Search results

Search for "substrate" in Full Text gives 1377 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • semiconductor as well as the redox levels of the substrate [11][21]. One of the main barriers preventing photocatalysis from being used in practical applications is the lack of suitable semiconductor photocatalysts. The commonly used nanometre-sized photocatalysts are metal oxides or sulfides (binary compounds
PDF
Album
Review
Published 03 Mar 2023

Biocatalytic synthesis and ordered self-assembly of silica nanoparticles via a silica-binding peptide

  • Mustafa Gungormus

Beilstein J. Nanotechnol. 2023, 14, 280–290, doi:10.3762/bjnano.14.25

Graphical Abstract
  • combination with NH3. The reaction kinetics were monitored via measuring the optical density (OD) with UV–vis spectroscopy and the conversion of substrate via gas chromatography coupled with mass spectroscopy (GC–MS). Size and net surface charge distribution of the particles were determined with dynamic light
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2023

Recent progress in cancer cell membrane-based nanoparticles for biomedical applications

  • Qixiong Lin,
  • Yueyou Peng,
  • Yanyan Wen,
  • Xiaoqiong Li,
  • Donglian Du,
  • Weibin Dai,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2023, 14, 262–279, doi:10.3762/bjnano.14.24

Graphical Abstract
  • incorporated surface-modified PD-L1 inhibitory peptide and MMP2 substrate peptide [54]. Manganese oxide (MnO2)-based NPs function as MRI imaging agents and can also utilize Fenton-like reactions to deplete GSH and generate •OH to mediate tumor cell death [123]. In the work of Fu et al., a hollow MnO2 NP-based
PDF
Album
Review
Published 27 Feb 2023

A novel approach to pulsed laser deposition of platinum catalyst on carbon particles for use in polymer electrolyte membrane fuel cells

  • Bogusław Budner,
  • Wojciech Tokarz,
  • Sławomir Dyjak,
  • Andrzej Czerwiński,
  • Bartosz Bartosewicz and
  • Bartłomiej Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 190–204, doi:10.3762/bjnano.14.19

Graphical Abstract
  • carbon substrate and the chemical synthesis of PtNPs during catalyst fabrication. Platinum was deposited on carbon particles at room temperature using a pulsed laser deposition (PLD) system equipped with an ArF excimer laser (λ = 193 nm). The uniform deposition of PtNPs on carbon supports was achieved
  • from the platinum target to eliminate the chemical functionalization of the carbon substrate and the chemical synthesis of PtNPs. The Pt catalyst was deposited on synthesized highly graphitized carbon particles and XC-72R commercial carbon support using PLD with a specially designed electromechanical
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2023

High–low Kelvin probe force spectroscopy for measuring the interface state density

  • Ryo Izumi,
  • Masato Miyazaki,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2023, 14, 175–189, doi:10.3762/bjnano.14.18

Graphical Abstract
  • interface state density in the semiconductor bandgap. We also demonstrate using a pn-patterned silicon substrate that the interface state density can be measured. Theory To understand the principle of the high–low KPFS proposed in this study, we discuss the electrostatic forces acting between the tip and
  • (Figure 1a). No oxide film on the semiconductor surface is assumed, and to simplify the discussion, the CPD between the tip and the semiconductor substrate is assumed to be zero. To investigate the electrostatic force acting between the tip and the semiconductor surface, we use the theoretical model
  • potential), the lifetime has been reported to be less than 5 × 10−6 s. These results indicate that the cutoff frequency fc of carrier transport between the interface and bulk states for a Si substrate with a low carrier density is approximately 200 kHz. Therefore, when an AC bias voltage with a frequency
PDF
Album
Full Research Paper
Published 31 Jan 2023

Formation of nanoflowers: Au and Ni silicide cores surrounded by SiOx branches

  • Feitao Li,
  • Siyao Wan,
  • Dong Wang and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2023, 14, 133–140, doi:10.3762/bjnano.14.14

Graphical Abstract
  • substrate at higher temperatures in oxygen-deficient environment [3][4]. Another cost-effective nanofabrication method, thin film dewetting, driven by the reduction of the surface energy and the interface energy has also been profusely studied because it provides a straightforward and fast way to produce
  • forming gas (mixture of Ar and H2), scattered spots (Supporting Information File 1, Figure S1) can be found on the surface. The enlarged insets present the circular feature of those spots and their height distributions indicate that circular areas are below the substrate surface. Hence, they will be
  • (Supporting Information File 1, Figure S2). A similar concentration of O and Si corresponding to the substrate agrees well with Figure 1e. However, a much higher O concentration than that of Si corresponding to the branch part proves the possibility of SiOx branches again. Also, both Au and Ni show negligible
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2023

Characterisation of a micrometer-scale active plasmonic element by means of complementary computational and experimental methods

  • Ciarán Barron,
  • Giulia Di Fazio,
  • Samuel Kenny,
  • Silas O’Toole,
  • Robin O’Reilly and
  • Dominic Zerulla

Beilstein J. Nanotechnol. 2023, 14, 110–122, doi:10.3762/bjnano.14.12

Graphical Abstract
  • on a sapphire substrate via physical vapour deposition (PVD). After this, two separate AFMs are used to machine channels in the silver film to create the desired constriction, which in this case measures 10 μm. The tip of the AFM is held at a set loading force in contact with the thin metal film and
  • deposition substrate for a thin silver film of 48 nm. The incident angles were referenced to the air–prism interface. The sinusoidal current was generated using a function generator with a current buffer to ensure impedance matching to the system under investigation. A transimpedance-amplified photodiode
  • the scan. The substrate used to generate the SPR response is sapphire with a refractive index of n = 1.7717 at λ = 561 nm. SJEM experiment To further characterise the active plasmonic element, in complement with the SPR curve measurements above, the thermal distribution due to Joule heating of the
PDF
Album
Full Research Paper
Published 16 Jan 2023

Antimicrobial and mechanical properties of functionalized textile by nanoarchitectured photoinduced Ag@polymer coating

  • Jessica Plé,
  • Marine Dabert,
  • Helene Lecoq,
  • Sophie Hellé,
  • Lydie Ploux and
  • Lavinia Balan

Beilstein J. Nanotechnol. 2023, 14, 95–109, doi:10.3762/bjnano.14.11

Graphical Abstract
  • ] synthesized AgNPs on cotton fabrics using laser ablation, while Ahmad et al. [31] deposited AgNPs by the dip and dry method based on surface reduction reactions. However, the difference in expansion coefficients of the given metal layer and substrate can lead to surface defects under strain (cracks, loss of
  • [41]. The polymer coating adapts to various textile shapes, improves the adhesion between the MNPs and the substrate by compensating internal stresses and maintains the antimicrobial properties of the NPs. As the nanoparticles are embedded inside the polymer matrix, they are protected from external
  • been carried out on the coating of unaltered textile substrates with hybrid MNP-polymer films for antimicrobial applications. In a previous work [47][48], we presented an innovative one-pot, one-step photoinduced synthesis to generate silver and gold-polymer nanofilms on a glass substrate. The kinetic
PDF
Album
Full Research Paper
Published 12 Jan 2023

Combining physical vapor deposition structuration with dealloying for the creation of a highly efficient SERS platform

  • Adrien Chauvin,
  • Walter Puglisi,
  • Damien Thiry,
  • Cristina Satriano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 83–94, doi:10.3762/bjnano.14.10

Graphical Abstract
  • resulting signal intensity tends to strongly vary due to surface contamination [30]. In this paper, a simple synthesis method to design bimodal porous silver substrate for SERS is reported. Magnetron co-sputtering of a silver and aluminum target was used for the deposition of the precursor alloy thin film
  • growth of Ag–Al crystallites in a truncated octahedron shape at low temperatures (below 170 °C) [32][33]. Due to the rather short distance between the substrate and the target (i.e., 10 cm), particles have greater mobility, resulting in the growth of crystalline structures [34]. This induces the faceting
  • of the crystallite and promotes growth in a hexagonal shape. The dispersed column structure can be the consequence of the hexagonal growth and substrate rotation during deposition. Due to the specific geometry of our setup (i.e., the angle between the normal of the substrate and the targets is 30
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2023

Liquid phase exfoliation of talc: effect of the medium on flake size and shape

  • Samuel M. Sousa,
  • Helane L. O. Morais,
  • Joyce C. C. Santos,
  • Ana Paula M. Barboza,
  • Bernardo R. A. Neves,
  • Elisângela S. Pinto and
  • Mariana C. Prado

Beilstein J. Nanotechnol. 2023, 14, 68–78, doi:10.3762/bjnano.14.8

Graphical Abstract
  • substrate appears in black to dark blue. Following previous works, we consider flakes with ten or less layers as “few-layer” [25]. Since talc has a layer thickness of approximately 1 nm [12], we did not convert the height to the number of layers as it is a direct conversion. Few-layer flakes appear in light
  • et al. [24] and Santos and co-workers [25]. In short, a solution (1:40) of APTES in DI water was prepared. Si/SiOx substrates were immersed in the solution for 15 min. Subsequently, each substrate was rinsed with DI water and blown dry with pure N2 five times to ensure the removal of any residual
  • APTES molecules. This step is crucial to ensure that talc flakes of all sizes adhere to the substrate and do not stack. Talc deposition is achieved employing spread coating of the solution onto the functionalized substrate. A drop that covers all the substrate is deposited on the surface and allowed to
PDF
Album
Full Research Paper
Published 09 Jan 2023

Gap-directed chemical lift-off lithographic nanoarchitectonics for arbitrary sub-micrometer patterning

  • Chang-Ming Wang,
  • Hong-Sheng Chan,
  • Chia-Li Liao,
  • Che-Wei Chang and
  • Wei-Ssu Liao

Beilstein J. Nanotechnol. 2023, 14, 34–44, doi:10.3762/bjnano.14.4

Graphical Abstract
  • modulating stamp properties for micrometer-scale features [27]. utilizing different assembled and backfilled species [28][29]. and further substrate processing, e.g., pattern transfer to the underlying material layer [30][31][32][33][34][35][36]. In practice, CLL allows simple and facile fabrication of
  • stamp and the substrate, and are viewed as nuisances that hinder technique resolution and reproducibility [37][38][39][40][41][42]. Careful treatments on stamp feature design and aspect ratio tuning are therefore necessary to achieve desirable patterning results. Although this problematic issue may
  • cause lithographic limitation, the structural gaps generated at the stamp–substrate interface during the contacting stage can provide another opportunity to create minute geometries. For example, nanochannels with height on the order of 10 nm and millimeters in length can be created when a nanowire is
PDF
Album
Full Research Paper
Published 04 Jan 2023

The influence of structure and local structural defects on the magnetic properties of cobalt nanofilms

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Olesya Severyukhina and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2023, 14, 23–33, doi:10.3762/bjnano.14.3

Graphical Abstract
  • that are influenced and corrected in the manufacturing process). The previously conducted studies considered the influence of sample parameters (e.g., temperature of the substrate on which the magnetron sputtering of nanofilms takes place, the intensity and deposition direction) on the final properties
  • additional processing means, such as mechanical alignment and intensive substrate cooling. The stage of experimental studies of the sample structure is necessary to identify the real structure of the nanocomposite and to compare the data with previously obtained simulation results. This current work is aimed
  • horizontal layers, is shown in Figure 2. The legend to the figure provides information about the temperature of the substrate on which nanofilms were deposited in the numerical experiments. Niobium is known as one of the most actively used superconductors [46][47] with a superconducting transition
PDF
Album
Full Research Paper
Published 04 Jan 2023

Electrical and optical enhancement of ITO/Mo bilayer thin films via laser annealing

  • Abdelbaki Hacini,
  • Ahmad Hadi Ali,
  • Nurul Nadia Adnan and
  • Nafarizal Nayan

Beilstein J. Nanotechnol. 2022, 13, 1589–1595, doi:10.3762/bjnano.13.133

Graphical Abstract
  • adherence to the substrate, very high thermal stability (up to 600 °C), and high electrical conductivity [14]. Over the last decades, the development of solar cells has grown dramatically. The cells have become larger, thinner, and lighter. This increases the electrical resistivity, which is undesirable
  • by many factors, such as the type of substrate [15], the deposition technique [16][17][18], the deposition conditions [19][20][21][22], and the annealing treatment [23]. Among these factors, heat treatment is a significant factor in rearranging the nanostructure, removing defects, and improving the
PDF
Album
Full Research Paper
Published 28 Dec 2022

Observation of collective excitation of surface plasmon resonances in large Josephson junction arrays

  • Roger Cattaneo,
  • Mikhail A. Galin and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2022, 13, 1578–1588, doi:10.3762/bjnano.13.132

Graphical Abstract
  • formation of standing waves at the electrode/substrate interface. We observe that resonant steps in the current–voltage characteristics appear above some threshold number of junctions, Nth ≈ 100, and then progressively enhance in amplitude with further increment of the number of junctions in the resistive
  • profound step structure in the current–voltage (I–V) characteristics. The resonances are caused by the formation of surface plasmon-type standing waves at the electrode–substrate interface [34]. Thus, the electrodes themselves act as a common external resonator, facilitating the effective indirect coupling
  • interconnecting Nb electrodes, acting as a travelling wave antenna for surface plasmons at the electrode–substrate interface [9][34]. The linear array contains also two extra Nb lines (without JJs) on each side of the array forming a slot waveguide, which may act as an additional external resonator. However
PDF
Album
Full Research Paper
Published 28 Dec 2022

Utilizing the surface potential of a solid electrolyte region as the potential reference in Kelvin probe force microscopy

  • Nobuyuki Ishida

Beilstein J. Nanotechnol. 2022, 13, 1558–1563, doi:10.3762/bjnano.13.129

Graphical Abstract
  • electrode placed on a solid electrolyte (Li-ion conductor) substrate. The surface-potential distribution in the region across the solid electrolyte was measured with a DC voltage applied between the Au electrodes. During the KPFM measurements, the potential of each Au electrodes relative to the Li electrode
  • electrochemical cell, where two Au electrodes and one metallic Li reference electrode were placed on the solid electrolyte substrate. The changes in the surface potential of the Au electrodes, measured relative to the surface potential of the solid electrolyte region, agreed well with the changes in the Au
  • electrolyte sample was a Li-ion conducting glass ceramic purchased from OHARA Inc. (LICGCTM AG-01) [20]. The size and thickness of the substrate were 25.4 mm × 25.4 mm and 150 μm, respectively. The main crystalline phase was Li1+x+yAlx(Ti,Ge)2−xSiyP3−yO12 [20]. The substrate was cut into pieces of
PDF
Album
Full Research Paper
Published 19 Dec 2022

Induced electric conductivity in organic polymers

  • Konstantin Y. Arutyunov,
  • Anatoli S. Gurski,
  • Vladimir V. Artemov,
  • Alexander L. Vasiliev,
  • Azat R. Yusupov,
  • Danfis D. Karamov and
  • Alexei N. Lachinov

Beilstein J. Nanotechnol. 2022, 13, 1551–1557, doi:10.3762/bjnano.13.128

Graphical Abstract
  • value [15][16]. In our samples, the critical temperature of lead electrodes varied from 7.8 K < Tc(Pbfilm) < 8.2 K. Submicron PDP films were prepared by centrifuging the polymer from a solution in cyclohexanone on a solid substrate. When preparing the solution, the polymer was first soaked in a small
  • solution of specified concentration was applied onto the dielectric substrate fixed on a centrifuge holder. The rotation speed was typically 2000 rpm. The resulting polymer film was dried in air for about 45–60 min at room temperature. Then the final drying was carried out to remove solvent residues at a
  • interface are completely or partially elongated. Also, film formation at such low concentrations strongly depends on the energy interaction of macromolecules with the substrate surface, which explains the weak dependence of the film thickness on the solution concentration. With an increase in concentration
PDF
Album
Full Research Paper
Published 19 Dec 2022

Photoelectrochemical water oxidation over TiO2 nanotubes modified with MoS2 and g-C3N4

  • Phuong Hoang Nguyen,
  • Thi Minh Cao,
  • Tho Truong Nguyen,
  • Hien Duy Tong and
  • Viet Van Pham

Beilstein J. Nanotechnol. 2022, 13, 1541–1550, doi:10.3762/bjnano.13.127

Graphical Abstract
  • and g-C3N4 onto the TNAs substrate, we examined the morphology of these heterostructures by using SEM (Figure 2). There are some small pieces that are randomly distributed on the surface of TNAs in Figure 2a, which were attributed to be MoS2. There is a similar result in the SEM image of g-C3N4/TNAs
  • -triazine of g-C3N4. Vibrational peaks in the 3200 cm−1 region attributed to fluctuations of the C–N group also appeared [49]. Figure 3b shows the bonding states in the MoS2/TNAs and g-C3N4/TNAs heterostructures. The results show that, in addition to the typical bonding of the TNAs substrate such as Ti–O
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2022

Non-stoichiometric magnetite as catalyst for the photocatalytic degradation of phenol and 2,6-dibromo-4-methylphenol – a new approach in water treatment

  • Joanna Kisała,
  • Anna Tomaszewska and
  • Przemysław Kolek

Beilstein J. Nanotechnol. 2022, 13, 1531–1540, doi:10.3762/bjnano.13.126

Graphical Abstract
  • pHPZC for M1 (red) and M2 (blue). (a) Substrate decay rate of PhOH/O3 (blue), PhOH/M1 (orange), PhOH/M2 (green), and PhOH/photolysis (pink); (b) plot of ln(Ct/C0) vs irradiation time for phenol; (c) substrate decay rate of DBMP/O3 (yellow), DBMP/M1 (grey), DBMP/M2 (light blue), and DBMP/photolysis (red
  • ); (d) plot of ln(Ct/C0) vs irradiation time for DBMP. Bromide ion production as a function of the time (circles – M1, crosses – M2, triangles – ozonation, squares – photolysis). Substrate removal efficiency of PhOH/O3 (dark blue), PhOH/M1 (red), PhOH/M2 (orange), PhOH/photolysis (black), DBMP/O3
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2022

Coherent amplification of radiation from two phase-locked Josephson junction arrays

  • Mikhail A. Galin,
  • Vladimir M. Krasnov,
  • Ilya A. Shereshevsky,
  • Nadezhda K. Vdovicheva and
  • Vladislav V. Kurin

Beilstein J. Nanotechnol. 2022, 13, 1445–1457, doi:10.3762/bjnano.13.119

Graphical Abstract
  • working similar to lasers is discussed in more detail in [8]. The resonator can be a cavity of the JJs itself [2], an electrode with embedded JJs [9], or the dielectric substrate on which the JJ array is arranged [10]. Coherent superradiant amplification of emitted power is caused by a constructive
  • substrate with the thickness 0.38 mm. It contains three closely located straight strips with a separation of only 4 μm. Each strip has the length L = 5 mm and the width w = 14 μm and contains 332 JJs distributed uniformly along the strip. The junction area is 8 × 8 μm2. Contact electrodes are connected to
  • nearby “array-b” is biased with a fixed current. Sample-1 and sample-2 were used for on-chip analysis where two linear arrays are placed on the same substrate. We also present data for off-chip synchronization. To this end, two linear arrays were stacked on top of each other. Radiation detection An InSb
PDF
Album
Full Research Paper
Published 06 Dec 2022

Double-layer symmetric gratings with bound states in the continuum for dual-band high-Q optical sensing

  • Chaoying Shi,
  • Jinhua Hu,
  • Xiuhong Liu,
  • Junfang Liang,
  • Jijun Zhao,
  • Haiyan Han and
  • Qiaofen Zhu

Beilstein J. Nanotechnol. 2022, 13, 1408–1417, doi:10.3762/bjnano.13.116

Graphical Abstract
  • substrate in an adhesive bonding process. Next, another bare SOI chip was bonded to the previously fabricated recipient substrate as a donor substrate, which is spin-coated using SU-8 on both the recipient and donor substrates. The silicon handle of the donor substrate is then removed by mechanical
  • polishing and deep RIE, followed by removal of the BOX layer of the donor substrate by wet etching using hydrofluoric acid. Finally, the gratings are fabricated on the top layer with EBL and RIE, while the silicon handle and BOX layer on top are removed in the same way. It should be pointed out that the
PDF
Album
Full Research Paper
Published 25 Nov 2022

Straight roads into nowhere – obvious and not-so-obvious biological models for ferrophobic surfaces

  • Wilfried Konrad,
  • Christoph Neinhuis and
  • Anita Roth-Nebelsick

Beilstein J. Nanotechnol. 2022, 13, 1345–1360, doi:10.3762/bjnano.13.111

Graphical Abstract
  • of the contact line) by returning back to its equilibrium position. (At the contact line, the gas/liquid interface touches the solid substrate.) Upon Taylor expansion of the Young–Laplace equation and the gas equation around a point of mechanical equilibrium, it can be shown that the quantity
PDF
Album
Perspective
Published 17 Nov 2022

Near-infrared photoactive Ag-Zn-Ga-S-Se quantum dots for high-performance quantum dot-sensitized solar cells

  • Roopakala Kottayi,
  • Ilangovan Veerappan and
  • Ramadasse Sittaramane

Beilstein J. Nanotechnol. 2022, 13, 1337–1344, doi:10.3762/bjnano.13.110

Graphical Abstract
  • 24 h with a MPA/acetonitrile solution 3:7 (v/v). This substrate was then immersed into the colloidal AZGSSe QD solution for 48 h to obtain the AZGSSe-sensitized TiO2 NF-based photoanode. Assembly of QDSCs Earlier reports revealed that Cu2S is a low-cost and efficient counter electrode (CE) for QDSCs
  • glass. This substrate was then dried at 60 °C in vacuum for 12 h to obtain the Cu2S-based CE. CE and photoanode were sandwiched with a 60 µm hot melt spacer at 110 °C for 50 s and clipped together. After that, the electrolyte was injected between the electrodes through pre-drilled holes in the CE to get
PDF
Album
Full Research Paper
Published 14 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • ] demonstrated the synthesis of a new direct Z-scheme photocatalyst made of ultrathin Bi2O3 and Bi2MoO6 microspheres. For the effective production of Bi2O3/Bi2MoO6 nanocomposites, researchers adopted a simple in situ alkali treatment of Bi2MoO6 followed by calcination. As a substrate for the production of Bi2O3
PDF
Album
Review
Published 11 Nov 2022

Bending and punching characteristics of aluminum sheets using the quasi-continuum method

  • Man-Ping Chang,
  • Shang-Jui Lin and
  • Te-Hua Fang

Beilstein J. Nanotechnol. 2022, 13, 1303–1315, doi:10.3762/bjnano.13.108

Graphical Abstract
  • -continuum (QC) method. Four variables (i.e., crystal orientation, workpiece thickness, clearance between the punch and the substrate, and the taper angle of punch) are used to explore their effect during the nano-punching process. The shear stress distribution is used to express the punching effect on the
  • the punch should not be larger than 10°, otherwise, it might damage the workpiece and the substrate. Keywords: nano-punching; quasi-continuum method; single-crystalline aluminum; Introduction Nanotechnology has greatly improved the development of high-tech industries such as biomedicine
  • simulation model. Besides, there is a clearance between the punch and the substrate during the nano-punching process, as shown in Figure 1b. The initial distance between the punch and the workpiece was set to 10 Å, in order to prevent internal adhesion of atoms in the equilibrium stage which may lead to
PDF
Album
Full Research Paper
Published 10 Nov 2022

Growing up in a rough world: scaling of frictional adhesion and morphology of the Tokay gecko (Gekko gecko)

  • Anthony J. Cobos and
  • Timothy E. Higham

Beilstein J. Nanotechnol. 2022, 13, 1292–1302, doi:10.3762/bjnano.13.107

Graphical Abstract
  • lower values than smooth surfaces. The safety factor went down with body mass and with surface roughness, suggesting that smaller animals may be more likely to occupy rough substrates in their natural habitat. Keywords: allometry; biomechanics; ecology; habitat; ontogeny; substrate; Introduction
  • undulant tree bark [20][21][22][23][24][25] (Figure 1). Recent studies have begun to explore the role of surface roughness on frictional adhesion in geckos [1][21][25][26], and performance typically declines as roughness increases. For example, Vanhooydonck and colleagues examined the effects of substrate
  • adhesive pads is the contact area between the setae and the surface. With increasingly rough surfaces, the area for contact decreases, leading to decreased adhesive performance. In a modeling framework, the force of adhesion can be related to surface energy of the substrate, the area of the adhering pad
PDF
Album
Supp Info
Full Research Paper
Published 09 Nov 2022
Other Beilstein-Institut Open Science Activities