Search results

Search for "electronics" in Full Text gives 529 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Controlling the proximity effect in a Co/Nb multilayer: the properties of electronic transport

  • Sergey Bakurskiy,
  • Mikhail Kupriyanov,
  • Nikolay V. Klenov,
  • Igor Soloviev,
  • Andrey Schegolev,
  • Roman Morari,
  • Yury Khaydukov and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1336–1345, doi:10.3762/bjnano.11.118

Graphical Abstract
  • elements, including synapses. This new type of application will be discussed in more detail. The creation of artificial neural networks is one of the current trends in the development of superconductor electronics [10][11][12][13][14][15]. Such an artificial neural network contains layers of elements that
PDF
Album
Full Research Paper
Published 07 Sep 2020

Effect of localized helium ion irradiation on the performance of synthetic monolayer MoS2 field-effect transistors

  • Jakub Jadwiszczak,
  • Pierce Maguire,
  • Conor P. Cullen,
  • Georg S. Duesberg and
  • Hongzhou Zhang

Beilstein J. Nanotechnol. 2020, 11, 1329–1335, doi:10.3762/bjnano.11.117

Graphical Abstract
  • materials; Introduction Layered two-dimensional (2D) semiconductors have come to the fore in recent years as promising candidates for the implementation of flexible, transparent, and low-power electronics. In particular, transition metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS2), have
PDF
Album
Full Research Paper
Published 04 Sep 2020

Cryogenic low-noise amplifiers for measurements with superconducting detectors

  • Ilya L. Novikov,
  • Boris I. Ivanov,
  • Dmitri V. Ponomarev and
  • Aleksey G. Vostretsov

Beilstein J. Nanotechnol. 2020, 11, 1316–1320, doi:10.3762/bjnano.11.115

Graphical Abstract
  • ; Introduction Currently, superconducting detectors are the most sensitive devices in the electromagnetic field and find wide application in radioastronomy and quantum electronics. Sensors based on superconductors can detect microwaves close to the single-photon limit [1]. Most of such sensors are based on
  • Josephson junctions and superconducting thin films. Experimental studies of such sensors require the design of low-noise cryogenic readout electronics with a direct coupling to the sample. For example, investigations of noise sources in low-temperature tunnel Josephson junctions are still ongoing for high
  • mobility transistor (HEMT) technology and SiGe bipolar heterojunction technology (HBT). Low-frequency amplifiers are usually applied as first stage of SQUID readout electronics [11][12] or as the readout of cryogenic bolometers [13]. In both cases the amplifiers have a working temperature of 300 K. Modern
PDF
Album
Full Research Paper
Published 02 Sep 2020

Ultrasensitive detection of cadmium ions using a microcantilever-based piezoresistive sensor for groundwater

  • Dinesh Rotake,
  • Anand Darji and
  • Nitin Kale

Beilstein J. Nanotechnol. 2020, 11, 1242–1253, doi:10.3762/bjnano.11.108

Graphical Abstract
  • Dinesh Rotake Anand Darji Nitin Kale Department of Electronics Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India The Chief Technology Officer, NanoSniff Technologies Pvt. Ltd., F-14, 1st Floor, IITB Research Park, Old CSE Building, IIT Bombay, Powai, Mumbai
  • . Comparison of different methods for cadmium detection. Funding The authors would like to thank Director of Indian Institute of Technology, Bombay for the support of atomic force microscopy under “Indian Nanoelectronics Users Program” and “Visvesvaraya Ph.D. Scheme for Electronics and IT” funded by the MeitY
PDF
Album
Full Research Paper
Published 18 Aug 2020

3D superconducting hollow nanowires with tailored diameters grown by focused He+ beam direct writing

  • Rosa Córdoba,
  • Alfonso Ibarra,
  • Dominique Mailly,
  • Isabel Guillamón,
  • Hermann Suderow and
  • José María De Teresa

Beilstein J. Nanotechnol. 2020, 11, 1198–1206, doi:10.3762/bjnano.11.104

Graphical Abstract
  • is present along the whole nanowire length. Moreover, these nanowires become superconducting at 6.8 K and show high values of critical magnetic field and critical current density. Consequently, these 3D nano-objects could be implemented as components in the next generation of electronics, such as
  • studied in detail. Nowadays, research on manufacturing highly energy-efficient three-dimensional (3D) structures [13] is critical for the development of future electronics. However, when approaching the nanometer-scale, the number of works on real 3D nano-superconductors [14][15][16][17][18][19] decreases
PDF
Album
Supp Info
Full Research Paper
Published 11 Aug 2020

Hybridization vs decoupling: influence of an h-BN interlayer on the physical properties of a lander-type molecule on Ni(111)

  • Maximilian Schaal,
  • Takumi Aihara,
  • Marco Gruenewald,
  • Felix Otto,
  • Jari Domke,
  • Roman Forker,
  • Hiroyuki Yoshida and
  • Torsten Fritz

Beilstein J. Nanotechnol. 2020, 11, 1168–1177, doi:10.3762/bjnano.11.101

Graphical Abstract
  • -BN on Ni(111) exhibits an atomically flat morphology [18][19]. DBP is a promising molecule in the field of organic electronics, for example, as an electron donor [20][21][22][23] or acceptor [24] in organic photovoltaic applications, and as a dopant in organic light emitting diodes [25]. For our
  • a promising n-type contact for molecular electronics. Core level spectroscopy Finally, we investigated the chemical structure by means of X-ray photoelectron spectroscopy (XPS) at normal emission. In Figure 5 the N 1s, the C 1s and the B 1s spectra for DBP on bare Ni(111) as well as on h-BN/Ni(111
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2020

Thermophoretic tweezers for single nanoparticle manipulation

  • Jošt Stergar and
  • Natan Osterman

Beilstein J. Nanotechnol. 2020, 11, 1126–1133, doi:10.3762/bjnano.11.97

Graphical Abstract
  • position so that the thermal gradient at the location of the particle is the highest). The position is then sent to the beam steering electronics, which then repositions the heating laser focus accordingly. The most straightforward path to thermophoretic tweezing is to employ laser tweezers, which are
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2020

Vibration analysis and pull-in instability behavior in a multiwalled piezoelectric nanosensor with fluid flow conveyance

  • Sayyid H. Hashemi Kachapi

Beilstein J. Nanotechnol. 2020, 11, 1072–1081, doi:10.3762/bjnano.11.92

Graphical Abstract
  • , pharmaceutical, agricultural, environmental, advanced materials, chemical science, physics, electronics, information technology, biomedical and medical fields [1][2][3][4][5][6][7][8][9][10]. Due to this extended use of nanosensors, especially piezoelectric nanosensors in vibration devices, mathematical models
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2020

A few-layer graphene/chlorin e6 hybrid nanomaterial and its application in photodynamic therapy against Candida albicans

  • Selene Acosta,
  • Carlos Moreno-Aguilar,
  • Dania Hernández-Sánchez,
  • Beatriz Morales-Cruzado,
  • Erick Sarmiento-Gomez,
  • Carla Bittencourt,
  • Luis Octavio Sánchez-Vargas and
  • Mildred Quintana

Beilstein J. Nanotechnol. 2020, 11, 1054–1061, doi:10.3762/bjnano.11.90

Graphical Abstract
  • -ray photoelectron spectroscopy (XPS) with a VERSAPROBE PHI 5000 instrument from Physical Electronics, equipped with a monochromatic Al Kα X-ray source under ultrahigh vacuum conditions. The energy resolution was 0.7 eV. For the compensation of built-up charge on the sample surface during the
PDF
Album
Full Research Paper
Published 17 Jul 2020

Epitaxial growth and superconducting properties of thin-film PdFe/VN and VN/PdFe bilayers on MgO(001) substrates

  • Wael M. Mohammed,
  • Igor V. Yanilkin,
  • Amir I. Gumarov,
  • Airat G. Kiiamov,
  • Roman V. Yusupov and
  • Lenar R. Tagirov

Beilstein J. Nanotechnol. 2020, 11, 807–813, doi:10.3762/bjnano.11.65

Graphical Abstract
  • ; epitaxial superconductor–ferromagnet heterostructure; palladium–iron alloy (PdFe); vanadium nitride (VN); superconducting spintronics; Introduction Since its invention, rapid single-flux quantum (RSFQ) logic [1][2] based on superconducting digital electronics has been seriously considered as an alternative
  • to semiconductor electronics for supercomputing applications [3][4][5]. Merging it with magnetism [6][7][8] has given a birth to superconducting spintronics [9][10]. The latter concept was implemented in the US Cryogenic Computing Complexity (C3) Program [11][12][13] with the goal “to demonstrate a
  • argued that the use of magnetic Josephson junctions in single-flux quantum electronics significantly reduces the number of junctions and interconnects in the circuits [26] and also has other important advantages such as wide operation margins and low bit-error rate [27]. The magnetic material has to be
PDF
Album
Full Research Paper
Published 15 May 2020

Light–matter interactions in two-dimensional layered WSe2 for gauging evolution of phonon dynamics

  • Avra S. Bandyopadhyay,
  • Chandan Biswas and
  • Anupama B. Kaul

Beilstein J. Nanotechnol. 2020, 11, 782–797, doi:10.3762/bjnano.11.63

Graphical Abstract
  • interaction while the intra-layer bonding is via the strong covalent interaction. This makes them inherently flexible and good candidates for flexible electronics [9], optoelectronics [10], and other related applications [11][12]. Amongst the TMDCs, WSe2 offers unique advantages for device applications, which
PDF
Album
Supp Info
Full Research Paper
Published 12 May 2020

Exfoliation in a low boiling point solvent and electrochemical applications of MoO3

  • Matangi Sricharan,
  • Bikesh Gupta,
  • Sreejesh Moolayadukkam and
  • H. S. S. Ramakrishna Matte

Beilstein J. Nanotechnol. 2020, 11, 662–670, doi:10.3762/bjnano.11.52

Graphical Abstract
  • layered materials, molybdenum oxide (MoO3) has gained special attention because of its numerous applications in electronics, catalysis, electrochemistry, solar cells and gas sensors [6]. Monolayered and few-layered MoO3 has been reported to have better properties than the bulk material [7]. Thus, it is
  • for the fabrication of flexible supercapacitors for wearable electronics. (a) UV–vis spectra of MoO3 dispersions obtained from different initial concentrations (Ci). The inset shows the final concentration as a function of the initial concentration; (b) UV–vis spectra of MoO3 dispersions obtained from
PDF
Album
Supp Info
Letter
Published 17 Apr 2020

Evolution of Ag nanostructures created from thin films: UV–vis absorption and its theoretical predictions

  • Robert Kozioł,
  • Marcin Łapiński,
  • Paweł Syty,
  • Damian Koszelow,
  • Wojciech Sadowski,
  • Józef E. Sienkiewicz and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2020, 11, 494–507, doi:10.3762/bjnano.11.40

Graphical Abstract
  • Physics and Mathematics, Department of Theoretical Physics and Quantum Information, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland Faculty of Electronics, Telecommunication and Informatics, Department of Biomedical Engineering, Gdansk University of Technology, Gabriela
PDF
Album
Full Research Paper
Published 25 Mar 2020

Electrochemically derived functionalized graphene for bulk production of hydrogen peroxide

  • Munaiah Yeddala,
  • Pallavi Thakur,
  • Anugraha A and
  • Tharangattu N. Narayanan

Beilstein J. Nanotechnol. 2020, 11, 432–442, doi:10.3762/bjnano.11.34

Graphical Abstract
  • electrolyte (KF) from 1 to 4 M. In this process, two graphite rods were used as electrodes in KF aqueous electrolyte having different concentrations. A regulated DC power supply (Physitech electronics, model: PHY8230) in galvanostatic mode (0.2 A/cm2) was employed to carry out the electrochemical exfoliation
PDF
Album
Supp Info
Full Research Paper
Published 09 Mar 2020

High dynamic resistance elements based on a Josephson junction array

  • Konstantin Yu. Arutyunov and
  • Janne S. Lehtinen

Beilstein J. Nanotechnol. 2020, 11, 417–420, doi:10.3762/bjnano.11.32

Graphical Abstract
  • particular “cost-no-object” applications. Currently, the field of superconducting electronics is developing much faster mainly due to the understanding that (even taking into consideration the necessity of refrigeration) the energy consumption of next generation supercomputers can be as low as ≈10 MW, which
PDF
Album
Full Research Paper
Published 03 Mar 2020

DFT calculations of the structure and stability of copper clusters on MoS2

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2020, 11, 391–406, doi:10.3762/bjnano.11.30

Graphical Abstract
  • applications. These materials are also interesting as supports for low-dimensional metals for catalysis, while recent work has shown increased interest in using 2D materials in the electronics industry as a Cu diffusion barrier in semiconductor device interconnects. The interaction between different metal
  • variety of research areas [1]. These include catalysis [2][3], photonics [4][5], batteries [6], sensors [7][8] and semiconductors and electronics [9][10][11]. More recently, 2D materials have been explored as copper diffusion barriers in CMOS interconnect structures [12][13][14][15]. Furthermore, to
  • semiconductors, unlike graphene, and have thus garnered significant interest in the electronics industry [4]. Often, the properties of the monolayer are different from those of the bulk materials. For example, MoS2 has an indirect bandgap in its bulk structure, while it exhibits a direct bandgap as a monolayer
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2020

Anomalous current–voltage characteristics of SFIFS Josephson junctions with weak ferromagnetic interlayers

  • Tairzhan Karabassov,
  • Anastasia V. Guravova,
  • Aleksei Yu. Kuzin,
  • Elena A. Kazakova,
  • Shiro Kawabata,
  • Boris G. Lvov and
  • Andrey S. Vasenko

Beilstein J. Nanotechnol. 2020, 11, 252–262, doi:10.3762/bjnano.11.19

Graphical Abstract
  • . acknowledges the hospitality of the Quantum nanoelectronics laboratory of the Moscow Institute of Electronics and Mathematics in the National Research University Higher School of Economics during his stay in Moscow.
PDF
Album
Full Research Paper
Published 23 Jan 2020

Size effects of graphene nanoplatelets on the properties of high-density polyethylene nanocomposites: morphological, thermal, electrical, and mechanical characterization

  • Tuba Evgin,
  • Alpaslan Turgut,
  • Georges Hamaoui,
  • Zdenko Spitalsky,
  • Nicolas Horny,
  • Matej Micusik,
  • Mihai Chirtoc,
  • Mehmet Sarikanat and
  • Maria Omastova

Beilstein J. Nanotechnol. 2020, 11, 167–179, doi:10.3762/bjnano.11.14

Graphical Abstract
  • composites (PMCs); thermal properties; Introduction In recent years, electrically and thermally conductive polymer nanocomposites have attracted considerable attention because of their potential use in many industrial applications, such as aerospace, electronics, packaging, automotives, sensors, batteries
PDF
Album
Supp Info
Full Research Paper
Published 14 Jan 2020

Molecular architectonics of DNA for functional nanoarchitectures

  • Debasis Ghosh,
  • Lakshmi P. Datta and
  • Thimmaiah Govindaraju

Beilstein J. Nanotechnol. 2020, 11, 124–140, doi:10.3762/bjnano.11.11

Graphical Abstract
  • template for nanowire synthesis. The miniaturization of devices is of central importance in electronics and has galvanized significant research in materials science. The need for the miniaturization of devices at the nanoscale interface has led to the exploration of new material systems and building blocks
PDF
Album
Review
Published 09 Jan 2020

Synthesis of amorphous and graphitized porous nitrogen-doped carbon spheres as oxygen reduction reaction catalysts

  • Maximilian Wassner,
  • Markus Eckardt,
  • Andreas Reyer,
  • Thomas Diemant,
  • Michael S. Elsaesser,
  • R. Jürgen Behm and
  • Nicola Hüsing

Beilstein J. Nanotechnol. 2020, 11, 1–15, doi:10.3762/bjnano.11.1

Graphical Abstract
  • temperature was 1000 °C in air. XPS measurements were performed in a Physical Electronics PHI 5800 Multi ESCA system at an emission angle of 45° and a pass energy of 29.35 eV (detail spectra), applying monochromatic Al Kα radiation (250 W, 13 kV). The thin-layer samples used for these measurements were
PDF
Album
Full Research Paper
Published 02 Jan 2020

Advanced hybrid nanomaterials

  • Andreas Taubert,
  • Fabrice Leroux,
  • Pierre Rabu and
  • Verónica de Zea Bermudez

Beilstein J. Nanotechnol. 2019, 10, 2563–2567, doi:10.3762/bjnano.10.247

Graphical Abstract
  • devices, catalysis and environment, smart coatings, energy, and electronics [10][11][12][13][14][15][16][17]. By essence, the hybrid approach consists of building new materials and devices by assembling elementary functional organic/inorganic, molecular or extended bricks to obtain materials with greatly
PDF
Editorial
Published 20 Dec 2019

Formation of metal/semiconductor Cu–Si composite nanostructures

  • Natalya V. Yumozhapova,
  • Andrey V. Nomoev,
  • Vyacheslav V. Syzrantsev and
  • Erzhena C. Khartaeva

Beilstein J. Nanotechnol. 2019, 10, 2497–2504, doi:10.3762/bjnano.10.240

Graphical Abstract
  • microwave electronics and radiophotonics due to their large dipole moment and the appearance of a Schottky barrier in the contact region [14]. The structure of these nanoparticles is primarily determined by the methods and conditions of synthesis, which should allow us to combine the two materials even if
PDF
Album
Full Research Paper
Published 13 Dec 2019

Abrupt elastic-to-plastic transition in pentagonal nanowires under bending

  • Sergei Vlassov,
  • Magnus Mets,
  • Boris Polyakov,
  • Jianjun Bian,
  • Leonid Dorogin and
  • Vahur Zadin

Beilstein J. Nanotechnol. 2019, 10, 2468–2476, doi:10.3762/bjnano.10.237

Graphical Abstract
  • electronics [10][11]. In the last case NWs are used as a conductive network in composition with flexible polymer materials such as polydimethylsiloxane (PDMS) [12][13]. The reliability of flexible devices in high-strain conditions will be governed by the mechanical reliability of the individual NWs inside the
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2019

Multiple Fano resonances with flexible tunablity based on symmetry-breaking resonators

  • Xiao bin Ren,
  • Kun Ren,
  • Ying Zhang,
  • Cheng guo Ming and
  • Qun Han

Beilstein J. Nanotechnol. 2019, 10, 2459–2467, doi:10.3762/bjnano.10.236

Graphical Abstract
  • Xiao bin Ren Kun Ren Ying Zhang Cheng guo Ming Qun Han School of Science, Tianjin University of Science and Technology, Tianjin 300222, China College of Precision Instrument and Opto-electronics Engineering; Key Laboratory of Opto-electronics Information Technology, Ministry of Education, Tianjin
PDF
Album
Full Research Paper
Published 11 Dec 2019

Mobility of charge carriers in self-assembled monolayers

  • Zhihua Fu,
  • Tatjana Ladnorg,
  • Hartmut Gliemann,
  • Alexander Welle,
  • Asif Bashir,
  • Michael Rohwerder,
  • Qiang Zhang,
  • Björn Schüpbach,
  • Andreas Terfort and
  • Christof Wöll

Beilstein J. Nanotechnol. 2019, 10, 2449–2458, doi:10.3762/bjnano.10.235

Graphical Abstract
  • electronics [1]. In addition to hopping transport of charge carriers, electrons or holes, within molecular solids [2], for some materials also a band-like transport has been proposed [3]. Previous work showed that the charge carrier mobilities are highly dependent on the structural quality of the material [4
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2019
Other Beilstein-Institut Open Science Activities