Search results

Search for "potential" in Full Text gives 1888 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Strain-induced bandgap engineering in 2D ψ-graphene materials: a first-principles study

  • Kamal Kumar,
  • Nora H. de Leeuw,
  • Jost Adam and
  • Abhishek Kumar Mishra

Beilstein J. Nanotechnol. 2024, 15, 1440–1452, doi:10.3762/bjnano.15.116

Graphical Abstract
  • ]. Although a successful experimental synthesis of ψ-graphene has not yet been realized, many theoretical investigations have been carried out by different research teams to study its various potential applications in sensors, lithium-ion batteries, and hydrogen storage [16][39][42]. We have recently employed
  • calculations and concluded that ψ-graphene has the potential to be employed in infrared (IR) sensors, ultraviolet (UV) optomechanical sensors, and visible-light sensors [39]. Li et al. theoretically reported a maximum theoretical storage capacity of 372 mAh·g−1 for Li, showing its capability to be utilized as
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2024

Lithium niobate on insulator: an emerging nanophotonic crystal for optimized light control

  • Midhun Murali,
  • Amit Banerjee and
  • Tanmoy Basu

Beilstein J. Nanotechnol. 2024, 15, 1415–1426, doi:10.3762/bjnano.15.114

Graphical Abstract
  • , parametric amplifiers, and photonic integrated circuits. Recently, LN photonic crystals have garnered attention as a compelling candidate for incorporation into photonic integrated circuits, showcasing their potential in advancing the field. Photonic crystals possess a widely acknowledged capability to
  • arranged in a certain direction. The periodicity is proportional to the wavelength of light that lies in its photonic bandgap (PBG) [1]. The presence of the PBG and the potential ability to tune its position to match specific frequencies is perhaps the most attractive quality of PhC [2]. The specific
  • (QIP) systems. Despite the challenges such as fabrication complexity [6] and loss mitigation scalability to complex circuits [7], the potential benefits of DBRs for QIP applications continue to drive research and development in this field [8]. As fabrication techniques and material systems develop
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2024

Nanotechnological approaches for efficient N2B delivery: from small-molecule drugs to biopharmaceuticals

  • Selin Akpinar Adscheid,
  • Akif E. Türeli,
  • Nazende Günday-Türeli and
  • Marc Schneider

Beilstein J. Nanotechnol. 2024, 15, 1400–1414, doi:10.3762/bjnano.15.113

Graphical Abstract
  • administration route and the barriers are clear, understanding the nasal anatomy and barriers as well as addressing different efficient formulations with DDSs for N2B delivery applications remain open issues. In recent years, biopharmaceuticals been shown to have great potential as therapeutics [32]. However
  • lipid NPs, polymeric NPs, liposomes, emulsions, and novel hybrid NPs and their potential use as DDSs in N2B delivery (Figure 4). Polymeric NPs Because of their tunable physicochemical characteristics, polymeric NPs are a potential vehicle for different drug delivery applications [71]. They can be
  • mucin. While the presence of the mucin did not significantly alter the negative surface charge of the PLGA NPs, the more negative zeta potential values of the PLGA-chitosan NPs showed that there was an interaction with mucin. Following this, the RH-loaded NPs showed 3.22-fold enhanced drug permeation
PDF
Album
Review
Published 12 Nov 2024

Various CVD-grown ZnO nanostructures for nanodevices and interdisciplinary applications

  • The-Long Phan,
  • Le Viet Cuong,
  • Vu Dinh Lam and
  • Ngoc Toan Dang

Beilstein J. Nanotechnol. 2024, 15, 1390–1399, doi:10.3762/bjnano.15.112

Graphical Abstract
  • microcavities [9]. Additionally, it is a transparent semiconductor with significant piezoelectricity [10]. These noble characteristics suggest ZnO to be a potential material in the fabrication of UV/blue/green LEDs, solid-state random lasers, UV-absorption devices, and nanogenerators [9][11][12][13]. Magnetic
  • ⟩ direction [39]. Top and bottom sides/surfaces of these structures are terminated with Zn and O atoms forming positively charged Zn-terminated (0001) and negatively charged O-terminated planes, respectively. Such 1D-type structures have many potential applications in optoelectronic devices [5][39][40
  • nanodevices. They also have potential applications in biological, biomedical, and environmental fields. A representative EDX spectrum recorded from ZnO nanorods showing the presence of Zn and O in the product. SEM micrographs of some nanostructures: (a, b) rods (R1 and R2), (c) matches or drumsticks (M), (d
PDF
Album
Full Research Paper
Published 11 Nov 2024

A biomimetic approach towards a universal slippery liquid infused surface coating

  • Ryan A. Faase,
  • Madeleine H. Hummel,
  • AnneMarie V. Hasbrook,
  • Andrew P. Carpenter and
  • Joe E. Baio

Beilstein J. Nanotechnol. 2024, 15, 1376–1389, doi:10.3762/bjnano.15.111

Graphical Abstract
  • reducing the potential for adverse effects. Factor XII, thrombin, and calcium are critical components of the coagulation cascade, and their removal represents a pathway for lowering thrombus formation due to contact with foreign materials. Each of these components has led to different approaches for the
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2024

Green synthesis of carbon dot structures from Rheum Ribes and Schottky diode fabrication

  • Muhammed Taha Durmus and
  • Ebru Bozkurt

Beilstein J. Nanotechnol. 2024, 15, 1369–1375, doi:10.3762/bjnano.15.110

Graphical Abstract
  • synthesis, which is commonly used in the literature. TEM and zeta potential measurements were used to determine morphology and sizes of the CDs, and XRD, XPS, and FTIR and micro-Raman spectroscopy were used for structural characterization. Optical characterization of the CDs was done by absorption and
  • herbaceous plant with yellowish-white flowers grows from May to June. Rheum ribes is the only Rheum species growing in Turkey. Flavonoids, stilbenes, and anthraquinones in its structure are the main phenolic components that provide a potential antioxidant effect to this plant. The young shoots and leaf stems
  • Cary Eclipse fluorescence spectrophotometer were used for transmission electron microscopy (TEM), zeta potential measurements, X-ray diffractometry (XRD), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, PVD thermal evaporation, scanning
PDF
Album
Full Research Paper
Published 07 Nov 2024

Out-of-plane polarization induces a picosecond photoresponse in rhombohedral stacked bilayer WSe2

  • Guixian Liu,
  • Yufan Wang,
  • Zhoujuan Xu,
  • Zhouxiaosong Zeng,
  • Lanyu Huang,
  • Cuihuan Ge and
  • Xiao Wang

Beilstein J. Nanotechnol. 2024, 15, 1362–1368, doi:10.3762/bjnano.15.109

Graphical Abstract
  • intrinsic photoresponse time of approximately 3 ps. The ultrafast response time remains consistent across varying detection powers, demonstrating environmental stability and highlighting the potential in optoelectronic applications. Our study presents an effective strategy for enhancing the response time of
  • depolarization fields, providing a promising platform for highly integrated devices [1][2][3]. The emergence of ferroelectricity at the atomic scale in vdW ferroelectrics has garnered significant interest because of its potential applications in various fields [4][5][6][7][8][9][10][11][12][13][14]. Through
  • lead to a high-efficiency photoelectric conversion that has the potential to surpasses the Shockley–Queisser limit [24][31][32][33][34]. In this regard, constructing 2D vdW semiconductors with OOP polarization and moderate bandgap holds great promise for high-performance self-powered BPVE devices. More
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2024

Hymenoptera and biomimetic surfaces: insights and innovations

  • Vinicius Marques Lopez,
  • Carlo Polidori and
  • Rhainer Guillermo Ferreira

Beilstein J. Nanotechnol. 2024, 15, 1333–1352, doi:10.3762/bjnano.15.107

Graphical Abstract
  • facilitating attachment, penetration of substrates, production of sound, perception of volatiles, and delivery of venoms, among others. These morphological features offer valuable insights for biomimetic and bioinspired technological advancements. Here, we explore the biomimetic potential of hymenopteran body
  • surfaces. We highlight recent advancements and outline potential strategic pathways, evaluating their current functions and applications while suggesting promising avenues for further investigations. By studying these fascinating and biologically diverse insects, researchers could develop innovative
  • , scientists and engineers can develop innovative materials and devices that mirror the efficiency and functionality of Hymenopteran anatomy. Here we describe the structural adaptations on the surfaces of the body of Hymenoptera (Figure 2) with potential biomimetic applications. By analyzing their unique
PDF
Album
Review
Published 05 Nov 2024

Nanoarchitectonics with cetrimonium bromide on metal nanoparticles for linker-free detection of toxic metal ions and catalytic degradation of 4-nitrophenol

  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2024, 15, 1312–1332, doi:10.3762/bjnano.15.106

Graphical Abstract
  • +, Cr3+, and Hg2+ at 0.5 OD, while efficiently degrading 4-NP within 5 min at 1 OD. This study emphasizes the importance of tailoring parameters of CTAB-capped nanoparticles for specific sensing and catalytic applications, offering potential solutions for environmental remediation and human health
  • nanostructures were measured using an Epoch2 spectrophotometer (BioTek, USA). Hydrodynamic radius and polydispersity index (PDI) were measured using dynamic light scattering (Zetasizer Nano ZS, Malvern, UK). The zeta potential measurements were conducted to determine the surface charge for both isotropic and
  • forces between the particles. This repulsion prevents particles from getting too close to each other, thus minimizing aggregation. The CTAB-capped AgNS, AuNS, AuNR1, and AuNR2 showed positive zeta potential values of 30.2 ± 4.3, 30.9 ± 9.6, 36.2 ± 9.6, and 31.9 ± 9.1 mV, respectively (Figure 2c). Zeta
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2024

Interaction of graphene oxide with tannic acid: computational modeling and toxicity mitigation in C. elegans

  • Romana Petry,
  • James M. de Almeida,
  • Francine Côa,
  • Felipe Crasto de Lima,
  • Diego Stéfani T. Martinez and
  • Adalberto Fazzio

Beilstein J. Nanotechnol. 2024, 15, 1297–1311, doi:10.3762/bjnano.15.105

Graphical Abstract
  • toxicity and highlight the potential of tannic acid for the synthesis and surface functionalization of graphene-based nanomaterials, offering insights into safer nanotechnology development. Keywords: biodistribution; density functional theory; ecotoxicity; molecular dynamics; surface interactions
  • ; toxicity mitigation; Introduction Graphene oxide (GO) has many potential applications in electronics, advanced materials, bio-medicine, energy, agriculture, and environmental technology [1][2][3]. It consists of a graphene sheet with surface oxygen functional groups such as epoxide, ketone, hydroxy
  • exhibits an antinutritional effect and may induce the calorie restriction (CR) pathway in C. elegans, which is a potential cause of the TA-mediated lifespan extension [63][64]. The CR effect could decrease the acute toxicity effects of GO by decreasing the ingestion of the material by C. elegans
PDF
Album
Supp Info
Full Research Paper
Published 30 Oct 2024

Mn-doped ZnO nanopowders prepared by sol–gel and microwave-assisted sol–gel methods and their photocatalytic properties

  • Cristina Maria Vlăduț,
  • Crina Anastasescu,
  • Silviu Preda,
  • Oana Catalina Mocioiu,
  • Simona Petrescu,
  • Jeanina Pandele-Cusu,
  • Dana Culita,
  • Veronica Bratan,
  • Ioan Balint and
  • Maria Zaharescu

Beilstein J. Nanotechnol. 2024, 15, 1283–1296, doi:10.3762/bjnano.15.104

Graphical Abstract
  • photocatalysts; water depollution; Introduction Over the past decades, significant research has been focused on designing and preparing nanostructures of various shapes and sizes, which exhibit unique properties and potential applications [1]. Considerable advancements have been made in synthesizing
  • semiconductor with many versatile and attractive applications in optical, optoelectronic, and photocatalytic fields [35][36][37]. The doping of ZnO with Mn can lead to the development of multifunctional nanostructures, such as room-temperature ferromagnetic materials with potential applications in spintronics
  • FTIR post-reaction spectra (Supporting Information File 1, Figure S1). Zeta potential measurements revealed values of +17.48 mV and +11.09 mV for SG and MW samples, respectively, suggesting a better adsorption of oxalate ions on the SG sample than on the MW sample. The ability of the photocatalysts to
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2024

Functional morphology of cleaning devices in the damselfly Ischnura elegans (Odonata, Coenagrionidae)

  • Silvana Piersanti,
  • Gianandrea Salerno,
  • Wencke Krings,
  • Stanislav Gorb and
  • Manuela Rebora

Beilstein J. Nanotechnol. 2024, 15, 1260–1272, doi:10.3762/bjnano.15.102

Graphical Abstract
  • microscope after grooming to evaluate the potential presence of pink powder. The images of the eyes before and after grooming in intact and ablated insects were analyzed with the software ImageJ to evaluate the difference in areas contaminated with the powder before and after grooming in intact and ablated
  • increased inertia that counteracts the initially dominant adhesion, effectively dislodging attached pollen and dust. The same authors also developed an elastomeric bioinspired stiffness-gradient catapult and demonstrated its potential in practical applications, thus confirming that studies on the functional
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2024

The role of a tantalum interlayer in enhancing the properties of Fe3O4 thin films

  • Hai Dang Ngo,
  • Vo Doan Thanh Truong,
  • Van Qui Le,
  • Hoai Phuong Pham and
  • Thi Kim Hang Pham

Beilstein J. Nanotechnol. 2024, 15, 1253–1259, doi:10.3762/bjnano.15.101

Graphical Abstract
  • indicates the potential to facilitate the development of novel magnetic and spintronic architectures. Results and Discussion AFM and line-cut method were used to examine the surface morphology and grain sizes of the Fe3O4 films that were formed on SiO2/Si(100), MgO(100), and MgO/Ta/SiO2/Si(100) multilayer
PDF
Album
Full Research Paper
Published 14 Oct 2024

Dual-functionalized architecture enables stable and tumor cell-specific SiO2NPs in complex biological fluids

  • Iris Renata Sousa Ribeiro,
  • Raquel Frenedoso da Silva,
  • Romênia Ramos Domingues,
  • Adriana Franco Paes Leme and
  • Mateus Borba Cardoso

Beilstein J. Nanotechnol. 2024, 15, 1238–1252, doi:10.3762/bjnano.15.100

Graphical Abstract
  • improved colloidal stability [25][26]. Remarkably, functionalized NPs were stable in a complex medium (cell culture medium and human plasma) and showed greater potential for recognition by tumor cells. Material and Methods Materials Tetraethyl orthosilicate (TEOS, 98%), (3-aminopropyl)triethoxysilane
  • sputter-coated with Au using a Bal-Tec SCD050 Sputter Coater. Secondary electrons were collected after backscattering of the Au-coated samples attained by electron beams with a 5 kV acceleration voltage. The particle hydrodynamic diameter and zeta potential were evaluated on a Malvern Zetasizer ZS
  • equipment (Malvern Instruments Ltd., UK – detection angle of 173° and laser wavelength of 633 nm). For DLS measurements, NPs were dispersed in MilliQ water (1.0 mg·mL–1). To determine the zeta potential, the NPs were diluted in 10 Mm of phosphate buffer at a concentration of 1.0 mg·mL–1. All measurements
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2024

Enhanced catalytic reduction through in situ synthesized gold nanoparticles embedded in glucosamine/alginate nanocomposites

  • Chi-Hien Dang,
  • Le-Kim-Thuy Nguyen,
  • Minh-Trong Tran,
  • Van-Dung Le,
  • Nguyen Minh Ty,
  • T. Ngoc Han Pham,
  • Hieu Vu-Quang,
  • Tran Thi Kim Chi,
  • Tran Thi Huong Giang,
  • Nguyen Thi Thanh Tu and
  • Thanh-Danh Nguyen

Beilstein J. Nanotechnol. 2024, 15, 1227–1237, doi:10.3762/bjnano.15.99

Graphical Abstract
  • AuNPs exhibited uniform size with an average diameter of 10.0 nm. The nanocomposites facilitated the recyclable reduction of organic dyes, including 2-nitrophenol, 4-nitrophenol, and methyl orange, employing NaBH4 as the reducing agent. Kinetic studies further underscored the potential of this
  • physicochemical properties and diverse potential chemical applications [1][2][3]. The conventional synthesis of AuNPs typically involves the chemical reduction of Au3+ ions using various reducing agents and stabilizers [4][5]. However, many of these chemicals are highly reactive, posing risks to both the
  • metallic ions onto the nanogel and the subsequent reduction [22][23]. In recent studies, in situ reduction of metal nanoparticles (MNPs) has been explored to enhance synthetic efficiency and streamline procedures by employing disaccharides such as lactose [24][25]. However, the potential of monosaccharides
PDF
Album
Full Research Paper
Published 04 Oct 2024

Realizing active targeting in cancer nanomedicine with ultrasmall nanoparticles

  • André F. Lima,
  • Giselle Z. Justo and
  • Alioscka A. Sousa

Beilstein J. Nanotechnol. 2024, 15, 1208–1226, doi:10.3762/bjnano.15.98

Graphical Abstract
  • demonstrate favorable tumor penetration and intratumoral diffusion. Active targeting strategies, incorporating ligands for specific tumor receptor binding, serve to further enhance usNP tumor selectivity and therapeutic performance. Numerous preclinical studies have already demonstrated the potential of
  • reliance on passive targeting, the more complex designs of targeted NPs, the potential for attached functional ligands to increase phagocytic capture and shorten blood circulation time, and the formation of a protein corona that may block the targeting ligand on the particle surface [15][16][17]. Over the
  • potential for tumor accumulation though passive targeting [76]. Fortunately, strategies to slow down renal clearance and extend the blood half-life of usNPs for more efficient tumor uptake are feasible, including fine-tuning hydrodynamic diameter (HD) through surface chemistry [77], controlling core density
PDF
Album
Review
Published 30 Sep 2024

A low-kiloelectronvolt focused ion beam strategy for processing low-thermal-conductance materials with nanoampere currents

  • Annalena Wolff,
  • Nico Klingner,
  • William Thompson,
  • Yinghong Zhou,
  • Jinying Lin and
  • Yin Xiao

Beilstein J. Nanotechnol. 2024, 15, 1197–1207, doi:10.3762/bjnano.15.97

Graphical Abstract
  • acceleration voltage) on inducing increases in sample temperature and potential heat damage in thermally low conductive materials such as polymers and biological samples. The ion beam-induced heat for different ion beam currents at low acceleration voltages is calculated using Fourier’s law of heat transfer
  • any potential accumulative increase in local temperature. Being able to use a higher ion current in the nanoampere range in comparison with the previously suggested heat-reduced approach (where the beam current was reduced) addresses the issue of increased patterning times and cross sections with
PDF
Album
Full Research Paper
Published 27 Sep 2024

Synthesis, characterization and anticancer effect of doxorubicin-loaded dual stimuli-responsive smart nanopolymers

  • Ömür Acet,
  • Pavel Kirsanov,
  • Burcu Önal Acet,
  • Inessa Halets-Bui,
  • Dzmitry Shcharbin,
  • Şeyda Ceylan Cömert and
  • Mehmet Odabaşı

Beilstein J. Nanotechnol. 2024, 15, 1189–1196, doi:10.3762/bjnano.15.96

Graphical Abstract
  • . Characterizations of the synthesized nanostructures were carried out including zeta potential measurements, Fourier-transform infrared spectroscopy, and scanning electron microscopy. The loading capacity of the nanopolymers for DOX was investigated, and encapsulation and release studies were carried out. In a final
  • , high stability, low toxicity, modifiable hydrophilicity/hydrophobicity, and the possibility of surface functionalization for targeted localization. Polymeric nanoparticles are a versatile approach to drug delivery (DD) with the potential to circumvent barriers associated with negative impacts on
  • are sensitive to two factors, such as pH and temperature, can be engineered to enhance targeting efficacy while minimizing systemic side effects [31][32]. Here, a strategy for the production and application of DOX-SNPs is proposed. FTIR, SEM, and zeta potential measurements were performed to
PDF
Album
Full Research Paper
Published 26 Sep 2024

AI-assisted models to predict chemotherapy drugs modified with C60 fullerene derivatives

  • Jonathan-Siu-Loong Robles-Hernández,
  • Dora Iliana Medina,
  • Katerin Aguirre-Hurtado,
  • Marlene Bosquez,
  • Roberto Salcedo and
  • Alan Miralrio

Beilstein J. Nanotechnol. 2024, 15, 1170–1188, doi:10.3762/bjnano.15.95

Graphical Abstract
  • well. Baglayan and coworkers carried out a conformation analysis within DFT to obtain the ground state structure for C60–COOH [34]. In addition, they discussed its usage as a potential drug carrier for the antimetabolic and anticancer drug 5-fluoruracil [34]. Similarly, Parlak and Alver reported a
  • study the interactions with doxorubicin and gemcitabine [36]. The water-soluble fullerene is introduced to avoid known mutagenic reactions related to breast cancer [36]. It was also studied as a potential carrier for bedaquiline, an agent against tuberculosis [37]. The current study only considered
  • evaluated by computational methods, except for pKa and LogS. Drugs modified with C60 Since this study aims to elucidate the potential use of AI suites, such as Watson, to predict the docking score of pristine and modified chemotherapy drugs, the following paragraphs detail the extension of our datasets and
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2024

Quantum-to-classical modeling of monolayer Ge2Se2 and its application in photovoltaic devices

  • Anup Shrivastava,
  • Shivani Saini,
  • Dolly Kumari,
  • Sanjai Singh and
  • Jost Adam

Beilstein J. Nanotechnol. 2024, 15, 1153–1169, doi:10.3762/bjnano.15.94

Graphical Abstract
  • characteristics of group IV–VI dichalcogenides are yet to be thoroughly investigated. This manuscript reports on monolayer Ge2Se2 (a group IV–VI dichalcogenide), its optoelectronic behavior, and its potential application in photovoltaics. When employed as a hole transport layer, the material fosters an
  • promising and expedient because it has the potential to address the current energy demand without making a hazardous impact on the environment [1][2]. Henceforth, researchers have made continuous efforts to design efficient and robust PV devices and solar cells. The systematic study of various solar cells
  • its application potential in optoelectronic devices. More group IV–VI dichalcogenides have been discussed in [35][36][37][38][39][40] for different applications. Although some inceptive work has been done using monolayers of metal dichalcogenides, there are still plenty of opportunities to explore. In
PDF
Album
Full Research Paper
Published 11 Sep 2024

Introducing third-generation periodic table descriptors for nano-qRASTR modeling of zebrafish toxicity of metal oxide nanoparticles

  • Supratik Kar and
  • Siyun Yang

Beilstein J. Nanotechnol. 2024, 15, 1142–1152, doi:10.3762/bjnano.15.93

Graphical Abstract
  • , it was reported that MONPs have been found in human tissues such as brain, heart, and liver [11] and that occupational exposure to metal oxide nanomaterials increased oxidative stress biomarkers, suggesting potential DNA oxidative damage and lipid peroxidation [12]. Given the limited data available
  • ’ kinetics, migration, and transformation than in vitro cell culture assays [14]. Meanwhile, it is considered an equivalent model for investigating developmental toxicity and genotoxicity because around 85% of its genes are comparable to those found in humans [15]. The potential harm to human health posed by
  • newly created MONPs, particularly those used in biomedical applications, necessitates the implementation of safety-by-design strategies for these materials. The potential to lower development timeframes, costs associated with experiments, and late-stage attrition, in addition to ethical, societal, and
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2024

Photocatalytic methane oxidation over a TiO2/SiNWs p–n junction catalyst at room temperature

  • Qui Thanh Hoai Ta,
  • Luan Minh Nguyen,
  • Ngoc Hoi Nguyen,
  • Phan Khanh Thinh Nguyen and
  • Dai Hai Nguyen

Beilstein J. Nanotechnol. 2024, 15, 1132–1141, doi:10.3762/bjnano.15.92

Graphical Abstract
  • industrial chemicals and energy. However, CH4 is a major precursor for tropospheric ozone, causing severe air pollution. Because of its rising atmospheric concentration, CH4 poses a global warming potential approximately thirty fold larger than that of carbon dioxide (CO2) [1][2][3]. Therefore, it is a
  • valuable products such as formaldehyde (HCHO), methanol (CH3OH), and other value-added oxygenates, which serve as essential precursors in various manufacturing and production processes [18][19]. The n-type semiconductor titanium dioxide (TiO2) has been discovered as a potential photocatalyst material
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2024

Local work function on graphene nanoribbons

  • Daniel Rothhardt,
  • Amina Kimouche,
  • Tillmann Klamroth and
  • Regina Hoffmann-Vogel

Beilstein J. Nanotechnol. 2024, 15, 1125–1131, doi:10.3762/bjnano.15.91

Graphical Abstract
  • exotic nature of the charge carriers and to local confinement as well as atomic-scale structural details. The local work function provides evidence for such structural, electronic, and chemical variations at surfaces. Kelvin prove force microscopy can be used to measure the local contact potential
  • nanoribbons; Kelvin probe force microscopy; local contact potential difference; Introduction Graphene’s electronic properties are determined by its two-dimensionality as well as by its semimetallic gapless conical band structure [1]. Its electronic behavior depends strongly on the location of the Fermi level
  • is, by the local electrochemical potential. GNRs show strong electrostatic effects at their edges [11], where electrostatic forces occur that we expect to modulate the electrons’ local electrochemical potential. Additionally, the chemical state of GNR edges allows one to substantially tune the
PDF
Album
Supp Info
Letter
Published 29 Aug 2024

Recent updates in applications of nanomedicine for the treatment of hepatic fibrosis

  • Damai Ria Setyawati,
  • Fransiska Christydira Sekaringtyas,
  • Riyona Desvy Pratiwi,
  • A’liyatur Rosyidah,
  • Rohimmahtunnissa Azhar,
  • Nunik Gustini,
  • Gita Syahputra,
  • Idah Rosidah,
  • Etik Mardliyati,
  • Tarwadi and
  • Sjaikhurrizal El Muttaqien

Beilstein J. Nanotechnol. 2024, 15, 1105–1116, doi:10.3762/bjnano.15.89

Graphical Abstract
  • as an absorption enhancer [51]. The therapeutic potential of curcumin using nanoformulations was reviewed by several researchers, summarizing recent curcumin encapsulation works on various NP platforms (liposomes, solid lipid NPs, micelles, and polymeric NPs) [52][53]. For example, polymeric
  • -delivering antifibrosis substances by increasing the number of drugs crossing through HSECs and, subsequently, improving the therapeutic outcomes. Despite the significant recognition for treating liver fibrosis, the potency of inorganic NPs may be limited by their non-biodegradability and potential toxicity
  • , siCol1α1 and siTIMP-1 siRNAs were used to inhibit collagen synthesis and to promote collagen degradation, respectively. The spherical lipid NPs with a mean particle size of 140 ± 0.12 nm and negative zeta potential (−12.9 mV) were constructed from amphiphilic cationic hyperbranched lipoids for siRNA
PDF
Album
Review
Published 23 Aug 2024

Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications

  • Shakhzodjon Uzokboev,
  • Khojimukhammad Akhmadbekov,
  • Ra’no Nuritdinova,
  • Salah M. Tawfik and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2024, 15, 1077–1104, doi:10.3762/bjnano.15.88

Graphical Abstract
  • , biocompatibility, biodegradability, and water solubility of alginate have expanded opportunities in material and biomedical sciences. Recently, research on alginate-based nanoparticles and their applications has begun. These materials are gaining popularity because of their wide usage potential in the biomedical
  • because traditional drug delivery methods often result in suboptimal drug concentrations at the target site, leading to inadequate treatment outcomes or unnecessary side effects. One of the key implications of drug delivery is its potential to enhance the effectiveness and safety of drug therapies. For
  • potential risks or complications [42]. Recently, researchers and medical organizations have begun using low-cost biosensors to monitor food and water toxins, human biological processes, accurate health diagnostics, and for other applications [43]. Biosensor-based technologies are essential to assess samples
PDF
Album
Review
Published 22 Aug 2024
Other Beilstein-Institut Open Science Activities