-slip boundary condition is no longer valid. The slip length, a quantity that reflects the amount of slip at a given surface, can reach orders of magnitude of many microns [13]. The impetus to investigate flow boundary conditions, which are valid in nanoscale fluidic systems, lies in the
  • force [39][40][41][42]. However, compared with experimental methods, numerical simulations, such as the lattice Boltzmann method and molecular dynamics (MD) simulation, are more attractive in many aspects. First, numerical simulations can readily reach the system sizes and timescales of practical
PDF
Album
Review
Published 17 Nov 2021

Two dynamic modes to streamline challenging atomic force microscopy measurements

  • Alexei G. Temiryazev,
  • Andrey V. Krayev and
  • Marina P. Temiryazeva

Beilstein J. Nanotechnol. 2021, 12, 1226–1236, doi:10.3762/bjnano.12.90

Graphical Abstract
  • , and in order to reach the A1 level, it is necessary to bring the probe closer to the surface. Let us consider the main advantages of this method. One is the adaptive scanning speed. The levels of A1 and A2 may be very close. Their difference should only be much higher than the noise level. In our
  • steep topography. Likewise, when descending a steep edge, parachuting will not happen, as the probe will remain over each point as long as necessary to reach the reference level of the amplitude. Thus, the actual time taking to acquire a scan is determined both by the speed of movement between the
  • the lateral and vertical movement times on all lines, as well as the ascent and descent times when switching the direct and return passes. Next, we enter two levels of height. A bottom level Hbot limits the depth at which the probe must reach the surface. If, during the measurement, at Hbot the
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2021

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • this origin location. The second particle diffuses via random walk, reaches a site close to the seed particle, and subsequently comes to a stop. In a similar way, other particles are added one by one and allowed to move randomly or guided by diffusion [54]. The added particles eventually reach their
  • hyperbranched morphologies of fractals, offering high surface area and numerous transport channels for gas analytes to reach the electrode of a sensor more quickly, also form a good object of basic science. This review article gives an overview of fractal geometries that have been successfully applied as gas
PDF
Album
Supp Info
Review
Published 09 Nov 2021

The effect of cobalt on morphology, structure, and ORR activity of electrospun carbon fibre mats in aqueous alkaline environments

  • Markus Gehring,
  • Tobias Kutsch,
  • Osmane Camara,
  • Alexandre Merlen,
  • Hermann Tempel,
  • Hans Kungl and
  • Rüdiger-A. Eichel

Beilstein J. Nanotechnol. 2021, 12, 1173–1186, doi:10.3762/bjnano.12.87

Graphical Abstract
  • these particular measurements, while at 700 and 1000 °C the difference is within the margin of error. In general, the fibres with cobalt reach higher current densities, except for very negative potentials vs MMO for the fibres carbonised at 900 °C. The overall current densities seem to increase with
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2021

Irradiation-driven molecular dynamics simulation of the FEBID process for Pt(PF3)4

  • Alexey Prosvetov,
  • Alexey V. Verkhovtsev,
  • Gennady Sushko and
  • Andrey V. Solov’yov

Beilstein J. Nanotechnol. 2021, 12, 1151–1172, doi:10.3762/bjnano.12.86

Graphical Abstract
  • steps with a velocity quenching time step of 0.5 fs. After that, the precursor molecules are pulled down to the surface and thermalized at the specified temperature to reach thermal equilibrium. In the simulations the substrate atoms are frozen while all the atoms in precursor molecules are freely
PDF
Album
Full Research Paper
Published 13 Oct 2021
Other Beilstein-Institut Open Science Activities