Search results

Search for "surface energy" in Full Text gives 228 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

A single-source precursor route to anisotropic halogen-doped zinc oxide particles as a promising candidate for new transparent conducting oxide materials

  • Daniela Lehr,
  • Markus R. Wagner,
  • Johanna Flock,
  • Julian S. Reparaz,
  • Clivia M. Sotomayor Torres,
  • Alexander Klaiber,
  • Thomas Dekorsy and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2015, 6, 2161–2172, doi:10.3762/bjnano.6.222

Graphical Abstract
  • corresponding to lattice planes with a,b components will be decreased. The latter will raise the surface energy and also the apposition rate of ZnO species on the surfaces [68]. As a result main growth takes places perpendicular to a,b (Figure 3d). The hypothesis that the presence of Cl also influences the
PDF
Album
Supp Info
Correction
Full Research Paper
Published 18 Nov 2015

Nanostructured superhydrophobic films synthesized by electrodeposition of fluorinated polyindoles

  • Gabriela Ramos Chagas,
  • Thierry Darmanin and
  • Frédéric Guittard

Beilstein J. Nanotechnol. 2015, 6, 2078–2087, doi:10.3762/bjnano.6.212

Graphical Abstract
  • oleophobic properties are obtained due to the presence of spherical nanoparticles and low surface energy compounds. Keywords: bioinspiration; conducting polymers; electrochemistry; nanostructures; polyindoles; superhydrophobic; Introduction The number of studies about materials with superhydrophobic
  • , in both animals and plants, and allow them surviving against predators or hostile environments such as extremely humid or dry regions, for example [7][8][9][10][11][12]. Bioinspiration has shown the importance of developing structured surfaces in the presence of low surface energy materials that
  • allow one to obtain more easily superhydrophobic properties with higher robustness [13][14][15]. Controlling the surface energy and the roughness is hence fundamental to achieve the superhydrophobicity. All kind of materials can be used to reach superhydrophobicity, but conducting polymers have many
PDF
Album
Full Research Paper
Published 28 Oct 2015

Two-phase equilibrium states in individual Cu–Ni nanoparticles: size, depletion and hysteresis effects

  • Aram S. Shirinyan

Beilstein J. Nanotechnol. 2015, 6, 1811–1820, doi:10.3762/bjnano.6.185

Graphical Abstract
  • total number of atoms N0 and the surface area can be defined as: for phase 1 case – for phase 2 case – for solution model – Here the f1, f2 and f are shape factors and the value f/N01/3 represents the well-known surface-to-volume ratio; σ1(X,T) and σ2(X,T) are surface energy functions of phase 1 and
  • phase 2, respectively. As one can see in Equations 3–5 to the origin of size effect belong the finite volume or number of atoms, the surface area and surface energy. One may observe also that the Gibbs free energy density in a nanoscale system is increased by the surface energy input. If the nanophase 2
  • for different systems (mainly for pure metals and polymorphic transitions when bulk bcc structures transform to fcc or hcp types in a nanoscale) [23][24]. Figure 1 shows three qualitative situations concerning the effects of size and composition dependence of the surface energy on the first-order
PDF
Album
Full Research Paper
Published 28 Aug 2015

The Kirkendall effect and nanoscience: hollow nanospheres and nanotubes

  • Abdel-Aziz El Mel,
  • Ryusuke Nakamura and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2015, 6, 1348–1361, doi:10.3762/bjnano.6.139

Graphical Abstract
  • is higher than the surface energy of a single large void, during the conversion process, multiple small voids tend to agglomerate and form a single large void to minimize the surface energy [32]. Until today, the explanation of such asymmetrical conversion mechanism is still under discussion. In
PDF
Album
Review
Published 18 Jun 2015

Growth and morphological analysis of segmented AuAg alloy nanowires created by pulsed electrodeposition in ion-track etched membranes

  • Ina Schubert,
  • Loic Burr,
  • Christina Trautmann and
  • Maria Eugenia Toimil-Molares

Beilstein J. Nanotechnol. 2015, 6, 1272–1280, doi:10.3762/bjnano.6.131

Graphical Abstract
  • segments, could be removed. The ends of the Au-rich segments are rounded compared to the unheated segments and the gap sizes are in most of the cases increased. Rounding of the nanowire ends and removal of small bridges can be explained by surface diffusions of the atoms and the lower surface energy of
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2015

Surface excitations in the modelling of electron transport for electron-beam-induced deposition experiments

  • Francesc Salvat-Pujol,
  • Roser Valentí and
  • Wolfgang S. Werner

Beilstein J. Nanotechnol. 2015, 6, 1260–1267, doi:10.3762/bjnano.6.129

Graphical Abstract
  • features and trends of the surface excitation probability: Surface energy losses can be undergone by the charged projectile on either side of the interface, at the solid side or at the vacuum side. Indeed, a surface charge can be induced regardless of the side at which the projectile is moving on and, thus
  • emerging direction. This effect, known as in-out asymmetry in surface energy-losses, has been long predicted but only recently observed experimentally [46]. In-out differences are most accentuated for surface-crossing directions close to the surface normal and for high kinetic energies (about 1 keV). Monte
  • implies a modification of the sampling algorithm in the vicinity of the surface (typically 15 Å above and below the surface), as schematically shown in Figure 1. Technical details on the implementation of the algorithm for the simulation of surface energy losses can be found elsewhere in great detail [30
PDF
Album
Review
Published 03 Jun 2015

From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

  • Philipp Adelhelm,
  • Pascal Hartmann,
  • Conrad L. Bender,
  • Martin Busche,
  • Christine Eufinger and
  • Juergen Janek

Beilstein J. Nanotechnol. 2015, 6, 1016–1055, doi:10.3762/bjnano.6.105

Graphical Abstract
PDF
Album
Review
Published 23 Apr 2015

Characterization of nanostructured ZnO thin films deposited through vacuum evaporation

  • Jose Alberto Alvarado,
  • Arturo Maldonado,
  • Héctor Juarez,
  • Mauricio Pacio and
  • Rene Perez

Beilstein J. Nanotechnol. 2015, 6, 971–975, doi:10.3762/bjnano.6.100

Graphical Abstract
  • decomposed into two or three smaller particles that migrate to the substrate. When this particle reaches the substrate, it lacks surface energy to be deposited firmly and has a C-axis orientation growth. However, when the surface energy is activated from an external source, it gives the system a rapid
PDF
Album
Full Research Paper
Published 16 Apr 2015

Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition

  • Brett B. Lewis,
  • Michael G. Stanford,
  • Jason D. Fowlkes,
  • Kevin Lester,
  • Harald Plank and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2015, 6, 907–918, doi:10.3762/bjnano.6.94

Graphical Abstract
  • concentration is believed to be localized near the Pt–PtCx interface due to limited diffusion and trapping at Pt nanoparticles and the purification front, we compare in Figure 4c the normalized purification rate (normalized to 5 keV and adjusted for different currents) from Figure 4a and the near surface energy
PDF
Album
Full Research Paper
Published 08 Apr 2015

Structure and mechanism of the formation of core–shell nanoparticles obtained through a one-step gas-phase synthesis by electron beam evaporation

  • Andrey V. Nomoev,
  • Sergey P. Bardakhanov,
  • Makoto Schreiber,
  • Dashima G. Bazarova,
  • Nikolai A. Romanov,
  • Boris B. Baldanov,
  • Bair R. Radnaev and
  • Viacheslav V. Syzrantsev

Beilstein J. Nanotechnol. 2015, 6, 874–880, doi:10.3762/bjnano.6.89

Graphical Abstract
  • upper layer is essentially parallel to the bottom plane. It is known that the minimal value of the crystal formation and surface energy is obtained when a crystal plane grows on a substrate of the same crystal structure. As the crystal structure of both of Cu and Cu2O are cubic and the moiré patterns
  • a drive to decrease the surface energy of the system or differences in the atomic sizes of the component materials. In the case of the Cu–Si system, the difference in covalent radius between Cu (132 pm) and Si (111 pm) is insignificant and thus size effects are not considered relevant for this
  • surface tension with temperature [14]. The empirical dependence of the surface tension of copper with temperature is [15]. The surface tension of silicon varies as [16]. Below the melting point, when the materials are solid, the surface energy is the solid equivalent of the surface tension. The surface
PDF
Album
Supp Info
Full Research Paper
Published 31 Mar 2015

Protein corona – from molecular adsorption to physiological complexity

  • Lennart Treuel,
  • Dominic Docter,
  • Michael Maskos and
  • Roland H. Stauber

Beilstein J. Nanotechnol. 2015, 6, 857–873, doi:10.3762/bjnano.6.88

Graphical Abstract
  • NP. The effect of changing surface energy or surface restructuring is well-known from the field of catalysis [17][18][19][20][21] but its implications for the biological behavior of NPs remains somewhat elusive. We note that the macromolecular nature of the proteins constituting the corona requires a
PDF
Album
Review
Published 30 Mar 2015

Capillary and van der Waals interactions on CaF2 crystals from amplitude modulation AFM force reconstruction profiles under ambient conditions

  • Annalisa Calò,
  • Oriol Vidal Robles,
  • Sergio Santos and
  • Albert Verdaguer

Beilstein J. Nanotechnol. 2015, 6, 809–819, doi:10.3762/bjnano.6.84

Graphical Abstract
  • long range force corresponding to the capillary interaction FCAP. FCAP is written as: where γ is the surface energy and X is the average contact coefficient [3][14]. Equations 7, 8 and 9 have also been included. The resulting force profile is shown in Figure 3b. For distances d < don hysteresis has
PDF
Album
Supp Info
Full Research Paper
Published 25 Mar 2015

In situ observation of biotite (001) surface dissolution at pH 1 and 9.5 by advanced optical microscopy

  • Chiara Cappelli,
  • Daniel Lamarca-Irisarri,
  • Jordi Camas,
  • F. Javier Huertas and
  • Alexander E. S. Van Driessche

Beilstein J. Nanotechnol. 2015, 6, 665–673, doi:10.3762/bjnano.6.67

Graphical Abstract
  • the existence of a surface energy distribution. In agreement with the above consideration the variability of biotite reactivity is an intrinsic factor of its crystalline anisotropy, i.e., surface energy variance, and thermodynamic parameters, such as activation energy, are not representative of the
PDF
Album
Full Research Paper
Published 05 Mar 2015

Entropy effects in the collective dynamic behavior of alkyl monolayers tethered to Si(111)

  • Christian Godet

Beilstein J. Nanotechnol. 2015, 6, 583–594, doi:10.3762/bjnano.6.60

Graphical Abstract
  • surface chemistry, surface energy, biocompatibility, friction, corrosion, liquid chromatography, interfacial interactions and electronic transport [1][2][3][4][5][6]. More recent studies have been focused on the functionalization of nanostructures. However, in spite of a large number of experimental and
PDF
Album
Full Research Paper
Published 26 Feb 2015

Dynamic force microscopy simulator (dForce): A tool for planning and understanding tapping and bimodal AFM experiments

  • Horacio V. Guzman,
  • Pablo D. Garcia and
  • Ricardo Garcia

Beilstein J. Nanotechnol. 2015, 6, 369–379, doi:10.3762/bjnano.6.36

Graphical Abstract
  • stiff and small contacts with low adhesion forces. The DMT model [47] considers an elastic term given by Hertz contact mechanics as and an adhesion force that acts outside the contact area given by where γ is the sample surface energy. Johnson–Kendall–Roberts contact mechanics (JKR) The JKR model is
PDF
Album
Full Research Paper
Published 04 Feb 2015

Nanoparticle shapes by using Wulff constructions and first-principles calculations

  • Georgios D. Barmparis,
  • Zbigniew Lodziana,
  • Nuria Lopez and
  • Ioannis N. Remediakis

Beilstein J. Nanotechnol. 2015, 6, 361–368, doi:10.3762/bjnano.6.35

Graphical Abstract
  • Substances”, J. Willard Gibbs concluded that a given quantity of matter will attain a shape such that the total surface energy is minimal [7]. For perfect crystalline solids, atomic planes are members of a countable set characterized by integer Miller indexes (hkl). The shape of a crystalline solid will
  • therefore be a polyhedron for which only faces parallel to (hkl) planes are allowed. It is only reasonable to assume that faces with a relatively low surface energy will dominate the equilibrium shape. Several decades later, mineralogist Georg Wulff suggested [8] that the polyhedron that corresponds to the
  • lowest surface energy of a crystalline substance can be constructed in the following way (the so-called Wulff construction): One chooses a constant c, and a Cartesian set of axes. Starting from the origin, O, one draws a plane that is normal to the [hkl] vector and has a distance dhkl = c·γhkl from O
PDF
Album
Review
Published 03 Feb 2015

Strain distribution due to surface domains: a self-consistent approach with respect to surface elasticity

  • Javier Fuhr and
  • Pierre Müller

Beilstein J. Nanotechnol. 2015, 6, 321–326, doi:10.3762/bjnano.6.30

Graphical Abstract
  • volume V0 but without any surface. In these expressions are the bulk stress components and Cijkl the bulk elastic constant. The so-defined surface quantities depend on a typical length scale at which surface effects are disentangled from bulk effects. Actually, in surface energy calculations, this
  • length is unambiguoulsy determined by a Gibbs dividing surface construction [14]. Surface stress and surface elastic constants values can thus be calculated from strain derivatives of the well-defined surface energy quantity [11]. In contrast to surface energy density and bulk elastic constants, surface
PDF
Album
Full Research Paper
Published 29 Jan 2015

Oxygen-plasma-modified biomimetic nanofibrous scaffolds for enhanced compatibility of cardiovascular implants

  • Anna Maria Pappa,
  • Varvara Karagkiozaki,
  • Silke Krol,
  • Spyros Kassavetis,
  • Dimitris Konstantinou,
  • Charalampos Pitsalidis,
  • Lazaros Tzounis,
  • Nikos Pliatsikas and
  • Stergios Logothetidis

Beilstein J. Nanotechnol. 2015, 6, 254–262, doi:10.3762/bjnano.6.24

Graphical Abstract
  • functional groups are created. This leads to an increase in the polarity and the surface energy, resulting in a roughened topography. Higher plasma power (P = 40 W) significantly decreased Ra resulting into smoother nanofibrous surfaces compared to the untreated samples, due to the partial polymer melting
  • highly porous structures. Thus, in our case, contact angle measurements are not a reliable technique to gain results concerning the wettability and the surface energy of each system independently [28]. In order to determine the chemical composition of the O2-plasma-treated samples as well as the chemical
  • approach, to introduce oxygen-containing groups onto the surface of a polymer. This leads to an increase in the surface energy of the treated material and therefore enhances its hydrophilic behavior. During this process, the chemical alterations that are induced as a result of the radical reactions between
PDF
Album
Full Research Paper
Published 22 Jan 2015

Morphology, structural properties and reducibility of size-selected CeO2−x nanoparticle films

  • Maria Chiara Spadaro,
  • Sergio D’Addato,
  • Gabriele Gasperi,
  • Francesco Benedetti,
  • Paola Luches,
  • Vincenzo Grillo,
  • Giovanni Bertoni and
  • Sergio Valeri

Beilstein J. Nanotechnol. 2015, 6, 60–67, doi:10.3762/bjnano.6.7

Graphical Abstract
  • the sample exhibit single crystalline structure (cubic CeO2, space group 225, Fm−3m), exposing frequently {111}, {220} and {100} facets, as evidenced in Figure 3a and Figure 3b. The (111) surface is indeed the most stable for cerium dioxide [1] and the (220) has the next lowest surface energy; at
PDF
Album
Full Research Paper
Published 07 Jan 2015

The capillary adhesion technique: a versatile method for determining the liquid adhesion force and sample stiffness

  • Daniel Gandyra,
  • Stefan Walheim,
  • Stanislav Gorb,
  • Wilhelm Barthlott and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2015, 6, 11–18, doi:10.3762/bjnano.6.2

Graphical Abstract
  • ]. Furthermore, the normal force of capillary bridges between solid objects was investigated [19]. Here, we create a meniscus from a flat, water surface until rupture occurs in order to determine the adhesion force using a simple energetic approach: the first derivative of the added surface energy of the
  • is required, which consists of the surface energy of the meniscus plus the interface energy of the tip–water contact area minus the surface energy of the original flat air–water interface before formation of the capillary contact. Here, σ = 0.07275 N/m [25] is the surface tension of the liquid (here
PDF
Album
Video
Full Research Paper
Published 02 Jan 2015

Aquatic versus terrestrial attachment: Water makes a difference

  • Petra Ditsche and
  • Adam P. Summers

Beilstein J. Nanotechnol. 2014, 5, 2424–2439, doi:10.3762/bjnano.5.252

Graphical Abstract
  • surface texture, from smooth to very rough and smooth to hairy or covered with waxes [18][19]. Also the surface energy and with it the wettability of surfaces as well as the elasticity of the substrates are important properties, which can influence attachment [17]. Another important point needs to be
  • Table 4 and Table 5. Very large attachment forces are generated by glue adhesion and suction. However, as the given values have been determined under very different conditions (substrates of different material, surface energy, roughness and elasticity; different measurement methods) the values are hard
  • friction will depend on properties of the secretion, such as surface energy and viscosity. Some monolayer films separating two surfaces can also decrease friction dramatically when the surfaces are immersed under water [60]. Under certain conditions such as an insect stepping into a water drop or a water
PDF
Album
Review
Published 17 Dec 2014

Si/Ge intermixing during Ge Stranski–Krastanov growth

  • Alain Portavoce,
  • Khalid Hoummada,
  • Antoine Ronda,
  • Dominique Mangelinck and
  • Isabelle Berbezier

Beilstein J. Nanotechnol. 2014, 5, 2374–2382, doi:10.3762/bjnano.5.246

Graphical Abstract
  • minimization of the surface energy, the strain energy, the alloy mixing energy and the configurational entropy [22]. In the case of a pure Ge dome island (no intermixing with Si), the stress was shown to be compressive in the interior of the island, and tensile at the edges of the island [34]. Thus, in the
  • case of island formation close to equilibrium, the Si-rich core is attributed to the compressive conditions prevailing in the island core, and the Ge-rich outer shell is attributed to the lower surface energy of Ge and the tensile conditions prevailing at the island edges. From a kinetic point of view
PDF
Album
Full Research Paper
Published 09 Dec 2014

Liquid-phase exfoliated graphene: functionalization, characterization, and applications

  • Mildred Quintana,
  • Jesús Iván Tapia and
  • Maurizio Prato

Beilstein J. Nanotechnol. 2014, 5, 2328–2338, doi:10.3762/bjnano.5.242

Graphical Abstract
  • at exfoliating graphite only if the net energetic cost of the process is very small. The enthalpy of mixing depends on the affinity between graphene layers and solvent molecules. Then, in order to obtain high yields of exfoliated graphite, the surface energy of the solvent must compete with the
  • surface energy of graphite (≈70–80 mJ∙m−2). This relatively high surface energy results in solvents with high boiling points and high surface tensions, for example, N,N-dimethylformamide (DMF) and N-methyl-1,2-pyrrolidone (NMP), which are well-known as good dispersing solvents for carbon nanostructures
PDF
Album
Review
Published 04 Dec 2014

Hybrid spin-crossover nanostructures

  • Carlos M. Quintero,
  • Gautier Félix,
  • Iurii Suleimanov,
  • José Sánchez Costa,
  • Gábor Molnár,
  • Lionel Salmon,
  • William Nicolazzi and
  • Azzedine Bousseksou

Beilstein J. Nanotechnol. 2014, 5, 2230–2239, doi:10.3762/bjnano.5.232

Graphical Abstract
  • ratio. The modulation of the spin-crossover behavior in nanoparticles can be realized by modification of the surface energy terms in the HS and LS states. This energy depends on two different parameters: the energy per surface, γ, and the area of the particle, A. The energy per surface term depends on
PDF
Album
Review
Published 25 Nov 2014

Nanometer-resolved mechanical properties around GaN crystal surface steps

  • Jörg Buchwald,
  • Marina Sarmanova,
  • Bernd Rauschenbach and
  • Stefan G. Mayr

Beilstein J. Nanotechnol. 2014, 5, 2164–2170, doi:10.3762/bjnano.5.225

Graphical Abstract
  • edge. This fact can be expressed by considering the surface stress, which is the variation of the total surface energy as a function of the strain, ε: where A0 is the surface area before deformation and γ the surface energy. Therefore, the local stresses σij(yp) which are acting on the boundaries of dV
PDF
Album
Supp Info
Full Research Paper
Published 19 Nov 2014
Other Beilstein-Institut Open Science Activities